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ON THE INTEGRATION OF THE EQUATION OF
RADIATIVE TRANSFER

P. SWINGS AND L. DOR

ABSTRACT

The equation of the radiative transfer has been integrated by a generalization of
Spitzer’s method, which makes use of Bessel functions.

1. In solving the equation of radiative transfer appropriate to the
problem of the formation of absorption lines, it is necessary to take
into account the variation of the Planck intensity B, as function of
the total optical depth within the line. To a sufficient approxi-
mation, B, may be expected to be a linear function of the form
a, + b,7, where 7 is the optical depth in the continuous spectrum;
7 is defined with respect to the Rosseland mean absorption co-
efficient over the whole spectrum. On the other hand, we can-
not, in general, expect B, to be a linear function of the optical depth
t,. The point at issue here is the circumstance to which Stromgren®
has recently drawn attention:

Line absorption affects the intensity within the radiated spectrum in two
ways. First, it cuts down the intensity as would increased continuous absorption,
the effect depending upon the existence of a temperature gradient in the stellar
atmosphere. Second, it causes a deviation from Kirchhoff’s law, in the sense
that emission is reduced, so that there is a further reduction in the radiated
intensity.

Spitzer’s recent solution? of the equation of transfer in terms of
Bessel functions is seen to take into account the second of the fore-
going two effects ‘‘rigorously,”” while the first effect is taken into ac-
count by assuming for B, a linear function in #, (which assumption
cannot generally be valid). For this reason the perturbation theory,
developed by Stromgren,* is of greater value inasmuch as Strom-
'gren’s method in fact allows quite a considerable variation in 7,.3

However, it is of some interest to supplement Spitzer’s analysis
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RADIATIVE TRANSFER 317

by calling attention to the fact that several other possibilities of
rigorous solutions exist for the equation of radiative transfer. Such
possibilities are indicated here in a summarized form, no analytical
discussion or expression of the residual intensity being added, as this
would proceed along the same line as in Spitzer’s paper. In any spe-
cial example (i.e., for a definite model and frequency), it will be possi-
ble to select the analytical case which best approximates the physical
conditions.

2. Using classical notations, the equation of radiative transfer
may be written

aJ,(4) _ . (1 +en,) I+ enQ
dt,z, =3 1 _|_ n, {Ju<tv) 1 + en, Bv(tu)} ) (I)

where
= (1 + 9,)dr,. (2)

We assume, as usual,

EEEUEG) = o+ o, 3

and substitute
y(t,) = J,(¢) — (a, + pt,) (4)
M) = S (s)

Thus, we get instead of (1)

dy
d?

(6)

Spitzer’s treatment consists essentially in finding adequate sub-
stitutions which convert equation (6) into a Bessel equation of the

type

dy 1 dy LA
ot B+ E) e (7
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Solution I of Spitzer is
I
= — —8/8+1
A=~ (1 + ms,) ,

with
m=(s+1)2,

s, A, and D being constants.
Solution II is

AN=L+ Meut,

L, M, and » being constants.
3. Substituting

=a+ B, (8)
(6) keeps its essential form and becomes

228 ). ©

We may try to find a substitution of independent variable w(z) and
of unknown
¥(2) = u(z) * y:(2) | (10)

which transforms (7) into (g).
After some easy algebra, it is found that we need, therefore,

d*z 1 dz 2 du dz \?
rw+;o'%+<;'d—z>'(%> = (x2)
_3\_1 dw, 1 |1 dufdz 1dz) LAY
8 u dz’+<ﬁ>2 [u dz<dw2+‘wdw I+w2 =o.(r2)
du

Solution I of Spitzer corresponds to

z=aw®; u=gv7; gz=1+4 mi,,
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a, b, and m being constants which may be immediately related to
Spitzer’s coefficients.
Solution IT corresponds to

w=gqe?; wuw=const.; z=4¢,,.

The equations (11) and (12) generalize Spitzer’s results; (11) may
be replaced immediately by a first-order linear equation which
brings

dz 1

—= - (13)

dw w[const. + <Z du) . (—Z—E-v]

u dz w

We may take, for instance,

I 1/2
w=-¢e; z=a-bt; w=[z-6392(a+bt)] ;

then N\ has the following form
B = b+ bweBrew + B pwrner (1)

a, b, A, B, and », being constants. and the solution is, accordingly,
y = e—(a+bt) [51 . I,,(‘ZU) + ¢ Kn(w)] . (15)

I.(w) and K,(w) are the usual Bessel functions of imaginary argu-
ment.

Obviously, instead of transforming (6) into (7), we could have
taken the other Bessel equation, or, more generally, any other well-
known type of differential equation of the second order, namely, that
providing the orthogonal polynomials.

4. Equation (6) being linear and homogeneous with regard to y
and d*y/d#, the substitution

y = ¢/ udt (16)
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‘will transform (6) into a Riccati equation
du 2 —
Zﬁ‘ + u = 3)‘(t) )
and a solution by quadratures is always obtainable when
_d

v being any function of £.
The solution is actually

we=p—-, (18)
with
v = ez-/"“‘”{cI — fe"f“d‘dt} . (19)
For instance, if
_ Q) _ @)
= W or 3)‘@) = f(t) ’ (20)

/() being any function, we have

dt

y = le(t) + C2f(t) * fz(t) . (21)
The simple case f(§) = Ai™ brings
3\(@) = Lmtz—_xz and y = cit™ 4 i, (22)
5. Let
y = 1) (23)

be a solution of (6); suppose we may write { = F(y). Then (6) be-
comes

By~ PG -y = o)+ 5. (24)
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Thus
dt = [2fe(y) -y dy + /2 - dy. (25)
By quadrature we shall find ¢ as a function of y.

In other words, if we take any function ¢(y), we shall get y = ()
by quadrature, and then

3N = o(3) = olf(] . (26)
For instance, if
A
ﬂa(y) = y )
we find
y = ;itz + Bt+C,
with

24

N IE T BT oC°

A, B, and C being constants.

6. Summarizing, we may state: (1) Spitzer’s method introducing
Bessel functions may be generalized by formulae (11) and (12) [Ex-
ample: formula (15)]; (2) and substitution (16) give a solution by
quadrature when A(¢) verifies the general relation (17) [Examples:
formulae (20) and (21)]; (3) another integration by quadrature is
given by formula (26); this may in some cases give simple solu-
tions.

Our thanks are due to S. Chandrasekhar for valuable suggestions.
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