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Introduction 
Standard cow milk analysis as used for performance recording or milk pricing has been 
restricted for decades to fat and protein. Some countries added solids not fat, true protein, 
urea and lactose and most somatic cell counts (ICAR, 2009). However milk produced by a 
cow at a given moment under given environmental circumstances (e.g., management, feeding, 
and climate) is in itself a highly valuable source of information on the status of the animal, 
the quality of the product (milk), and the interaction environment-animal-product. The aim of 
this paper is to give a general overview of the current status of research on the interest, the 
challenges for recording but also the possible use of new phenotypes obtained from milk 
composition both for genetic improvement and other purposes. The paper will focus on dairy 
cows; most conclusions can obviously be extended to other milk producing animals. 

Milk composition 
Until recently milk composition was only quantified for five major traits: milk fat, milk 
protein, milk urea nitrogen (MUN), milk lactose and finally somatic cell count, the later using 
a different technology. Milk is however a very complex substance with a large number of 
components. These components reach from components of milk fat or milk protein to 
vitamins or minerals. For instance, milk fat contains average 96% of triglycerides, which are 
a glycerol molecule esterified with three fatty acids. For a given content of fat, various fatty 
acid profiles exist. Similarly, milk protein is an assembly of different protein fractions such as 
caseins, α-lactalbumins, β-lactoglobulins and other minor proteins (e.g., lactoferrin). The 
complexity of milk composition is also a rich source of information to define the new 
phenotypes describing environment-animal-product. At the same time breed differences, at 
least for major milk constituents have been known for a long time (e.g., Webb, Johnson and 
Alford (1974)). Similar differences were found and recently confirmed for fatty acid profiles 
(e.g., Soyeurt, Dardenne, Gillon et al. (2006), lactoferrin (Soyeurt, Colinet, Arnould et al. 
(2007)) and major minerals (e.g., Cerbulis and Farrell (1976)).  

Defining new phenotypes 
Animal selection, as herd management, is based on the precise assessment of important traits. 
Through a better and finer knowledge of milk composition, new phenotypes can be defined. 
These phenotypes can be used in at least four areas: herd management, environment, animal 
health, and milk quality. In this paper, the definition of phenotypes related to the fine milk 
composition is large and includes milk components used as a direct indicator of the 
considered traits of interest (management, environmental, animal health, and milk quality 
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traits) or an indirect indicator trait of these same traits of interest. Knowing these traits will 
have a positive impact on sustainability of milk production. 

Management traits. Since the start of milk recording, the milk fat content, and several years 
after, the protein content have been used as management traits helping milk producers to fine 
tune their management and especially feeding systems. MUN and lactose were added more 
recently, both adding new information, e.g., MUN together with protein allows cross-check 
protein feeding (e.g., Baker, Ferguson, and Chalupa (1995)). Another example of the use of 
major milk components is the fat/protein ratio. Brutal changes of this ratio are considered 
indicators of ketosis or acidosis. Finer knowledge of milk composition would allow the 
detection of subclincal ketosis thanks to the determination of acetone and β-hydroxybutyrate 
in milk as suggested by de Roos, van den Bijgaart, Hørlyk et al. (2007). Other fine milk 
components having large interest are fatty acids. They have a high potential to be used as 
indicator traits for dairy cow feeding. Long chain fatty acids in milk are strongly related to 
the ingested long chain fatty acids by cows. Additional management traits are already known 
to be linked to milk composition. An example is the energy balance which can be related to 
the modifications in fatty acids in milk (e.g., Lake, Weston, Scholljegerdes et al. (2007)). 

Environmental traits. Some management traits can also be directly linked to environmental 
issues. An example is MUN which is not only a trait indicating nitrogen efficiency of protein 
feeding, it allows also to assess the amount of extra nitrogen that a cow will excrete (e.g., 
Jonker, Kohn, and Erdman (1998)). Recently, another research has shown that a second 
environmental challenge of dairy farming, i.e. the emission of methane, can be linked to fatty 
acid composition (Chilliard, Martin, Rouel et al. (2009)).  

Animal health. After management and environment, the changes in milk composition are 
also an indirect indicator of the health status of a cow (e.g., Hamann and Krömker (1997)). It 
is known that the somatic cell count and/or the modifications in the contents of lactose, 
calcium, and lactoferrin in milk are related to the udder health (e.g., Miller (1984)). As 
already explained before, the health status of a cow is closely linked to the energy balance 
which can be monitored by the changes in some milk components. 

Milk quality. Quality of milk can be defined in three different ways: the hygienic, the 
technological, and the nutritional quality. Hygienic quality assumed that the milk is below 
given threshold for somatic cells and germs per ml of milk, no trace of antibiotics, and a 
good visual property. The technological quality of milk is related to the specific valorization 
expected from the produced milk. An example is butter hardness which is directly linked to 
fatty acid ratios (e.g., Soyeurt, Dardenne, Dehareng et al. (2008)). For cheese, different milk 
composition traits related to the cheese-making yield were identified. The nutritional quality 
of milk is based on the contents of milk components having a potential benefit for human 
health such as the unsaturated fatty acids, calcium, lactoferrin.  



Recording new traits 
As explained previously, milk labs all around the world quantified mostly only five major 
milk components. Even if the interest for new phenotypes is nowadays clear, a lack of 
technology or better of a lack of adequate use of existing technology limited the potential to 
go further in milk analysis, especially for routine recording of new traits. Recently several 
studies, mostly done in our group, showed that existing mid infrared (MIR) spectrometry 
technology can be used to predict other milk components. The MIR technology was already 
used for a long time to predict milk fat, milk protein, MUN and lactose. However it was 
shown that also at least some fatty acids (Soyeurt, Dardenne, Dehareng et al. (2006).), 
lactoferrin (Soyeurt, Colinet, Arnould et al. (2007)), minerals (Soyeurt, Bruwier, Romnee et 
al. (2009)), acetone and β-hydroxybutyrate (de Roos, van den Bijgaart, Hørlyk et al. (2007)) 
can also be predicted. This was obviously a very important step because additional 
phenotypes can be obtained for large numbers of samples with low analysis cost. All 
analyzed milk samples by a MIR spectrometer generates a MIR spectrum. This spectrum 
represents the absorption of infrared ray at frequencies related to the vibrations of specific 
chemical bonds within a molecule (Coates (2000)). To be interpretable, this spectral data 
must be resumed to express the desired information, i.e. the quantity of milk fat for a given 
quantity of milk, by using specific calibration equations. By developing new calibration 
equations it became feasible to predict new traits as major minerals, fatty acids, lactoferrin, 
acetone, β-hydroxybutyrate, dornic acidity degree, coagulation time. This list is not 
exhaustive. 
 
As this technology is already used by milk recording, the implementation of these new 
calibration equations can be easily done if the spectral data can be extracted from the 
spectrometer and recorded. Storing spectral data allows also using calibration equations at a 
later stage. Efforts are underway in several countries to adapt to this. Smaller countries with 
one or fewer labs have here an advantage as it is the case in Luxembourg and in the Walloon 
Region of Belgium. To our knowledge currently only the Belgian and Luxembourg animal 
breeding associations are recording all spectra and have accumulated a total of 700,000 and 
600,000 test-day spectra from individual cows during the last years. Based on this data, our 
group was able to initiate a large number of studies on different new phenotypes for their 
potential interest for herd management, environment, animal health, or milk quality.  

Evaluating new traits 
Implementing animal breeding for additional traits first requires that animals can be evaluated 
for them because data is available; the traits show phenotypic variation and are heritable 
enough. Different steps are required to develop and implement new advanced genetic 
evaluation systems. 



Recording spectral data. As described above few countries have significant spectral data 
linked to their animal recording and genetic evaluation databases. For larger countries storing 
this data is still a quiet difficult task as every record contains 1060 data points obtained from 
MIR. 

Predicting new traits from spectral data. Predicting new traits from spectral data needs 
access to prediction equations. Also in order to guaranty quality and robustness of 
predictions, which is for example required if values are used for milk pricing, additional 
steps to certify the results are needed. 

Modeling new traits. Multivariate test-day models are required as the new traits have a 
longitudinal nature during the lactation and they are highly correlated to each other and with 
some traditional trait as milk, fat and protein. The presence of historical data for correlated 
traits is required as data currently available for the new traits will be limited to the last few 
years. Given these fact the type of models that has to be developed is creating new 
challenges as of the number of traits and the complexity of their relationships. A second 
challenge in modeling is to make the results useful for management purposes. There is still a 
large potential of improvement even for classical traits as MUN (e.g., Bastin, Laloux, Gillon 
et al. (2009)). 

Estimation of (co)variance components. Estimating genetic parameters is required. To do 
this, enough data has to be available. Currently research is underway for a large number of 
traits. Generally genetic variances were observed and daily heritabilities estimated for new 
traits range between 0.1 and 0.4 (e.g., Soyeurt, Dardenne, Dehareng et al. (2008)) showing 
that sufficient heritable genetic differences exist. Because of the lack of historical data 
correlated traits as milk yield, fat and protein content need to be modeled together with new 
traits. This requires that (co)variance of those traits and new traits are required. First results 
show rather strong but very variable links between milk yield, fat content and protein content 
with fatty acids (e.g., Soyeurt, Dardenne, Dehareng et al. (2008)). Updating of selection 
indexes will require that (co)variances with other economically important traits will also be 
needed.  

Genetic evaluation. Based on available data genetic evaluations can be done. Test 
computation with Walloon data for some fatty acids have shown that even with limited data 
but by making good use of correlated traits, very reasonable levels of reliability can be 
achieved for a great number of bulls recently used in Belgium. During these runs 1707 bull 
obtained reliabilities for saturated fatty acid content of 0.50 and more. Research is underway 
to develop methods to feed back into the genetic evaluation system international breeding 
values for correlated traits (Gengler and Vanderick, 2008). This would even further enhance 
the reliability of genetic evaluations for new traits. 

Genomic evaluation. By definition traits with limited data look very appealing to use 
genomic prediction (Meuwissen, Hayes, and Goddard (2001)) to estimate breeding values. 
However current implementations (e.g., VanRaden (2008)) would require the a priori 
estimation of highly reliable breeding values for a large group of training set sires. This can 
potentially be replaced by the use of corrected phenotypic records for genotyped cows, 



however it remains presently unclear if this method would produce prediction equation that 
are precise enough for sires. Also multi-trait or longitudinal genomic prediction methods 
based on this approach are only in their infancy, however as explained before the type of data 
would require multi-trait test-day models. A viable alternative could be the use of an 
integrated approach combining all available information (phenotypic, genomic and pedigree) 
exploiting recent methodological advances (Aguilar, Misztal, Johnson et al. (2010)). This 
method can be integrated in every type of models. It has however some theoretical 
disadvantages and more research is needed. 

New breeding goals 
Historically in the majority of countries, selection has favored production traits. During the 
last years most countries have been shifting towards a more balanced breeding goal for 
improved milk production without compromising health and fertility. Focused selection for 
milk production has resulted in impressive improvement in milk production but has also 
resulted in dairy cows that lose lots of body energy reserves and are in varying degrees of 
negative energy balance for some parts of the lactation. Consequently, dairy cows are 
considered less “robust” than they previously have been. More recently, as a result of a 
general public interest in milk production practices, in milk quality and in the environment, 
selection pressure in many (if not most) countries tries to shift towards new traits that need to 
be included in breeding goals. Nowadays with these new phenotypes being available index 
traits can be diversified to select for these broader breeding goals. Selection can refocus to 
include additional traits such as milk quality and dairy cow robustness.  
 
Finally, it is important that the inclusion of traits such as environmental sustainability and 
milk quality does not compromise health, fertility or “robustness” of the cow. The objective 
will be to improve a balanced and sustainable breeding scheme. Given the complex 
relationships among production, robustness, milk quality and environmental traits fin 
balanced selection indexes have to be developed to achieve sustainable improvement of the 
updated breeding goal. Also, potentially, differentiated selection indexes will be needed as 
production circumstances could vary (e.g., milk paid for nutritional quality). 

Conclusion 
Recent advances in milk composition analyses allowed defining new and advanced 
phenotypes. These new traits are valuable descriptors of the environment, the animal and its 
product (milk). These advances in milk analysis are based on mid infrared spectrometry 
exploiting the spectral data generated by the spectrometers during routine milk analysis as 
done currently worldwide for milk recording. However besides defining these new 
phenotypes different steps are required to record, to evaluate and to use these new 
phenotypes for management and breeding. Also updating of selection goals by adding 
additional traits such as environmental impact, milk quality and dairy cow robustness to 
increase sustainability of animal breeding is required. Given the complex relationships 
among production, robustness and milk quality traits fine balanced selection indexes have to 
be developed to achieve sustainable improvement of the updated breeding goal. 



Acknowledgements 
The authors acknowledge helpful comments from their colleagues at the Animal Breeding 
and Genetic Group of the Animal Science Unit at Gembloux Agro-Bio Tech. Nicolas 
Gengler, a Research Associate, and Hélène Soyeurt, a Postdoctoral Researcher, of the 
National Fund for Scientific Research (Brussels, Belgium) acknowledge their support. The 
financial support of the Walloon Regional Ministry of Agriculture (Ministère de la Région 
Wallonne, Direction Générale de l’Agriculture) and of the Fond pour la Recherche dans 
l’Industrie et l’Agriculture (F.R.I.A) is acknowledged. The authors acknowledge also the 
support of the European project entitled RobustMilk (grant no. 211708). This project is 
financially supported by the European Commission under the Seventh Research Framework 
Programme. The contents of this paper are the sole responsibility of the publishers, and they 
do not necessarily represent the views of the Commission or its service. 

References 
Aguilar, I., Misztal, I., Johnson, D.L. et al. (2010). J. Dairy Sci., 93:743-752. 

Baker, L.D., Ferguson, J.D., and Chalupa, W. (1995). J. Dairy Sci. 78:2424-2434. 

Bastin, C., Laloux, L., Gillon, A. et al. (2009). J. Dairy Sci. 92: 3529-3540. 

Cerbulis, J. and Farrell, H. M. (1976). J. Dairy Sci. 59:589–593. 

Chilliard, Y., Martin, C., Rouel, J. et al. (2009). J. Dairy Sci. 92:5199-5211. 

Coates, J. (2000). Interpretation of infrared spectre, a practical approach. Pages 10815–
10837 in Encyclopedia of Analytical Chemistry. R. A. Meyers, ed. John Wiley & 
Sons, New York, NY. 

de Roos, A.P.W.,van den Bijgaart, H.J.C.M., Hørlyk, J. et al. (2007). J. Dairy Sci. 
90:1761-1766. 

Gengler, N., and Vanderick, S. (2008). Interbull Bulletin 38:70 – 74. 

Hamann, J., and Krömker, V. (1997). Livestock Production Science 48:201-208. 

ICAR (2009). http://www.icar.org/Documents/Rules%20and%20regulations/Guidelines/ 
Guidelines_2009.pdf 

Jonker, J.S., Kohn, R.A., and Erdman, R.A. (1998). J. Dairy Sci. 81:2681-2692. 

Lake, S.L., Weston, T.R., Scholljegerdes, E.J. et al. (2007). J. Anim Sci. 85:717-730.  

Meuwissen, T.H.E., Hayes, B.J. and Goddard, M.E. (2001). Genetics 157:1819-1829. 

Miller, R.H. (1984). J. Dairy Sci. 67:459-471. 

Soyeurt, H., Bruwier, D., Romnee, J.M. et al. (2009). J. Dairy Sci. 92:2444-2454.  

Soyeurt, H., Colinet, F.G., Arnould, V.M.R. et al. (2007). J. Dairy Sci. 90:4443-4450. 

Soyeurt, H., Dardenne, P., Dehareng, F. et al. (2006). J. Dairy Sci. 89:3690-3695. 



Soyeurt, H., Dardenne, P., Dehareng, F. et al. (2008). J. Dairy Sci. 91:3611-3626.  

Soyeurt, H., Dardenne, P., Gillon, A. et al. (2006). J. Dairy. Sci. 89:4858-4865. 

VanRaden, P.M. (2008). J. Dairy Sci. 91:4414-4423. 

Webb, B.H., Johnson, A.H. and Alford, J.A. (1974). Fundamentals of Dairy Chemistry. 
Second Ed. AVI Publishing Co., Westport, CT. 


