1	APPLICATION OF THE HYBRID FINITE ELEMENT MIXING CELL METHOD TO AN
2	ABANDONED COALFIELD IN BELGIUM
3	
4	S. Wildemeersch ^{1, 2} , S. Brouyère ¹ , Ph. Orban ¹ , J. Couturier ¹ , C. Dingelstadt ³ , M. Veschkens ³ , and A.
5	Dassargues ¹
6	
7	¹ University of Liege, ArGEnCo, GEO ³ ; Hydrogeology and Environmental Geology, Aquapôle, B52/3
8	Sart-Tilman, 4000 Liege, Belgium
9	
10	² F.R.I.A F.R.SFNRS - 1000 Brussels, Belgium
11	
12	³ ISSeP - Rue du Chéra 200, 4000 Liege, Belgium
13	Corresponding author : Wildemeersch Samuel
14	Address: University of Liege, ArGEnCo, GEO ³ ; Hydrogeology and Environmental Geology, Aquapôle,
15	B52/3 Sart-Tilman, 4000 Liege, Belgium
16	E-mail (work): swildemeersch@ulg.ac.be
17	Phone number (work): +32(0)43669553
18	Fax number (work): +32(0)43669520
19	
20	Abstract
21	

The Hybrid Finite Element Mixing Cell (HFEMC) method is a flexible modelling technique particularly suited to mining problems. The principle of this method is to subdivide the modelled zone into several subdomains and to select a specific equation, ranging from the simple linear reservoir equation to the groundwater flow in porous media equation, to model groundwater flow in each subdomain. The model can be run in transient conditions, which makes it a useful tool for managing mine closure post-issues such as groundwater rebound and water inrushes.

28 The application of the HFEMC method to an abandoned underground coal mine near the city of Liege 29 (Belgium) is presented. The case study zone has been discretized taking advantage of the flexibility of the 30 method. Then, the model has been calibrated in transient conditions based on both hydraulic head and 31 water discharge rate observation and an uncertainty analysis has been performed. Finally, the calibrated 32 model has been used to run several scenarios in order to assess the impacts of possible future phenomena 33 on the hydraulic heads and the water discharge rates. Among others, the simulation of an intense rainfall 34 event shows a quick and strong increase in hydraulic heads in some zones coupled with an increase in 35 associated water discharge rates. This could lead to stability problems in local hill slopes. These 36 predictions will help managing and predicting mine water problems in this complex mining system. 37

38 Keywords: Groundwater model; Mining works; HFEMC method; SUFT3D.

39

40 **1 INTRODUCTION**

41

42 Groundwater flow modelling in mined ground is challenging. Classical modelling techniques solving the 43 flow in porous media equation fail to simulate groundwater flow in large voids constituting preferential 44 flowpaths (Sherwood and Younger 1994; Sherwood and Younger, 1997; Younger et al., 2002; Rapantova 45 et al., 2007). Another limitation on the use of classical modelling techniques in mined areas is related to 46 the lack of knowledge of the hydrogeological conditions and to the scarcity of data concerning the mine 47 workings and their possible interconnections. Consequently, specific implicit and explicit modelling 48 techniques have been developed for mined areas. These techniques range from box model techniques 49 (Sherwood and Younger, 1997) to physically-based and spatially-distributed techniques (Adams and

Younger, 1997; Younger et al., 2002; Boyaud and Therrien, 2004), including the new HFEMC method
(Brouyère et al., 2009).

52 The HFEMC method couples groups of mixing cells for the mine workings with finite elements for the 53 unmined zone. The interactions between the mined zones and the unmined zone are considered using 54 internal boundary conditions which are defined at the interfaces between the groups of mixing cells and 55 the finite element mesh. Another feature of this technique lies in its ability to simulate by-pass flows 56 between mine workings using first order transfer equations between the groups of mixing cells. The 57 HFEMC method is particularly useful to simulate mine groundwater problems such as groundwater 58 rebound. This kind of phenomenon is essential to simulate since consequences such as soil instability, 59 flooding, and water inrushes can be harmful (Younger et al., 2002).

The first application of the HFEMC method focuses on an abandoned underground coal mine near the city of Liege (Belgium). The conceptual model and the calibration in steady-state conditions have already been presented (Brouyère et al., 2009). The main goal of this paper is to show the capacity of the HFEMC method to model groundwater and mine water flows in transient conditions and for the simulation of the mined water system responses to different extreme hydrological scenarios. This paper presents the calibration in transient conditions, the scenarios simulations performed with the calibrated model, and the conclusions and the perspectives of this first application in transient conditions of the HFEMC method.

67

68 2 FUNDAMENTAL PRINCIPLE OF THE HFEMC METHOD

69

70 A full presentation of the HFEMC method, including verification and illustration test cases, was 71 presented by Brouyère et al. (2009). The fundamental principle of the technique is to subdivide the 72 modelled zone into mined and unmined zones. The mining works are discretised by groups of mixing 73 cells and modelled using linear reservoirs characterised by a mean water level (Eq. 1a). The unmined 74 zone is discretised by finite elements providing spatially-distributed hydraulic heads obtained through the 75 finite element solution of the groundwater flow equation in porous media (Eq. 1b). Choosing different 76 equations for the mined zones and the unmined zone reflects the different level of knowledge of 77 hydrogeological conditions in each of them. The mining works are often poorly hydrogeologically

characterised compared with the unmined zone. Furthermore, the groundwater flow in porous mediaequation is not valid in the large voids of the mining works.

80

81
$$Q_{LR} = S_{LR} A_{LR,upper} \frac{\partial H_{LR}}{\partial t} = -\alpha_{LR} A_{LR,exc} \left(H_{LR} - H_{ref} \right) + Q$$
(1a)

82
$$F \frac{\partial h}{\partial t} = \underline{\nabla} (\underline{K} \underline{\nabla} (h+z)) + q$$
 (1b)

83

where Q_{LR} = flow rate entering or leaving the linear reservoir [L³T⁻¹], S_{LR} = storage of the linear reservoir 84 [-], $A_{LR,upper}$ = area of the upper face of the linear reservoir [L²], H_{LR} = mean hydraulic head in the linear 85 reservoir [L], α_{LR} = exchange coefficient of the linear reservoir [T⁻¹], $A_{LR,exc}$ = area of the exchange face 86 of the linear reservoir [L²], H_{ref} = drainage level of the linear reservoir [L], Q = source/sink term [L³T⁻¹], 87 F = specific storage coefficient of the porous medium [L⁻¹], h = pressure potential [L], $\underline{K} =$ hydraulic 88 conductivity tensor [LT⁻¹], z = gravity potential [L], and q = source/sink term by unit volume [T⁻¹]. 89 90 The interactions between mined and unmined zones are considered via internal boundary conditions 91 defined at the interfaces between the groups of mixing cells and the finite elements. Three types of 92 internal boundary are available: Dirichlet (first-type) dynamic boundary condition (Eq. 2a), Neumann 93 (second-type) impervious boundary condition (2b), and Fourier (third-type) dynamic boundary condition 94 (2c). The term *dynamic* is used for underlining the fact that the hydraulic heads used in these boundary 95 conditions are variable with time and the remaining unknowns within the problem.

96

97
$$h_{SD,i}(x, y, z, t) = h_{SD,j}(x, y, z, t)$$
 (2a)

98
$$\frac{h(x, y, z, t)}{\partial n} = 0$$
 (2b)

99
$$Q_{SD,i-SD,j} = \alpha_{FBC} A_{exc} \left(h_{SD,j}(x, y, z, t) - h_{SD,i}(x, y, z, t) \right)$$
(2c)

101 where $h_{SD,i}$ = the hydraulic head in sub-domain *i* [L], $h_{SD,j}$ = the hydraulic head in sub-domain *j* [L],

102 $Q_{SD,i-SD,j}$ = exchanged flow between sub-domains *i* and *j* through the third-type of *internal* boundary

103 condition [L³T⁻¹], α_{FBC} = exchange coefficient for the third type of *internal* boundary condition [T⁻¹],

104 and A_{exc} = the exchange area for the third type of *internal* boundary condition [L²].

105 The term α_{FBC} is a function of the hydraulic conductivity on both sides of the interface between

106 interacting subdomains. This term is estimated during the calibration process.

107 The interactions between the mining works themselves, that is by-pass flow connections through old mine

108 workings such as shafts or galleries, are modelled using a first-order transfer equation (Eq. 3). These by-

109 pass flow connections can be switched on and off to simulate water inrushes.

111
$$Q_{SD,i-SD,j} = \alpha_{BF} \left(h_{SD,j}(x, y, z, t) - h_{SD,i}(x, y, z, t) \right)$$
(3)

112 The exchange coefficient α_{BF} (L²T⁻¹) is related to the head losses along preferential flow paths.

113 A general schema of the HFEMC method is proposed in Figure 1.

114

115 3 CASE STUDY: AN ABANDONED UNDERGROUND COAL MINE IN BELGIUM

116

117 The abandoned underground coal mine of Cheratte is located downstream of the city of Liege (Belgium)

118 (Figure 2). The zone of interest covers about 27 km². The altitude ranges from about 55 m in the alluvial

119 plain of the Meuse River to 200 m on the plateau. The rivers crossing the zone are the Meuse River and

120 three of its direct or indirect tributaries flowing mainly northward (Figure 3).

121 The Cheratte underground coal mine comprising mined zones, Trembleur, Argenteau, Hasard-Cheratte

122 Nord, Hasard-Cheratte Sud, and Wandre, each made up of a network of galleries (Figure 3). These mined

123 zones interact with the surface water network and with the surrounding unmined zone.

124 The mined zones are located in a faulted and folded geological formation comprising shales and silts with

125 intercalations of sandstones, quartzites, and coal seams (Houiller Group - HOU - Upper Carboniferous).

126 The overlying geological formations comprise clays and sands (Vaals formation - VAA - Cretaceous),

127 chalk (Gulpen formation - GUL - Cretaceous), clays, silts and sands (terraces of the Meuse River - ALA -

128 Tertiary), pebbles, sands and clays (alluvial deposits of the Meuse River - AMO - Quaternary) (Barchy

129 and Marion, 2000) (Figure 3).

130 The main aquifer of the case study zone is located in the chalk of the Gulpen formation. The groundwater
131 is influenced by both the dip of the Cretaceous formations and the Meuse River, and flows mainly

132 towards the northwest. However, this general trend is disturbed in the vicinity of the mined zones where

133 significant drawdowns are observed. As indicated by the strong correlation observed between hydraulic

heads and water discharge rates (Figure 4). Some of these mined zones are probably connected through

135 faults and unlisted mine workings. As an example, the water discharge rate in the drainage gallery of

136 Hasard-Cheratte Sud (E8) correlates closely with the hydraulic heads in Argenteau (Pz4) and Trembleur

137 (Pz7) although the hydraulic head in *Hasard-Cheratte Sud* (Pz8) is almost stable. Connections must exist

138 between *Hasard-Cheratte Sud* and both *Argenteau* and *Trembleur*. The hydraulic head thresholds from

139 which the groundwater within Argenteau and Trembleur is evacuated directly through the drainage

140 gallery of *Hasard-Cheratte Sud* are estimated at 88.5 m and 102 m above mean sea level (amsl),

141 respectively (Dingelstadt et al., 2007).

142 Cheratte underground coal mine was closed in the end of the 1970s. The last pumping, maintaining the 143 groundwater level in *Trembleur* at about -64 m amsl ceased in 1982. However, the groundwater rebound 144 was not recorded until the installation of a monitoring network in 2003. Water levels and water discharge 145 rate measurements are now recorded regularly in a series of piezometers and drainage galleries (Figure 3). 146 Although trend analysis from such a time series is difficult, the groundwater rebound still seems to be 147 ongoing from the hydraulic head trends in *Argenteau* (Pz4) and *Trembleur* (Pz7). However, most of the 148 groundwater rebound has probably already taken place.

149 4 GROUNDWATER FLOW MODELLING OF THE CHERATTE UNDERGROUND COAL

- 150 **MINE**
- 151

152 **4.1 Conceptual and numerical models**

A Fourier (third-type) boundary condition is prescribed at the western external boundary of the model to consider the exchange of water between the aquifer and the Meuse River. A Neumann (second-type) impervious boundary condition is prescribed at the northern, eastern and southern external boundaries assuming they correspond to groundwater divides or faults filled with clay. Based on a groundwater budget (Dingelstadt et al., 2007), a recharge is assigned on the top of the model. The top of the model corresponds to the topography and the base of the model is the -64 m amsl plane. The corresponding mesh is composed of 3 layers, 30,443 nodes, and 40,976 elements.

161 The model is subdivided into eight subdomains: five corresponding to the mined zones of *Trembleur*,

162 Argenteau, Hasard-Cheratte Nord, Hasard-Cheratte Sud, and Wandre, two corresponding to mine water

163 collecting pipes, and one corresponding to the adjacent and overlying unmined zone. The internal

boundary conditions between mined zones and unmined zones are defined as Fourier (third-type) *dynamic*

165 boundary conditions in order to allow groundwater flux exchanges. Ten by-pass flow connections

166 between mined zones are considered. The identification and the adjustment of these by-pass flow

167 connections are based on previous results obtained with a box model calibrated in steady-state conditions

168 using EPANET 2.0 (Rossman, 2000; Gardin et al., 2005) as well as on the correlation observed between

169 hydraulic heads and water discharge rate measurements performed in the mined zones (Figure 4). The

170 hydraulic head thresholds highlighted by these measurements are also taken into account. Consequently,

171 the connections Argenteau \leftrightarrow Hasard-Cheratte Sud and Trembleur \leftrightarrow Hasard-Cheratte Sud are switched

172 on only when hydraulic heads in *Argenteau* and *Trembleur* are higher than 88.5 m and 102 m amsl,

173 respectively. Additional information concerning the conceptual model can be found in Brouyère et al.

174 (2009).

175

176 **4.2 Calibration in transient conditions**

177

178 The calibration in transient conditions is based on both hydraulic head and water discharge rate

179 observations performed from January 2004 to December 2005. The initial conditions for the calibration in

180 transient conditions derive from calibration under steady-state condition (Brouyère et al., 2009). As

181 suggested by Hill and Tiedeman (2007) and since the prescribed recharge varies monthly (only available

182 data), the observations are monthly averaged to ensure time-consistency between observed and simulated 183 values. The calibrated parameters are given by the hydraulic conductivities of the geological formations, 184 the exchange coefficients of both internal and external Fourier boundary conditions, and the exchange 185 coefficients of by-pass flow connections between mined zones and also the specific yield and the specific 186 storage coefficients of both mined zones and geological formations of the unmined zones. The list of 187 parameters used for these transient simulations is given in Table 1. Graphic comparisons between 188 observed and simulated values in terms of hydraulic heads and water discharge rates are presented in 189 Figure 5 and Figure 6, respectively.

190 The calibrated model reproduces the observed hydraulic heads with a range of error up to 10 m and water 191 discharge rates with a range of error up to 10L/s. These are directly related to the simulated hydraulic 192 heads since they are represented by Fourier boundary conditions or by by-pass flow connections for 193 which computed flow rates depend on the difference between hydraulic heads. The simulated water 194 discharge rate and hydraulic head in Argenteau (E2 and Pz4) are similar. The situation is more complex 195 for Hasard-Cheratte Sud (E8 and Pz8) since the simulated water discharge rate of this mined zone is also 196 related to the hydraulic heads in Argenteau (Pz4) and Trembleur (Pz7). Observations indicate that the 197 hydraulic head thresholds of Argenteau (88.5 m) and Trembleur (102 m) were exceeded from February 198 2005 to June 2005 with a major peak in February and a minor peak in May. Accordingly, two flooding 199 peaks are observed in the drainage gallery of Hasard-Cheratte Sud. The simulated hydraulic heads 200 reproduce the major peaks observed but not the minor ones probably because of recharge which is based 201 on monthly effective rainfall. The simulated water discharge rate consequently reproduces only the first 202 flooding peak.

203

204 **4.3** Analysis of sensitivity and uncertainty

205

A sensitivity and uncertainty analysis is performed using UCODE_2005 (Poeter et al., 2005). The

sensitivity analysis is performed for the period January 2004-March 2004 with 38 hydraulic head

208 observations and 22 parameters using their calibrated values. The sensitivities of the hydraulic

209 conductivity and specific yield of geological formations are evaluated using multipliers. As suggested by

Hill and Tiedeman (2007), a weight of 0.44 m⁻² (inverse of the variance) is assigned to all hydraulic head 210 211 observations, assuming a standard deviation of the errors in hydraulic head observations of 1.5 m. The 212 observation error includes error on the elevation and water depth measurements and errors linked to the 213 mesh whose nodes do not correspond exactly to the observation points. Consequently, comparison 214 between observed and simulated values is performed using the closest node to the observation point 215 sometimes located several tens of meters away. Considering these three sources of error, a mean 216 observation error of 1.5 m is reasonable. 217 The most useful statistic provided by UCODE 2005 for estimating the global sensitivity of a parameter is

the composite scaled sensitivity (css) (Eq. 4) (Hill, 1992; Anderman et al., 1996; Hill et al., 1998; Hill and Tiedeman, 2007). This statistic is a measure of the sensitivity of one parameter to all the observations. A parameter with a css value less than 1.00 or less than 1/100 of the maximum css value is considered as poorly sensitive (Hill and Tiedeman, 2007). The css values obtained for each parameter are listed in Table 2.

223
$$css_{j} = \left[\sum_{i=1}^{ND} (dss_{ij})^{2} \Big|_{\underline{b}} / ND\right]^{1/2} \text{ with } dss_{ij} = \left(\frac{\partial y_{i}}{\partial b_{j}}\right) \Big|_{\underline{b}} \Big| b_{j} \Big| \omega_{ii}^{1/2}$$
(4)

where $ds_{ij} = dimensionless \ scaled \ sensitivity$ of the simulated value associated to the *i*th observation with respect to the *j*th parameter, $\left(\frac{\partial y_i}{\partial b_j}\right)$ = sensitivity of the simulated value associated with the *i*th observation

with respect to the *j*th parameter evaluated at the set of parameter values in *b*, $b_j=j$ th parameter, ω_{ii} =the

227 weight of the *i*th observation, and *ND*=number of observations.

228 The most sensitive parameters are K, S_y , S_y - *Trembleur*, and α - *Argenteau* - Meuse R. These parameters

are related to the storage of the geological formations and to the storage and the drainage of the largest

- 230 mined zones (Trembleur and Argenteau) showing their influence on the model and, therefore, on the
- 231 groundwater flow of the case study zone. The other parameters are relatively insensitive to the hydraulic

head observations.

233 The uncertainty analysis is performed for the period September 2004-Augustus 2005 using the parameters

with a high composite scaled sensitivity (css) and relatively high prediction scaled sensitivity (pss) (Eq. 5).

235 This latter statistic indicates the importance of the parameter values to the predictions (Hill and

236 Tiedeman, 2007).

237
$$pss_{ij} = \left(\frac{\partial z_i}{\partial b_j}\right) \left(\frac{b_j}{100}\right) \left(\frac{100}{z_i}\right)$$
(5)

238 where $\left(\frac{\partial z_l}{\partial b_j}\right)$ = sensitivity of the simulated value associated with the *l*th prediciton with respect to the *j*th

- 239 parameter, $b_j = j$ th parameter.
- 241 *Cheratte Nord*, and $\alpha_{Hasard-Cheratte Nord-collecting pipe 2}$. Parameters characterised by a small pss are not included in the

The parameters used are K, S_y, S_y - Trembleur, a - Argenteau - Meuse R, S_y - Argenteau, a_{Trembleur-Hasard}-

- 242 uncertainty analysis since they are not important for the predictions of interest (Hill and Tiedeman, 2007).
- Linear individual confidence intervals with a level of confidence of 5% are calculated for 3 observations
- 244 points: Pz7 Trembleur (mine workings with high annual hydraulic head variations), F5 Wandre (mine
- workings with small annual hydraulic head variations) and F8 (unmined zone) (Figure 7).
- 246 Confidence intervals are relatively small for F5 and F8 while confidence interval for Pz7 is larger. This is
- 247 probably related to the uncertainty about the parameters $\alpha_{Trembleur-Hasard-Cheratte Nord}$ and $\alpha_{Hasard-Cheratte Nord}$.
- 248 collecting pipe 2. On the one hand, these parameters have a css > 1.00 (respectively 7.71 x 10^{-1} and 3.31 x 10^{-1})
- 249 meaning that they are relatively imprecise. On the other hand, they have a relatively large pss meaning
- that they are relatively important to the predictions of interest. As suggested by Hill and Tiedeman
- 251 (2007), improving the estimation of these parameters could reduce the confidence intervals on the
- 252 predictions. However, the main objective of this paper is to show the capacity of the HFEMC method in
- 253 mined ground and transient conditions rather than extreme calibration of the model.
- 254

240

255 4.4 Groundwater rebound, water inrush, and wet winter scenarios

256

257 The goal of the scenarios is to support the managment of the abandoned underground coal mine of

258 Cheratte by simulating system response to extreme conditions.

- 259
- 260 4.4.1 Groundwater rebound

261

262

263

264 past event for confirming this hypothesis. 265 The only data available concerning dewatering operations indicates that the last pumping phase was 266 stopped in 1982. Previously, pumping maintained the water level at -64 m amsl in *Trembleur*. A thirty 267 years simulation is performed for simulating the period 1977-2007. The first part of the simulation (5 268 years) is performed with a sink term withdrawing about 5000 m³/day in *Trembleur*. As no data 269 concerning the pumping rates were available, a value of 5000 m³/day was obtained by trial and error until 270 the water level in Trembleur reaches -64 m amsl. The second part (25 years) of the simulation was 271 performed without any pumping. A constant recharge of 189 mm/year, equivalent to the mean annual 272 recharge between 2003 and 2006, is prescribed during the whole simulation (30 years). The simulated 273 hydraulic heads, the water discharge rates between mined zones, and the water discharge rates between 274 mined zones and the surface waters are presented in Figure 8, and Figure 9, respectively. A negative 275 water discharge rate means that the water flows from the first mined zone to the second mined zone. 276 As expected, the water level in *Trembleur* is -64 m amsl during the first five years of the simulation. 277 Through their connections with *Trembleur*, the water levels in the other mined zones are also lowered. As 278 highlighted by the exchanged flow rates between mined zones, Argenteau and Hasard-Cheratte Nord are 279 the main mined zones which feed *Trembleur* during this period. The exchanged flow rates between the 280 other mined zones are limited because of their low exchange coefficients (Table 1). There is no 281 exchanged flow rate between Argenteau and Hasard-Cheratte Sud and between Trembleur and Hasard-282 Cheratte Sud because the water levels are lower than the respective thresholds of 88.5 m and 102 m. The 283 mined zones are also fed by the Meuse River since the river stage is higher than groundwater levels 284 nearby. 285 As soon as pumping phase in *Trembleur* was stopped, groundwater rebound took place until the system

According to the hydraulic heads measured since 2003, much of the Cheratte underground coal mine

groundwater rebound has probably already taken place. The aim of this scenario is to try to reproduce this

reached equilibrium. The simulation indicates that the exchanged flow rates reversed after two years andthat most of the groundwater rebound (97 %) had occurred after about five years.

290

291 Groundwater rebound can induce harmful phenomena such as water inrushes which occur when a 292 drainage gallery is obstructed. This causes a water level increase behind the obstruction until it breaks 293 under pressure. The objective of this scenario is to predict the evolution of hydraulic heads and water 294 discharge rates in the event of a water inrush in the gallery draining Hasard-Cheratte Sud. 295 The scenario simulates a period of two years with a prescribed recharge identical to that used in the 296 calibration. Assuming a rock collapse at the end of the first month and an obstruction strength of 72.5 m 297 amsl, the exchange coefficient between Hasard-Cheratte Sud and the collecting pipe 1 ($\alpha_{Hasard-Cheratte Sud}$) 298 collecting pipe 1) is set to 0 from the end of the first month until the hydraulic head in *Hasard-Cheratte Sud* 299 reaches a value of 72.5 m amsl. The simulated hydraulic heads in some piezometers and the simulated 300 water discharge rate are shown in Figure 10 and Figure 11, respectively. 301 The simulated hydraulic heads indicate an immediate though relatively slow water level increase in 302 Hasard-Cheratte Sud from the obstruction of its drainage gallery until it breaks under a hydraulic head of 303 72.5 m. The other zones (mined or unmined) do not show any particular responses to this event. The 304 simulated water level discharge rate in E8 is not only fed by Hasard-Cheratte Sud but also by Trembleur 305 and Argenteau once their respective hydraulic head thresholds of 102 m amsl and 88.5 m amsl are 306 exceeded. Consequently, even when the drainage gallery of *Hasard-Cheratte Sud* is obstructed, discharge 307 can still occur in E8. This is what happens intermittently during the obstruction period. However, the 308 water inrush is obvious since the water discharge rate in E8 increases instantaneously to about 9 L/s as 309 soon as the obstruction breaks. After this event, the water discharge rate in E8 decreases slowly, 310 following the slow water level decrease in Hasard-Cheratte Sud. The other drainage galleries do not 311 show any particular responses. It is obvious that the intensity of the water inrush depends on the strength 312 of the obstruction which has been set arbitrarily to 72.5 m in this scenario. Higher obstruction strength 313 would have caused a stronger water inrush and vice versa.

314

315 *4.4.3 Wet winter*

Hydraulic head variations and water discharges observed since 2003 indicate that the mined zones react
intensively and very quickly to strong rainfall events. The goal of this scenario is to predict the system
response to a particularly wet winter.

The scenario simulates a period of three years with a very rainy winter at the end of the first year of simulation. The prescribed recharge varies monthly. Except for the period of the wet winter, the recharge rate is deduced from water balances computed between 2004 and 2006. The recharge prescribed for simulating the very rainy winter is 76 mm in December, 122 m in January, and 46 mm in February (about three times more than during an average winter). The simulated hydraulic heads in some piezometers and the simulated water discharge rate are shown in Figure 12 and Figure 13, respectively.

326 The mined zones are more influenced by a strong rainfall event than the unmined zone. It is particularly

327 the case for *Argenteau* and *Trembleur* since their water levels increase by about 25 m in only three

328 months. About six months are required afterwards to return to a normal situation. The simulated water

329 discharge rate in E2 indicates an increase of about 15 1/s in three months. The maximum computed water

discharge rate is about 30 1/s. Once more, about six months are then necessary to return to a normal

331 situation. The simulated water discharge rate in E8 is more complex since it is related to the hydraulic

head thresholds of both Argenteau (88.5 m) and Trembleur (102 m). These thresholds are reached almost

at the same time and they cause an almost instantaneous increase of water discharge rate of about 15 l/s.

334 Then, the water discharge continues to increase proportionally to the simulated hydraulic heads in

335 *Argenteau* and *Trembleur* and finally reaches a value of about 30 l/s. As long as the simulated hydraulic

heads in Argenteau and Trembleur are higher than the respective thresholds, the simulated water

discharge rate in E8 remains high. Consequently, the simulated water discharge rate is between 20 l/s and

338 30 l/s for about six months. As highlighted by both the simulated hydraulic heads and water discharge

rates, the other mined zones react less to the rainy winter.

340 This scenario shows that a wet winter could cause a strong increase in water levels in *Trembleur* and

341 *Argenteau*. As a consequence, the water discharge rate in E2 and E8 could increase and remain high

342 several months. This scenario shows also that *Hasard-Cheratte Sud* is the most sensitive mined zone.

343 However, the model does not take into account old dewatering galleries which would modify the

344 hydrogeology of the zone of interest and thus the system response.

345

346 5 CONCLUSIONS AND PERSPECTIVES

347

348 The HFEMC method, developed by Brouyère et al. (2009), is a flexible modelling technique applied to 349 mine water problems. Thanks to the dynamic coupling between mixing cells for the mined zones and 350 classical finite elements for the unmined zone, the method is an efficient compromise between the simple 351 box model techniques and the complex physically-based and spatially-distributed techniques. 352 Furthermore, this method is able to take into account by-pass flow connections between mined zones. 353 The first application of the HFEMC method on a real case, the abandoned underground coal mine of 354 Cheratte, is encouraging. The model is calibrated in both steady-state and transient conditions based on 355 both hydraulic heads and water discharge rates. Despite the complex connections existing between mined 356 zones, sometimes depending on hydraulic head thresholds, the method is able to fairly reproduce the time 357 variations observed in terms of both hydraulic heads and water discharge rates. The uncertainty analysis 358 indicates that the confidence intervals on the predictions are relatively high for the mined zones with high 359 hydraulic head variations during the year. These confidence intervals could be reduced by improving the 360 estimation of the key parameters for the predictions highlighted by the sensitivity analysis (mainly 361 $\alpha_{Trembleur-Hasard-Cheratte Nord}$ and $\alpha_{Hasard-Cheratte Nord-collecting pipe 2)}$. However, the main objective of this paper is not 362 to give highly precise predictions but rather to show the capability of the method in mined ground and in 363 transient conditions. The calibrated model can be used to simulate groundwater rebound and the system 364 responses to a water inrush and wet winter. The first scenario indicates that much of the groundwater 365 rebound had probably taken place in about five years but that the whole process had lasted the first twelve 366 years. The second scenario shows that an obstruction of the drainage gallery of Hasard-Cheratte Sud 367 could cause an immediate, though slow, water level increase in this mined zone, followed by a water 368 inrush once the obstruction breaks. The third scenario indicates that a wet winter could cause strong 369 hydraulic head increases in the mined zones (particularly in Argenteau and Trembleur). Consequently, 370 water discharge rates would strongly increase as well and it could take about six months to return to a 371 normal situation.

As a new set of observations is now available, future works will consist of improving and updating the
 calibration in transient conditions for reducing the uncertainty about predictions. A reactive transport

374 model will also be developed to be able to simulate acid mine drainage phenomena induced by

375 groundwater rebound in a lot of old mines.

376 ACKNOWLEDGEMENTS

377 The authors thank the Walloon Region, which has financially supported this project, together with the

378 "Institut Scientifique de Service Public" (ISSeP) and the "Association Intercommunale pour le

379 Démergement et l'Epuration" (AIDE). Conceptual and numerical developments of the HFEMC approach

380 have also been performed in the framework of the Interuniversity Attraction Pole TIMOTHY (IAP

Research Project P6/13), which is funded by the Belgian Federal Science Policy Office (BELSPO) and

the European Integrated Project AquaTerra (GOCE 505428) with funding from the Community's Sixth

383 Framework Programme. The authors thank also the editor Geoff Syme, the reviewer Nick Robins and one

anonymous reviewer for their constructive comments and suggestions that help improving greatly the

385 paper.

387 **REFERENCES**

- 388
- 389 Adams R., and Younger P. L., 1997, Simulation of groundwater rebound in abandoned mines using
- 390 physically based modelling approach, 6th International Mine Water Association Congress, IRGO &
- 391 IMWA, Bled, Slovenia.
- 392 Anderman E. R., Hill M. C., and Poeter E. P., 1996, Two-Dimensional Advective Transport in Ground-
- 393 Water Flow Parameter Estimation, Ground Water, **74**(2):212-218.
- 394 Barchy L., and J.-M. Marion (2000), Carte géologique de Wallonie et notice explicative Dalhem-Herve
- 395 42/3-4, Ministère de la Région Wallonne Direction Générale des Ressources Naturelles et de
- 396 l'Environnement, Namur.
- 397 Boyaud C. and R. Therrien, 2004, Numerical modelling of mine water rebound in Saizerais, northeastern
- 398 France, 15th International Conference on Computational Method in Water Resources, Elsevier Science,
- 399 Amsterdam, The Netherlands.
- 400 Brouyère S., Orban Ph., Wildemeersch S., Couturier J., Gardin N., and A. Dassargues, 2009, The Hybrid
- 401 Finite Element Mixing Cell Method: A New Flexible Method for Modelling Mine Ground Water
- 402 Problems, *Mine Water and the Environment*, **28**(2), 102-114.
- 403 Dingelstadt C., Drevet J.-P., Veschkens M., and Flamion B., 2007, Etude des conséquences de l'après-
- 404 mine en particulier sur la gestion des eaux souterraines et des risques Mission 2006, 67 pp, Institut
- 405 Scientifique de Service Public, Liège.
- 406 Gardin N., Brouyère S., and Dassargues A., 2005, Modélisation de la remontée des niveaux
- 407 piézométriques dans les massifs affectés par des travaux miniers dans l'ancien bassin charbonnier liégeois
- 408 Site pilote de Cheratte, 90 pp, Université de Liège, Liège
- 409 Hill M. C., 1992, A Computer Program (MODFLOWP) for Estimating Parameters of a Transient, Three-
- 410 Dimensional, Ground-Water Flow Model Using Non-Linear Regression, U.S. Geological Survey Open-
- 411 File Report 91-184.
- 412 Hill M. C., Cooley R. L., Pollock D. W., 1998, A Controlled Experiment in Ground-Water Flow Model
- 413 Calibration Using Nonlinear Regression, *Ground Water*, **36**(3):520-535.

- 414 Hill, M. C., and C. R. Tiedeman, 2007, Effective Groundwater Model Calibration: With Analysis of Data,
- 415 Sensitivities, Predictions, and Uncertainty, John Wiley & Sons, Inc., Hoboken (New Jersey).
- 416 Poeter E. P., Hill M. C., Banta E. R., Mehl S., and Christensen S., 2005, UCODE_2005 and Six Other
- 417 Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty Evaluation, U.S.
- 418 Geological Survey Techniques and Methods TM 6-A11.
- 419 Rapantova N., Grmela A., Vojtek D., Halir J., and Michalek B., 2007, Ground water flow modelling
- 420 applications in mining hydrogeology, *Mine Water and the Environment*, **26**, p. 264 270.
- 421 Rossman L. A., 2000, EPANET 2 users manual, National Risk Management Research Laboratory,
- 422 Office Of Research And Development, U.S. Environmental Protection Agency, Cincinnati, OH, 45268
- 423 Sherwood, J. M., and P. L. Younger, 1994, Modelling groundwater rebound after coalfield closure: an
- 424 example from County Durham, 5th International Mine Water Association Congress, University of
- 425 Nottingham and IMWA, University of Nottingham, United Kingdom.
- 426 Sherwood J. M., and Younger P. L., 1997, Modelling groundwater rebound after coalfield closure,
- 427 Congress of the International Association of Hydrogeologists Groundwater in the urban environment:
- 428 Processes and Management.
- 429 Younger P. L., Banwart S. A., and Hedin S. H., 2002, Mine Water: Hydrology, Pollution, Remediation,
- 430 Kluwer Academic Publishers.
- 431

432 **Figure captions**

- 433 Figure 1. General schema of the HFEMC method
- 434 Figure 2. Location of the case study zone
- 435 Figure 3. Geological map of the case study zone pointing out the mined zones (adapted from Barchy and
- 436 Marion (2000))
- 437 Figure 4. Correlation between observed hydraulic heads and observed water discharge rates (adapted
- 438 from Dingelstadt et al. (2007))
- 439 Figure 5. Comparison between observed and simulated hydraulic heads in different piezometers of the
- 440 case study zone
- 441 Figure 6. Comparison between observed and simulated water discharge rates
- 442 Figure 7. 95% linear individual confidence intervals for observation points Pz7, F5, and F8
- 443 Figure 8. Groundwater rebound scenario Simulated hydraulic heads
- 444 Figure 9. Groundwater rebound scenario (A) Simulated water discharge rates between mined zones and
- 445 (B) Simulated water discharge rates between mined zones and the surface waters
- 446 Figure 10. Water inrush scenario Simulated hydraulic heads in different piezometers of the case study
- 447 zone
- 448 Figure 11. Water inrush scenario Simulated water discharge rates
- 449 Figure 12. Wet winter scenario Simulated hydraulic heads in different piezometers of the case study
- 450 zone
- 451 Figure 13. Wet winter scenario Simulated water discharge rates
- 452

453 **Table captions**

- 454 Table 1. Calibrated parameters in transient conditions
- 455 Table 2. Composite scaled sensitivity (css) computed by UCODE_2005 using calibrated parameter values
- 456 and a total of 38 hydraulic head observations.

Figure 1 Click here to download high resolution image

Figure 3 Click here to download high resolution image

Figure 5 Click here to download high resolution image

1982: end of dewatering operations

1982: end of dewatering operations

	Parameters				
Geological formations	K (m/s)	$S_{v}(-)$	$S_{S}(m^{-1})$		
HOU	5.00 x 10 ⁻⁶	0.10	$1.00 \ge 10^{-4}$	///////////////////////////////////////	[[[[]]]]
VAA	3.00 x 10 ⁻⁶	0.40	$1.00 \ge 10^{-4}$	////////	
GUL	2.00 x 10 ⁻⁵	0.05	$1.00 \ge 10^{-4}$	///////////////////////////////////////	[/////////////////////////////////////
ALA	7.00 x 10 ⁻⁵	0.50	$1.00 \ge 10^{-4}$		
AMO	7.00 x 10 ⁻³	0.50	$1.00 \ge 10^{-4}$	///////	
Exploited zones		S _v (-)	$S_{S}(m^{-1})$		
Trembleur	7/////	0.006	1.00 x 10 ⁻⁶	///////	
Argenteau	//////	0.006	1.00 x 10 ⁻⁶		
Hasard-Cheratte Nord		0.07	1.00 x 10 ⁻⁶		9//////
Hasard-Cheratte Sud	<i>`\/////</i>	0.07	1.00 x 10 ⁻⁶		
Wandre		0.07	1.00 x 10 ⁻⁶	9///////	977777
External BC				α (s ⁻¹)	$H_{ref}(m)$
Trembleur - Bolland R.	1/////		///////	2.00 x 10 ⁻⁸	92.00
Argenteau - Meuse R.				1.50 x 10 ⁻⁸	55.00
collecting pipe 1 - Meuse R.				1.50 x 10 ⁻⁷	55.00
collecting pipe 2 - Meuse R.	1/////	7///		3.00×10^{-7}	55.00
unexploited zone - Meuse R.		[]]];		5.00 x 10 ⁻⁵	55.00
Internal BC				α (s ⁻¹)	
unexploited zone - exploited zones			//////	1.00×10^{-15}	
(vertical)	<u> ////////////////////////////////////</u>	<u> </u>		1.00 x 10	
unexploited zone - exploited zones			(//////	1.00×10^{-12}	<i>`{/////</i>
(horizontal)	<u></u>	<u> 11111</u>	<u> 4111111111111111111111111111111111111</u>	1.00 A 10	<u> </u>
By-pass flow connections				α (m ² /s)	
$\mathfrak{a}_{Trembleur-Argenteau}$	<u> </u>			2.15 x 10 ⁻⁴	
$lpha_{Trembleur}$ -Hasard-Cheratte Nord	<u> </u>			2.75 x 10 ⁻⁴	<u></u>
		(///		3.00×10^{-4}	SIIII.
$lpha_{Trembleur-Hasard-Cheratte}$ Sud	ZIIII			if	
		444		h _{Trembleur} >102.0 n	n ///////
$\mathfrak{a}_{Argenteau-Hasard-Cheratte Nord}$		444		$1.00 \ge 10^{-8}$	
				$1.00 \ge 10^{-4}$	<i>\$//////</i>
$lpha_{Argenteau}$ -Hasard-Cheratte Sud				if	
		444		h _{Argenteau} >88.5 m	
$lpha_{Hasard-Cheratte Nord-Hasard-Cheratte Sud}$		44	$\mathcal{A} \mathcal{A} \mathcal{A}$	3.50 x 10 ⁻⁵	
$lpha_{Hasard}$ -Cheratte Sud-Wandre		444		3.00 x 10 ⁻⁰	
All Hasard-Cheratte Nord-collecting pipe 2	<u> </u>	44		3.00×10^{-3}	
$\alpha_{Hasard-Cheratte Sud-collecting pipe 1}$	<u>'////////////////////////////////////</u>	[]]]	<i>(</i>	$1.00 \ge 10^{-3}$	
$\alpha_{Wandre-collecting pipe 2}$		(]]].	111111	8.00 x 10 ⁻⁴	~////////

 $\begin{aligned} &\alpha_{Wandre-collecting pipe 2} \\ &K = hydraulic conductivity of the geological formations [LT⁻¹], S_y = specific yield (-), S_s = specific storage coefficient [L⁻¹], <math>\alpha_{i-j}$ = exchange coefficient for Fourier boundary conditions (external or internal) [T⁻¹] and bypass flow connections [L²T⁻¹], H_{ref} = drainage level [L]. Drainage levels have not been calibrated. \end{aligned}

parameter	CSS				
hydraulic conductivity of geological formations					
K	8.89 x 10 ⁻¹				
specific yield of geological formations					
S _v	3.47				
specific yield of exploited zones					
S _{v, Trembleur}	1.63				
S _{v, Argenteau}	9.54 x 10 ⁻¹				
S _{v, Hasard} -Cheratte Nord	1.63 x 10 ⁻¹				
S _{y, Hasard} -Cheratte Sud	1.57 x 10 ⁻¹				
S _{y, Wandre}	$1.08 \ge 10^{-1}$				
exchange coefficient of external BC					
$\alpha_{\text{unexploited zone-Meuse R.}}$	1.54 x 10 ⁻¹				
$\alpha_{Argenteau-Meuse R.}$	1.23				
$\alpha_{\text{collecting pipe 1-Meuse R.}}$	1.57 x 10 ⁻¹				
$\alpha_{\text{collecting pipe 2-Meuse R.}}$	1.57 x 10 ⁻¹				
exchange coefficient of by-pass flow connections					
arembleur-Argenteau	2.93 x 10 ⁻¹				
arembleur-Hasard-Cheratte Nord	7.71 x 10 ⁻¹				
arrembleur-Hasard-Cheratte Sud	0.00				
0(Argenteau-Hasard-Cheratte Nord	$3.09 \ge 10^{-2}$				
$lpha_{Argenteau-Hasard-Cheratte}$ Sud	1.57 x 10 ⁻¹				
$lpha_{Hasard}$ -Cheratte Nord-Hasard-Cheratte Sud	3.91 x 10 ⁻²				
$lpha_{Hasard}$ -Cheratte Sud-Wandre	$1.98 \ge 10^{-1}$				
α <i>Hasard-Cheratte Nord</i> -collecting pipe 2	3.31×10^{-1}				
αHasard-Cheratte Sud-collecting pipe 1	$1.37 \ge 10^{-1}$				
$lpha_{Wandre-collecting pipe 2}$	1.04 x 10 ⁻¹				