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ABSTRACT

This paper investigates the optimization of the external polysilicon base sheet resistance of quasi self-aligned 
(QSA) SiGe:C HBTs from a 0.13 µm BiCMOS process. Taking advantage of optimized implant conditions to 
improve the doping of the external base poly, and using an optimized non-selective epitaxy process with 
improved growth rate ratio of 1.7 between the polycrystalline silicon and monocrystalline silicon of the base, the 
maximum oscillation frequency fmax reaches 300 GHz.
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1. Introduction

SiGe:C heterojunction bipolar transistors (HBTs) have demonstrated cut-off frequencies, fT and fmax, higher than 
200 GHz with quasi self-aligned (QSA) architecture [1-3] and fully self-aligned (FSA) architecture [4-9]. These 
performances and the compatibility of SiGe:C HBTs in the standard CMOS platform qualify SiGe:C BiCMOS 
technology as an effective approach for demanding high speed applications like 60 GHz ultra wide band 
communication and 77 GHz car radar [10]. QSA HBTs using non-selective epitaxy growth (NSEG) for the base 
layer deposition take advantage of low topography, low process complexity and ease of integration. As shown in 
Fig. 1, in the QSA HBT, the base consists of the intrinsic base, the external base and the link base between the 
intrinsic and the external part. NSEG forms the intrinsic base and the external base in one step and provides low 
process complexity compared to selective epitaxial growth (SEG) of the base.

The base resistance Rb directly influences fmax of HBTs as described in Eq. (1) [11]. Figs. 2 and 3 collect the data 
from the measurements in our experiments before the optimization of the external poly base, which we are going 
to demonstrate in this paper. The symbols in Figs. 2 and 3 represent the measurement results, and the arrowed 
lines serve as eye-assist lines for the optimization. Fig. 2 shows the trend that when fT and Cc keep unchanged, 
fmax increases as Rb drops. In QSA HBTs, Rb is the sum of the intrinsic base, the link base, and the external base 
resistance and therefore depends on the external base sheet resistance (RSh,ext). as shown in Fig. 3. In order to 
keep the high fT unchanged, we focus on the external part of the base resistance to improve fmax of the device.

The base layer of QSA HBTs is grown monocrystalline in the active regions, and polycrystalline in the field 
regions. Device requirements determine the composition of the base layer in the active regions. Consequently, 
the composition of the polycrystalline external base regions is frozen. To avoid the complex process of SEG of 
the base, we focus here on the optimization of implant conditions and the thickness of the external base of our 
non-selective process. We will first describe our QSA HBT technology, and then report the optimization of the 
implant and growth conditions of the external base layer. The optimized process results in a thin intrinsic base 
for high peak fT and a thick highly doped external poly base for low Rb, and hence high fmax.

2. Optimization of the external base sheet resistance

2.1. Fabrication of QSA SiGe:C HBTs

The QSA SiGe:C NPN HBTs in this study are integrated in a 0.13 µm SiGe:C BiCMOS technology [1,12-14]. 
The fabrication process starts with the subcollector implantation and an π-type epitaxial layer grown on top of 
the p-substrate, followed by the formation of deep and shallow trenches. After fabrication of the CMOS devices, 
the protection layer is opened and the processing of the bipolar transistor starts. The epitaxial base is non-
selectively grown as a stack of thin undoped Si buffer layer, the actual SiGe:C base layer, and a thin undoped Si 
cap layer. This layer grows as a monocrystalline stack in the active region, and as a polycrystalline stack on top 
of the shallow trench isolation (STI) field oxide. A thin base oxide and nitride layer are deposited and the emitter 
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window opened by etching the nitride. An arsenic in-situ doped poly emitter is deposited after an HF-dip, 
followed by masked etch of the polyemitter and the nitride. The external base is implanted with the photoresist 
still on top of the emitter. The implantation is self-aligned to the patterned poly emitter (quasi self-aligned to the 
emitter window). The implant dose is 4.1015/cm2. After removal of the photoresist on top of the emitter and 
formation of nitride spacers, the poly base is patterned. The final junction anneal is a spike RTAat 1085 °C 
Nickel silicidation completes the front-end of line process.

2.2. Optimization of the external poly base implant

The external base is implanted through the base oxide into the thin poly base layer. Therefore, the optimization 
of the external poly base implantation is investigated in four aspects, which are implant dose, implant energy, 
thickness of the base oxide and the Si cap layer. Increasing the dose above 4·1015/cm2 with single implant does 
not reduce the sheet resistance by more than 5%, even when the dose is doubled or tripled. The implant energy is 
critical, as too much doping will be lost in the base oxide at too low energy, and too much will be implanted 
below the base poly at too high energy. As the base layer is thin, the process window is narrow.

The thickness of the base oxide and the Si cap has impact on the position of the peak of the implantation. If the 
peak of the implantation is nicely in the middle of the poly base layer, a maximum amount of dopants is 
incorporated in the layer. However, if the peak is shifted towards one of the edges of the layer, a lot of dopants 
are lost either in the base oxide or in the field oxide underneath the poly base. As shown in Fig. 4, with single 
implantation at a constant energy of 10 keV, the sheet resistance is lower with a thinner base oxide or a thicker Si 
cap. The Si cap however accommodates the dopants diffused from the emitter after RTA, and its thickness is 
optimized in order to position the Si/SiGe heterojunction with respect to the base/emitter pn-junction. Therefore, 
the Si cap cannot be increased beyond this optimum thickness to reduce the external base sheet resistance, 
because this would seriously impact the current gain and fT.

The external base sheet resistance can however be reduced by using a higher implant dose on the condition that 
the implant is more homogeneously spread over the thickness of the layer to lower the amorphization and hence 
to improve the activation of the dopants. Therefore we investigate multiple implantations, each using a dose of 
4·1015/cm2 but at different energies. The impact of multiple implantations is shown in Fig. 4. Compared to a 
single implantation, double implantation using l0keV and 15keV as implant energy, results in a higher active 
dopant concentration. Adding a third implant dose at 7 keV does not significantly further improve the sheet 
resistance. Therefore, a double implant at 10 keV and 15 keV is the option we choose.

2.3. Optimization of the epitaxy process

Fig. 5 shows that, including Ge or not in the poly base does not influence Rsh,ext. Only the thickness of the total 
stack has an impact on Rsh,ext. For instance, using an intrinsic base thickness of 47 nm including 12 nm Si cap, a 
minimal poly base thickness of 60 nm is required in order to guarantee a Rsh,ext lower than 300 Ω/sq, enabling 
fmax to reach 300 GHz. For the QSA architecture, which uses non-selective epitaxy for the base deposition, a high 
growth ratio between polycrystalline silicon and monocrystalline silicon is needed to achieve a thicker external 
poly base while keeping the intrinsic base thin. Epitaxy was performed using a standard horizontal cold wall 
ASM Epsilon™ 2000 reactor, a chemical vapor deposition system designed for production applications. Silane 
and germane were used as precursors in hydrogen ambient. The growth of the intrinsic monocrystalline SiGe:C 
base stack requires 6 epitaxial deposition steps for a total thickness of 47 nm in the present architecture when a 
Si cap thickness of 12 nm is used. Because near the half (~47%) of the stack thickness consists of Si deposition, 
a cost-effective approach is to focus the optimization effort on the growth conditions at 650 °C for the buffer 
layer and for the cap layer. We started the development work on blank wafers, using Si (100) substrates and 
template wafers with 500 nm oxide. The growth rates of the monocrystalline layer and of the polycrystalline 
layer were studied as function of the silane partial pressure for different values of the total pressure. In the total 
pressure pt range 20-120 Torr, the mono-Si growth rate as well as the poly-Si growth rate increase linearly with 
the silane partial pressure pSiH4 and the increasing rate decreases for larger pt. As summarized in Fig. 6, the 
results show that the growth rate ratio between mono-Si and poly-Si deposition does not depend on pSiH4 but on 
the hydrogen partial pressure pH2, the value of which is practically identical to pt due to the weak ratio pSiH4/pH2  
[15]. The high quality of the as-grown monocrystalline layers was confirmed by optical and electron microscope 
inspections. Using a total pressure of 120 Torr, the growth rate ratio for the Si buffer layer and the Si cap layer 
was increased up to 1.7 which enabled a total poly base thickness of at least 60 nm. The optimized process was 
finally applied to patterned wafers.

Fig. 7 shows the fT and fmax curves of the reference device before the optimization of the external base and the 
device with optimized Rb, as function of the collector current (Ic). Rb versus Ib before and after optimization are 
shown in Fig. 7(b). After optimization, Rb is reduced by more than 50%, and fmax reaches 300 GHz while fT stays 
210 GHz.

2.4. Chemical and active concentration of dopants in the external poly base

Secondary Ion Mass Spectrometry (SIMS) is the standard technique for one dimensional depth chemical 
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profiling, Spreading Resistance Profiling (SRP) measurements give depth profiles of charge carrier 
concentration, showing the active profiles after anneal.

However, using SRP to determine the active concentration profile might lead to erroneous results for thin layers, 
as shown in Fig. 8. SRP results deviate from SIMS results in the tail region and are much lower than expectation. 
As well known, two of the main limitations of SRP are its probe contact size and probe separation, which are 
both in the micrometer range. For ultra-shallow layers (sub-100 nm), this leads to the need for very large 
correction factors to extract the underlying resistivity information from the measured raw data [16]. The 
thickness of the external poly base is around 60 nm. Therefore small errors on the raw data can lead to 
significant distortions on the final carrier profile.

Thus, Scanning Spreading Resistance Microscopy (SSRM), which uses much smaller contact size (5-10 nm) 
with much smaller correction factors [16-18] and hence a more accurate measurement of local active dopant 
concentration, was applied to characterize the boron active concentration in the thin external poly base layer 
during optimizing the implant conditions.

The sample measured is 63 nm poly silicon layer on top of 500 nm oxide on p-type Si-substrate. 200 nm oxide 
capping layer was deposited on the poly layer to avoid bevel rounding. Cleave the sample before measurement. 
Fig. 9 shows the 2D resistance map from SSRM measurement. The color in the map indicates the level of the 
resistance with reference of color bar at the right side of the picture. Fig. 9 shows that the depth profile of the 
active concentration in the poly base is almost homogeneous from top to bottom, despite the large differences 
between the grains and the grain boundaries. Fig. 9 indicates that the low concentration at the tail of the SRP 
measurement in Fig. 8 is an artifact, the reason of which could be that the poly base layer is too thin.

Fig. 1. SEM cross-section of the QSA SiGe:C HBT in this work

Fig. 2. fmax versus total base resistance Rb (0.13 × 2 µm2).
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Fig. 3. Total base resistance Rb versus Rsh,ext (0.13 x 2 µm2).

Fig. 4. Poly base sheet resistance Rsh,ext for single, double and triple external base implants.
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Fig. 5. Rsh,ext versus the poly base thickness.

Fig. 6. Growth rates as function of hydrogen partial pressure for mono-Si and poly-Si at different values of the 
silane partial pressure. The symbols represent the experimental data and the full lines and dashed lines serve as 
eye-guides for mono-Si and poly-Si data, respectively.
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Fig. 7. fT and fmax curve as function of Ic (a) and Rb versus Ib (b) on devices before and after the optimization of 
external base.

Fig. 8. SIMS and SRP measurements of the poly base.
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Fig. 9. 2D resistance map from SSRM measurement on the poly base.

3. Conclusions

Optimization of the external poly base implant and growth conditions has been investigated in QSA HBTs using 
non-selective epitaxy growth for the base layer deposition. Optimized double implantation in the external poly 
base at energy 10 keV/15 keV allows us to induce higher active dopant concentration. A modified epitaxy 
process with a growth rate ratio of 1.7 between polycrystalline silicon and monocrystalline silicon has been 
developed in order to form a thicker external poly base layer, hence lower external base sheet resistance, while 
keeping the intrinsic base unchanged. This modified epitaxy process allows a further reduction of the external 
poly base sheet resistance. After optimization, the final fmax reaches 300 GHz.
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