Si_{1-x}Ge_x growth using Si₃H₈ by low temperature chemical vapor deposition

Shotaro Takeuchi a.b.c., Ngoc Duy Nguyen a, Jozefien Goosens a, Matty Caymax a, Roger Looa

^a IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

^b Department of Physics and Astronomy, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium

^c Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 4β4-8β03, Japan

Keywords: Si1-xGex ; Si3H8;Low temperature; chemical vapor deposition; CMOS;BiCMOS

ABSTRACT: Low temperature epitaxial growth of group-IV alloys is a key process step to realize the advanced Si-based devices. In order to keep high growth rate below 600 °C, trisilane (Si₃H₈) was used for their growth as an alternative Si precursor gas. Then, we compared the use of Si₃H₈ versus SiH₄ for Si_{1-x}Ge_x growth in H₂ and N₂ as carrier gas by low temperature chemical vapor deposition. By using Si₃H₈ and controlling GeH₄ flow rate, Si_{1-x}Ge_x growth with high growth rate and wide range of Ge concentration has been achieved compared to SiH₄-based process. The growth rate and Ge concentration in Si_{1-x}Ge_x with Si₃H₈ grown at 600 °C ranged from 11 to 74nm/min and from 0 to 40%, respectively. The obtained growth rates with Si₃H₈ are between 1.5 and 6 times higher than for SiH₄ at a given growth condition. Si₃H₈-based *in-situ* B- and C-doped Si_{1-x}Ge_x growth with high growth rate was also demonstrated.

1. Introduction

Low-temperature epitaxial growth of group-IV alloys is a key process step for the achievement of advanced Sibased (bipolar) complementary metal-oxide-semiconductor (CMOS, BiCMOS) applications. This process is now used in embedded and raised source/ drains with strained Si_{1-x}Ge_x and strained Si_{1-y}C_y for CMOS and fullystrained base layer of Si_{1-x}Ge_x and Si_{1-x-y}Ge_xC_y for BiCMOS [1-4], Because these Si-based group-IV layers are highly doped and fully-strained, low thermal budget is required to avoid any undesirable dopant diffusion and strain relaxation. For example, it is required to limit the doping diffusion in the existing CMOS devices for BiCMOS applications. Obviously, the thermal budget during epi processing is defined by both the pre-epi bake, used to remove traces of oxide and carbon after the last wet-chemical treatment, as well as the growth temperature during epitaxial growth. Several groups (among which IMEC) studied the impact of the pre-epi treatments on substrate/epi interface contamination and its importance for device performance, see for example reference [5,6]. Effort is ongoing to reduce the pre-epi bake temperature to temperatures \leq the growth temperature. In the classical chemical vapor deposition (CVD) approach, Si-based epitaxial layers were grown by mainly using SiH₄ or SiCl₂H₂ as Si precursor gas. A reduction of the growth temperature leads to a large reduction of the growth rate, which means that sustaining a high throughput becomes very difficult. There are two routes to enhance growth rates: one is the use of N_2 as carrier gas instead of H_2 [7]. Another one is the use of high order silane precursor gases such as trisilane (Si_3H_8) [8-10]. High growth rates at growth temperatures below 600 °C for both routes have been demonstrated. However, the growth behavior has not been fully clarified. In this work, we demonstrate Si_{1-x}Ge_x growth using Si₃H₈ (commercially developed by Voltaix as Silcore®) and SiH₄ as Si precursor gases and using either H₂ or N₂ as carrier gas. We will describe the differences of the growth kinetics and behavior for both Si precursor gases and both carrier gases. The success of the developed Si_{1-x}Ge_x process will be illustrated by full Si/SiGe:C base layers which also contain a B doping spike as used in BiCMOS technology. The same layer quality as a conventional process has been achieved but the higher growth rate enables a strong reduction of thermal budget.

2. Experimental

Epitaxial Si_{1-x}Ge_x layer growth was performed in an ASM EpsilonTM 2000 reactor which is a horizontal cold wall, load-locked reduced pressure CVD system. Si_{1-x}Ge_x layer growth between 500 °C and 600 °C was done on 200 mm wafers using GeH₄, (1% diluted in H₂) as Ge precursor gas and the above-mentioned Si precursor gases. B- and C-doped Si_{1-x}Ge_x layer was also grown at 600 °C using 50 ppm B₂H₆ and 1% CH₃SiH₃ diluted in H₂ as B and C source gas, respectively. The focus of this work lies on a reduction of the thermal budget during epitaxial layer growth. Therefore, we used a conventional wet clean and a 2 min pre-epi bake at 1050 °C to remove the native oxide before growth. As mentioned above, the reduction of pre-epi bake temperature is also important and described in [6]. Scanning electron microscopy (SEM) and spectroscopic ellipsometry (SE) were used to measure the Si_{1-x}Ge_x layers, photoluminescence (PL) and secondary ion mass spectrometry (SIMS) were used. We also used SIMS to measure the chemical B concentration in our Si_{1-x}Ge_x layers. The resistivity of B-doped Si_{1-x}Ge_x epilayer was calculated by using a classical four-point-probe method combined with the thickness measurement by SE. From this result, the carrier concentration in the epilayer could be estimated from well-known carrier mobility data of Si. As a consequence, our calculated carrier concentration could be overestimated

because the carrier mobility of $Si_{1-x}Ge_x$ in low Ge content region is degraded due to the alloy scattering compared to the carrier mobility of Si [11].

3. Results and discussion

3.1. Crystalline quality of Si_{1-x}Ge_x using Si₃H₈

Since Si_3H_8 is a liquid source at room temperature, one of the concerns for the growth of Si_{1-x} Gex using Si_3H_8 is the impurity level in the $Si_{1-x}Ge_x$ layer. Therefore, we first examine the crystalline quality by PL and carbon (C) and oxygen (0) levels in the $Si_{1-x}Ge_x$ layer by SIMS. Fig. 1(a) shows the PL spectra of layer stacks consisting Sicap (50 nm)/ $Si_{1-x}Ge_x$ (200 nm)/Si(00l) and using SiH₄/H₂ and Si₃H₈/H₂ processes, respectively. Despite of the lower intensity of Si_{1-x}Ge_x with Si₃H₈ compared to the SiH₄ case, high intensity, well-resolved no-phonon (NP) transition and transverse optical (TO) replica from Si_{1-x}Ge_x layer using Si₃H₈ were observed. This illustrates a low defect level and the absence of non-radiative recombination center in the sample. The slightly higher Ge content as confirmed by SE explains the shift of the PL peaks to lower energies for the sample grown with Si₃H₈/H₂ process. Fig. 1(b) shows the SIMS profile of the same layer stack with Si₃H₈ as shown in Fig. 1 (a). The C and O level in the Si_{1-x}Ge_x layer are below 1 E1 8 at/cm³. This impurity level is similar to that of SiH₄-based process. These results indicate good crystalline and interface quality of Si_{1-x}Ge_x grown with Si₃H₈.

Fig. 1. (a) PL spectra measured at 77 K of Si-cap $(50nm)/Si_{1-x}Ge_x (200nm)/Si(001)$. The Si_{1-x}Ge_x was grown using either SiH₄ or Si₃H₈ while the Si-cap was, in both cases, grown with Si₃H₈. The Ge concentrations were 14% for the use of SiH₄ and 16% for the use of Si₃H₅, respectively, as obtained by SE. (b) SIMS profiles of the same sample with Si₃H₈ as shown in Fig. 1 (a). After the well-known surface peaks caused, the C and 0 levels in the Si_{1-x}Ge_x layer are at the SIMS background levels similar to the SIMS results as obtained for Si_{1-x}Ge_x layer grown with SiH₄/GeH₄.

3.2. Comparison of Si_{1-x}Ge_x growth kinetics with different Si precursor gas and carrier gas

In the next step, we investigated on the differences between, on the one hand, Si_3H_8 and SiH_4 as Si precursor gas, and, on the other hand, between H_2 and N_2 as carrier gas, regarding the growth behaviors for Si and $Si_{1-x}Ge_x$. In order to perform a fair comparison, the amount of Si atoms injected into the epi reactor is the same for all $Si_{1-x}Ge_x$ growth conditions in this section. Fig. 2's subpanels (a),(b), (c), and (d) show, respectively, the total $Si_{1-x}Ge_x$ growth rates, the Si component deposition rates, the Ge component deposition rates, and the Ge concentrations using SiH_4/H_2 , SiH_4/N_2 , and Si_3H_8/H_2 processes as a function of the reciprocal temperature. The use of N_2 as a carrier gas or Si_3H_8/H_2 results in a higher growth rate compared to the standard SiH_4/H_2 process (Fig. 2(a)). Generally, at low growth temperature, *i.e.* below 600 °C, the growth rate is controlled by the presence

of H on the growing surface. This H passivation comes from the precursor gases and from the H_2 carrier gas. The low H partial pressure in the SiH₄/N₂ case results then in a higher Si component deposition rate than SiH₄/H₂ case [7]. On the other hand, in the Si₃H₈/H₂ case, although H₂ is used as carrier gas, the Si component deposition rate is much higher than for the SiH₄/H₂ case even at 500 °C (Fig. 2(b)). This means that the adsorption mechanism of Si₃H₈ is different from that of SiH₄ as discussed in the next paragraph. As shown in Fig. 2(c), the Ge incorporation seems to be in the transition region from kinetic to transport regime, especially for the SiH₄/N₂ process (Fig. 2(d)).

Fig. 3(a) and (b) shows Si_{1-x}Ge_x growth rates and Si component deposition rates in the Si_{1-x}Ge_x layer as a function of GeH₄ flow rate, respectively. The growth temperature is fixed at 600 °C Again, the amount of Si atoms injected into the reactor is the same for all Si_{1-x}Ge_x growth conditions. For pure Si growth in H₂ (GeH₄-flow = 0sccm), we obtained higher Si growth rate for Si₃H₈ than for SiH₄. On the other hand, if we use N₂ as carrier gas and GeH₄ flows above 200 sccm, similar Si_{1-x}Ge_x growth rates and Si component deposition rates in the layer are obtained for both Si precursors. Fig. 3(c) shows the normalized Si component deposition rate as function of GeH₄ flow. This rate is defined as [Si component deposition rate in the Si_{1-x}Ge_x layer]/[pure Si growth rate without GeH₄ flow].

The enhancement of the Si component deposition rate by adding GeH₄ called "Ge catalytic effect" [12] is clearly seen in Si_{1-x}Ge_x growth using SiH₄ in H₂. However, for the other three cases, the effect is relatively weak, especially in the case of Si_{1-x}Ge_x growth using Si₃H₈. This is explained by the fact that the Si deposition in the Si_{1-x}Ge_x layer using Si₃H₈ is not limited by hydrogen desorption from the growing surface [14-16]. This can also explain why the Si deposition rate is much higher than for the SiH₄/H₂ case, even at 500 °C A possible explanation for this behavior is that Si₃H₈ can react with a Si-H bound or Si- on the surface forming a four-center bound transition state, due to the nuclephilic character of the Si₂H₅ group, resulting in an "exchange of ligands" with the Si surface (Fig. 4)[14-16]. These Si hydrides with high reactivity decompose to form Si via a facile hydrogen desorption and result in an enhanced Si_{1-x}Ge_x growth rate [13-16]. Similar growth rates are obtained for SiH₄/N₂ and Si₃H₈/N₂ processes (Fig. 3(a)). However, these processes results in defective epilayers, which is not the cases for SiH₄/H₂ and Si₃H₈/H₂ processes.

This growth process needs to be optimized to avoid the generation of defects, which is beyond the scope of this paper.

Fig. 5 shows Si_{1-x}Ge_x growth rates using Si₃H₈ and SiH₄ in H₂ and N₂ as a function of Ge concentration under various growth conditions. The growth rate and the Ge concentration with the SiH₄/H₂ process at 40 Torr range from 0.3 to 21 nm/min and from 0 to 30%, respectively. The incorporation efficiency limits the Ge concentration in the Si_{1-x}Ge_x layer for the Si₃H₈ process. However, it can be solved by an optimization of the process conditions. As shown in Fig. 5, the Si₃H₈/H₂ process provides a high growth rate and a wide variation of Ge concentration in the layer ranging from 11 to 74 nm/min and from 0 to 40% Ge, respectively. For a given Ge concentration in Si_{1-x}Ge_x layer, the use of Si₃H₈/H₂ yields between 1.5 and 6 times higher growth rate than that of SiH₄/H₂.

Fig. 2. (a) $Si_{1-x}Ge_x$ growth rates, (b) Si component deposition rates in the $Si_{1-x}Ge_x$ layer, (c) Ge component deposition rates in the $Si_{1-x}Ge_x$ layer, and (d) Ge concentration using SiH_4/H_2 (blue solid line), SiH_4/N_2 (blue dotted line), and Si_3H_s/H_2 (redsolid line) processes as functions of the reciprocal temperature. $Si_{1-x}Ge_x$ growth temperatures are 500 °C, 550 °C, and 600 °C. The amount of Si atoms injected into the reactor is the same for all growth conditions.

Fig. 3. (a) $Si_{1-x}Ge_x$ growth rates, (b) Si component deposition rate in $Si_{1-x}Ge_x$ layers, and (c) normalized Si component deposition rates using SiH_4/H_2 (blue solid line), SH_4/N_2 (blue dotted line), Si_3H_s/H_2 (red solid line), and Si_3H_s/N_2 (red dotted line) processes as functions of the GeH₄ flow. $Si_{1-x}Ge_x$ growth temperature is fixed at 600 °C The amount of Si atoms injected into the reactor is the same for all growth conditions.

Fig. 4. Schematic diagrams of a Si_3H_8 dissociation step on a Si site (a) without H passivation, and (b) with H passivation. In both cases, high reactive Si hydrides are generated, leading to an enhancement of the growth rates.

Fig. 5. $Si_{1-x}Ge_x$ growth rates as a function of Ge concentration in the layers. Filled blue circles: SiH_4/H_2 process, open blue circles: SiH_4/N_2 process, open red circles: Si_3H_8/N_2 process, $Si_{1-x}Ge_x$ layers are grown at 600 °C and 40 Torr. For Si_3H_s/H_2 process, filled red and pink symbols indicate high and low Si_3H_s flow rate. Triangles: 15 Torr, circles: 40Torr, squares: 80Torr, and diamond: 100Torr.

Fig. 6. $Si_{1_x}Ge_x$ growth rates using Si_3H_s/H_2 process with (a) C and (b) B doping, respectively. For comparison, the data of SiH_4/H_2 process was also shown. All $Si_{1_x}Ge_x$ layers were grown at 600 °C and 40Torr. For (a), blue symbols show SiH_4/H_2 process (Ge: 13%). Others show Si_3H_8/H_2 processes with high Si_3H_8 and GeH_4 flows (square) (Ge: 15%), low Si_3H_8 and high GeH_4 flows (triangle) (Ge: 20%), and high Si_3H_8 and low GeH_4 flows (diamond) (Ge: 6%). For (b), blue symbols show SiH_4/H_2 process (Ge: 13%), and red ones show high Si_3H_8 and GeH_4 flows (Ge: 15%).

3.3. Boron- and carbon-doped Si_{1-x}Ge_x growth using Si₃H₈/H₂ process

We have also demonstrated *in-situ* C- and B-doped Si_{1-x}Ge_x growth using Si₃H₈/H₂ process for SiGe-based BiCMOS applications. Fig. 6(a) and (b) shows Si_{1-x}Ge_x growth rates using Si₃H₈/H₂ process with B and C doping, respectively. For comparison, the data of SiH₄/H₂ process was also shown in Fig. 6. No significant impact of doping on growth rate in both doping cases was observed. For a similar Ge concentration, the use of Si₃H₈/H₂ gives 5 times higher growth rate than that of SiH₄/H₂. As shown in Fig. 7(a), total and active B concentration in both Si precursor gas cases increase with increasing effective B₂H₆ flow ranging from 10 to 100 seem. It should noted that the B dopant activation in the Si_{0.85}Ge_{0.15} layer using the Si₃H₈/H₂ process is 34% higher than that with the SiH₄/H₂ process as shown in Fig. 7(b). This result indicates that the formation of electrically inactive B clusters can be avoided because the Si₃H₈/H₂ process is low thermal budget. Fig. 8 shows a SIMS profile of preliminary fabricated HBT base stacks using Si₃H₈/H₂ process, which includes a B dopant spike and a two-step Ge profile with C doping to reduce B diffusion. The B dopant spike layer with high B concentration of 1E20 at/cm³ is well confined between C-doped Si_{0.8}Ge_{0.2} layers.

4. Conclusions

We have demonstrated $Si_{1-x}Ge_x$ growth using Si_3H_8 as Si precursor gas and described the growth behavior. The $Si_{1-x}Ge_x$ growth using Si_3H_8/H_2 is a very efficient process with high crystalline layer quality and a high growth rate up to 74 nm/min. The obtained growth rates with Si_3H_8/H_2 are between 1.5 and 6 times higher than for $SiH_4/$

 H_2 at a given growth condition. Our Si₃H₈-based Si_{1-x}Ge_x process scheme leads to an improvement of the throughput and a reduction of the thermal budget, which is important especially for advanced BiCMOS applications. For advanced SiGe-based CMOS applications, high Ge concentrations are needed. At the moment, we can reach Ge concentration up to 40% with our Si₃H₈-based Si_{1-x}Ge_x process. However, we expect that higher Ge concentrations are achievable by further optimization of the epitaxial growth conditions. This future investigation is a natural extension of the present work.

Fig. 8. Preliminary SIMS profiles of a preliminary fabricated HBT base stack using the Si_3H_8/H_2 process, which includes a B dopant spike and a two-step Ge profile with C doping to reduce B diffusion. B depth profile was measured by O^+ beam with a beam energy of 500 eV. Si, Ge, and C depth profiles were measured by Cs^+ beam with a beam energy of 5 keV. The C background level can be observed from about 50 nm, after the surface peak.

Acknowledgement

The supply of Silcore® by Voltaix, Inc. is gratefully acknowledged. The authors wish to thank Matthew Stephens and Michael Pikulin from Voltaix for helpful discussions. Fruitful discussion with Rick Wise (Texas Instruments) is gratefully acknowledged.

References

[1] Y.C. Yeo, Semicond. Sci. Technol. 22 (2007) SI 117.

[2] P. Verheyen, G. Eneman, R Rooyackers, R Loo, L. Eeckout, D. Rondas, F. Leys, J. Snow, D. Shamiryan, M. Demand, T.H.Y. Hoffmann, M. Goodwin, H. Fujimoto, C. Ravit, B.-C Lee, M. Caymax, K. De Meyer, P. Absil, M. Jurczalk, S. Biesemans, IEDM, technical digest, 2005, p. 907.

[3] P. Verheyen, V. Machkaoutsan, M. Bauer, D. Weeks, C. Kerner, F. Clemente, H. Bender, D. Shamiryan, R Loo, T. Hoffmann, P. Absil, S. Biesemans, S.G. Thomas, IEEE Electron Device Lett. 29 (2008) 1206.

[4] LJ. Choi, A. Sibaja-Hernandez, R Venegas, S. Van Huylenbroeclk, S. Decoutere, IEEE Trans. Electron Devices 55 (2008) 358.

[5] Y. Shimamune, M. Fukuda, M. Koiizuka, A Katakami, A Hatada, K. Ikeda, Y Kim, K. Kawamura, N. Tamura, T. Mori, A Moriya, Y Hashiba, Y. Inokuchi, Y Kunii, M. Kase, VLSI Tech. Dig. 116(2007).

[6] R Loo, A Hikavyy, F. Leys, M. Wada, K. Sano, B. De Vos, A. Pacco, M. Bargallo Gonzalez, E. Simoen, P. Verheyen, W. Vangerle, M. Caymax, Solid State Phenomena 145-146 (2009) 177.

[7] P. Meunier-Beillard, M. Caymax, K.V. Nieuwenhuysen, G. Doumen, B. Brijs, M. Hopstaken, L Geenen, W. Vandervorst, Appl. Surf. Sci. 224 (2004) 31.

[8] M.A Todd, K.D. Weeks, Appl. Surf. Sci. 224 (2004) 41.

[9] A Gouyé, O. Kermarrec, Y Campidelli, P. Bajolet, P. Tomasini, S.G. Thomas, T. Billon, D. Bensahel, *Abstracts of Int. Conf. Silicon Epitaxy and Heterostructures*, 2007, p. 204.

[10] N.D. Nguyen, R Loo, M. Caymax, Appl. Surf. Sci. 254 (2008) 6072.

[11] M.V. Fischetti, S.E. Laux, J. Appl. Phys. 80 (1996) 2234.

[12] P.M. Garone, J.C. Sturm, P.V. Schwartz, S.A Schwarz, B.J. Wilkens, Appl. Phys. Lett. 56 (1990) 1275.

[13] S.M. Gates, Surf. Sci. 195 (1988) 307.

[14] M. Stephens, Voltaix, U.S.A, private commun, Apr. 22, 2008.

[15] J.J. Watlkins, M.D. Sefcik, M.A. Rind, Inorg. Chem. 11 (1972) 3147.

[16] M. Caymax, F. Leys, J. Mitard, K. Martens, L Yang, G. Pourtois, W. Vandervorst, M. Meuris, and R Loo, submitted to *I. Electrochem. Soc.*