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ABSTRACT

The photorefractive effect in semiconducting mate rials with multiple defects is studied in the case of modulation 
depth m = 1. The basic equations are Poisson's equation and the continuity equations for electrons, holes and 
occupied defect levels. They include all recombination and optical generatioin mechanisms between the defect 
levels and valence and conduc-tion bands. Their explicit numerical solution yields microscopic quantities such 
as space- and time-dependent electrical field profiles, carrier concentrations, as well as generation and re-
combination rates. The fundamental Fourier component of the electric field yields the two-wave-mixing gain. 
Application is made for InP with two levels in the forbidden gap, for which steady-state and transient resulting 
quantities are shown. The re-suiting features at large modulation depth are of non-sinusoidal shape. Due to the 
complexity of the system, the final results strongly depend on all parameters intervening in the models used, as is 
illustrated for several typical cases.

PACS 42.65.Hw; 42.70.Nq; 61.72Ji

1. Introduction

During the last two decades, the study of the photorefractive effect in semiconducting materials has received 
much interest [1-3]. The fundamental mechanism at the origin of the photorefractive effect is directly related to 
the basic properties of the host material and of the introduced impurity atoms. The effect results from the build-
up of a space-charge field, initiated by the optical absorption of an interference pattern, followed by transport 
and capture by defects. The steady-state and transient behavior of the space-charge field determines the device 
performance in numerous applications, among which holographic storage, optical signal processing and optical 
circuits are the most important ones.

Most of the observed phenomena are explained by a single-defect model, starting from the set of basic equations 
established by Kukhtarev [4, 5] in the 1970s. Real crystals, however, may contain more than one impurity level 
in the forbidden gap. These may be due to intrinsic defects due to some compensation process, to excited levels 
related to a given impurity species or defects related to the introduction of several impurity atoms. Experimental 
results obtained for crystals such as BaTiO3, LiNbO3 or InP were interpreted with the existence of multiple 
defects [6-9]. The presence of at least one additional defect state in the forbidden gap may give rise to several 
new processes, in addition to those which occur in the single-defect case. The new thermal equilibrium Fermi 
energy will change the thermal equilibrium occupation of the levels, thus modifying the absorption and 
recombination rates and yielding space-charge distributions and space-charge fields different from those of the 
single-defect case. Due to the new absorption processes, additional transport by electrons and holes may be 
possible. Only in some cases will the effect of the two types of impurities be simply additive. As a final result, 
the steady-state and transient photorefractive gain and diffraction efficiency may be affected. The transient 
response under illumination or extinction may not be described by a simple exponential function; the explicit 
form depends on the time dependence of the various trap filling or emptying processes.

The inclusion of multiple defects in the basic equations has been treated by several authors [6-14]. But, in these 
treatments, several assumptions were made in order to transform the complex system of equations into 
expressions which finally could be handled in analytical form. The main assumptions were on low modulation 
depth and on the quasi-steady-state approximations where electron and hole concentrations are supposed to be 
constant with time, yielding results in terms of the zeroth- and first-order Fourier terms of the space-charge field 
only.

The numerical analysis which is proposed here and illustrated by the case of two defect states starts from the 
basic semiconductor equations, i.e. Poisson's equation and the continuity equations for electrons, holes and 
occupied levels of both types. All recombination and optical generation terms between the defect levels and the 
valence and conduction bands are included. These equations are solved numerically, without any approximation, 
applying techniques which are currently used in the simulation of electronic devices [15]. As a result, one 
obtains the steady-state and transient response of the photorefractive crystal. The input parameters correspond to 
the microscopic properties of the host crystal (gap, carrier mobilities, effective masses), the impurities (energy 
level, concentration, optical and thermal capture cross section) and the experimental conditions (temperature, 
illumination pattern and applied electric field). The outputs are the electric potential and space-charge field, the 
free carrier and occupied defect concentrations and the charge density obtained for all modulation depths. From 
these, the experimentally observed quantities, such as the two-wave-mixing gain coefficient Γ or the diffraction 
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efficiency η under steady-state and transient conditions, are obtained. In such a complex system, where the active 
defect levels yield intermediate steps in the writing, extinction or erasure processes, a complete numerical 
modeling allows us to determine the effect of each input parameter on the resulting macroscopic quantities, 
which are measured in an experiment. Each step can be analyzed in detail, from the photocarrier generation, to 
transport, carrier redistribution between the various defect levels and final build-up of the space-charge field. 
Numerical solution of the basic equations in the single-defect, large-modulation case has been reported e.g. by 
Wolffer et al. [16] and by Singh et al. [17].

The paper is organized as follows: in Sect. 2, we recall the complete set of basic equations underlying the 
numerical modeling and give the procedure used to integrate these equations. In Sect. 3, we show typical results 
corresponding to the steady-state application in InP with two defect levels in the forbidden gap. Section 4 
discusses cases of transient analysis in the same system and Sect. 5 summarizes and concludes the paper.

2. Basic formalism

The system under study is a homogeneous crystal at a given temperature T. The spatial interference of two 
coherent beams forms an illumination grating given by

where I0 is the intensity amplitude, m is the modulation index and K = 2π/Λ is the spatial frequency. The fringe 
spacing A is related to the vacuum wavelength λ and incidence angle θ by Λ = λ/2 sin θ. The system is supposed 
to be one-dimensional; absorption effects in the perpendicular z direction are therefore neglected.

The crystal is supposed to have two defect states in the forbidden gap. Their energy positions will be labeled EtA 
and EtB respectively, their total concentrations NtA and NtB and the concentrations of electrons occupying these 
levels ntA and ntB . These defect levels are either of acceptor or of donor type. A state is called acceptor-like when 
neutral if empty, and negatively charged when occupied; a state is called donor-like when neutral if it is occupied 
and positively charged when empty. The corresponding contribution to the charge concentration is therefore      
qC t* = -qnt for an acceptor defect and qC*t = q(Nt - nt) for a donor defect, q being the electronic charge.

The electric potential ψ satisfies Poisson's equation

where n is the electron concentration, p is the hole concentration and NsA and NSD are eventually present shallow 
acceptor or donor concentrations which are assumed totally ionized;

C t* is the contribution of all defect states. The energy diagram, as given schematically in Fig. 1, contains two 
defect states. These thermally exchange electrons with the conduction or the valence band, according to electron-
transition rates which in the case of level A are given by

Similar expressions hold for defect state B.
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FIGURE 1 Schematic energy-band diagram with conduction-band edge Ec, valence-band edge Ev, defect-level 
positions EtA and EtB, electron-recombination rates rnt, rptA, ,rntB, rptB and rAB and optical generation rates gnA, gpA, 
gnB, gpB and gAB

In the Shockley-Read-Hall scheme [18], the capture constant is , where σnA is the thermal capture 
cross section and the electron thermal velocity at temperature T. The electron thermal emission rate is

where NC is the effective conduction-band density of states, Ec is the conduction-band edge and gA is the defect 
degeneracy factor. The hole capture constant cpA and emission rate ePA are defined accordingly. The optical 
transition rates between level A and the conduction band and between the valence band and level A are given by

where Φ is the photon flux at position x, whose spatial dependence is given by (1); SnA and SpA are the optical 
cross sections relative to level A. The corresponding transition rates involving level B are defined accordingly.

Eventual transitions between the two levels A and B can be included according to the equations, written for the 
case where the relative positions are such that (Ec - EtA) < (Ec - ETB):

Here , where σAB is an interlevel thermal capture cross section and λAB is the coefficient which 
determines the strength of the interlevel optical absorption. The following relation is assumed between the 
capture coefficient CAB and the coefficient kAB :

This relation expresses that, in thermal equilibrium, the transition rates A to B, and B to A, are equal, i.e. rAB = 0, 
independently of (5), which expresses equilibrium between each level and the bands. In the numerical treatment, 
the electron concentration n, the hole concentration p, as well as the occupied level concentrations ntA and ntB, 
are expressed in terms of quasi-Fermi levels Fn, Fp, FtA and FtB, allowing the description for non-equilibrium 
situations. For non-degenerate semiconductors, one has [15]:

Published in: Applied Physics B: Lasers & Optics (2002), vol. 74, pp. 35-42
Authors : N. D. Nguyen, M. Schmeits
Status: Postprint (Author’s version)



The expression for ntB is defined similarly.

The continuity equations for electrons, holes and occupied defects then read

where, for reason of completeness, we have added band-to-band recombination terms rbb and optical generation 
terms gbb· The current densities Jn and Jp are the sums of drift and diffusion terms

where E is the electric field and µn and µp are the electron and hole mobilities.

This set of equations describes the steady-state (∂/∂t = 0) and transient behavior of the microscopic system, once 
the illumination pattern is given. This latter can be treated by taking a finite number of illumination periods Λ, 
bordered by non-illuminated regions at the left- and right-hand sides of the structure. Another possibility is to use 
a super-Gaussian dependence of I0(x), simulating a beam of finite size [17]. In any case, only the shape of the 
central periods will be used in the analysis of the photorefractive characteristics.

The as-obtained electric field E(x) is Fourier-analyzed. The zero component yields the applied field. From the 
first order Fourier component E1, the two-wave-mixing gain Γ can be obtained, according to [1-3]

where nr is the index of refraction of the medium and r41is the electro-optic coefficient. The gain is defined as 
negative when electrons are the dominant photocarriers; it is positive when the holes are dominant.

The diffraction efficiency η is defined as

where L is the interaction length and ∆nr is given by

The numerical solution of the above set of equations is obtained following methods which are standard from the 
study of electronic devices [15,19]. After scaling and discretization according to a variable-size mesh, the 
discretized equations are expressed in terms of the variables ψ, Fn,, Fp, FtA and FtB. The use of these variables 
presents the advantage of dealing with quantities which vary over the same order of magnitudes. This yields for 
each discretization point a set of five second-order non-linear differential equations. These are linearized in 
terms of small corrections of the variables to an appropriate initial guess and iterated until desired convergence is 
achieved. The left and right boundaries xL and xR are taken sufficiently far from the illuminated region, such that 
thermal equilibrium at the contacts can be assumed. When Vext represents the applied voltage, the corresponding 
boundary conditions are then
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where F0 is the bulk equilibrium Fermi level, which can be obtained from the charge-neutrality condition at the 
given temperature.

3. Steady-state analysis of InP with two defect levels

The formal developments are applied to InP, a crystal for which numerous experimental results have been 
published. InP is a direct gap semiconductor with Eg = 1.35 eV at room temperature and its electro-optic 
coefficient at λ = 1.06 µm, r41 = 1.34 pm/V, is one of the largest for classical semiconductors. Experimental 
studies including Deep Level Transient Spectroscopy (DLTS), photoluminescence and electron spin resonance 
on Fe-doped InP have led to the evidence that Fe introduces a defect state at 0.65 eV below the conduction-band 
edge, corresponding to the Fe2+/Fe3+ state [9]. Multiple defects have been suggested to explain the 
experimentally observed consequences of electron-hole competition, such as a change in energy-coupling 
direction in two-wave mixing. One possible microscopic origin was the excited Fe2+* level at 0.30 eV below the 
conduction-band edge [20]. In the two-defect-level system, the first level, labeled A, corresponds to the Fe2+/Fe3+ 
acceptor level, for which the microscopic parameters are given in Table 1. They correspond to values as cited in 
experimental studies [9,21]. The second level, labeled B, will be considered with free parameters, among which 
the energy position EtB, the concentration NtB, the thermal capture cross section σB and the optical cross section 
sB are the most important ones. Values for most numerical applications are given in Table 1, and are explicitly 
specified, when modified. Varying their value in a given range allows a systematic study on the effect of the 
second level on the resulting photorefractive characteristics.

In Fig. 2 we show, together with the illumination pattern, the electric field as a function of position x for the two-
defect system (AB) in comparison with the field when the level A alone is present. The illumination period A of 
the sinusoidal illumination pattern is of 4.5 µmι, the temperature is T = 300 K, the intensity I0 is 100 mW/cm2 
and the modulation depth is m = 1. Calculations have been done on a system consisting of nine illumination 
periods Λ, separated from the respective limits x L and x R by a distance of 3Λ, which is not illuminated. The 
number of discretization points was 80 per period. This yields stable numerical solutions and, for the central 
periods, negligible effects from the borders between the illuminated and the non-illuminated regions. For both 
systems, the maximum electric field strength occurs in the less-illuminated part of the illumination pattern, the 
phase shift between the position of the maximum electric field position and of the maximum illumination being 
different from π/2, as would be the case in the small-modulation limit. The electric field is stronger by a factor of 
two in the case of the defect A alone, as compared to the AB case. In both cases, the shape of the electric field is 
non-sinusoidal. Figure 3 gives the spectral analysis with the normalized Fourier amplitudes. The Fourier analysis 
implies that the results for the central period are reproduced periodically in both +x and -x directions. The figure 
shows that the weight of the fundamental component is 0.48 for case A and 0.78 for case AB. Figure 4a shows 
the concentration profile for the occupied level concentration A, when the level A is alone, and in Fig. 4b, ntΑ(x) 
together with ntB(x). For the single-defect case, the function ntΑ(x) is modulated around its bulk thermal 
equilibrium value ntA0 = 1 x 1016 cm-3, giving a total charge-concentration profile, having, except for the opposite 
sign, essentially the same shape as the occupied level concentration ntΑ(x). In the two-defect case, we have taken 
the B level of donor type and with an energy EtB slightly below that of the first level EtA The addition of the 
second level modifies the thermal equilibrium value of ntA0, which is now equal to 1.025 x 1016 cm-3, and the 
lower-lying level B is occupied at 98%. The illumination, followed by generation, carrier drift and diffusion and 
subsequent recombination, creates a defect level occupation for the level A which is completely different from 
that of the single-defect case. The functions ntΑ(x) and ntB (x) produce a charge-density profile which is illustrated 
in Fig. 4c. The maximum values of  /q are by a factor of 100 weaker than the values of the corresponding 
occupied level functions. It should be noted that the resulting function (x) strongly depends on the various 
parameters used in the description of the model. Figure 5 shows the various transition rates for generation and 
recombination. In the final steady-state configuration, the dominant effect on the level A is the generation from 
the valence band to level A, followed, for a great part of the carriers, by immediate recombination along the 
same path. For level B, the major transitions occur between the state EtB and the conduction band, either by 
generation or thermal recombination. Part of the photogenerated electrons diffuse to the borders of the 
illumination period, where they recombine through the A levels. The final carrier and charge-density profiles 
result from the detailed balance of the generation, recombination and diffusion processes, which explains that a 
slight modification of one of the parameters can produce profound changes in the charge-density profile.
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TABLE 1 Parameters used in the numerical applications, describing the InP semiconductor, as well as the 
defect levels A and B. Electron and hole photo-ionization cross sections have been inverted for the case of level 
B, relative to level A. Band-to-band transition rates rbb, and gbb are set equal to zero

Host material InPHost material InP
Energy gap Eg = 1.35eV

Electron mobility µn = 1470 cm2Vs
Hole mobility µp = 150 cm2Vs

Electron effective mass
Hole effective mass

Electro-optic coefficient r41 = 1.34pm/V
Refractive index nr = 3.29

Level A (acceptor)Level A (acceptor)
Energy position Ec - EtA = 0.65 eV
Concentration NTA = 6 × 1016 cm-3

Electron thermal capture cross section σnA = 1.3 × 10-14 cm2

Hole thermal capture cross section σpA = 3 × 10-16 cm2

Electron photo-ionization cross section SNA= 4× 10-18 cm2

Hole photo-ionization cross section sPA = 3.1 × 10-16 cm2

Level B (donor)Level B (donor)
Energy position Ec - EtB = 0.75 eV
Concentration N,A = 2 × 1016 cm-3

Electron thermal capture cross section σnA = 6.5 × 10-15 cm2

Hole thermal capture cross section σM = l.5× l0-16cm2

Electron photo-ionization cross section snA = 3.1× l0-16cm2

Hole photo-ionization cross section spA = 4 × 10-18 cm2

Shallow dopantsShallow dopants
Concentration NsD-NsA = 1016cm-3

FIGURE 2 Electric field as function of position x, E(x), and illumination pattern Φ(x) for double-defect 
configuration AB, with parameter set of Table 1, and the case when only defect level A is present (NtB = 0). The 
system used for the calculations extends over a total of 15 periods of width A, the nine central periods being 
illuminated, with three non-illuminated periods on each side. The figure shows the three periods in the center of 
the system
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FIGURE 3 Normalized Fourier components for system AB and system A
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FIGURE 4 a Illumination pattern and occupied level concentration nsA for level A, when concentration of level 
B is zero; ntAO is the bulk thermal equilibrium concentration, b Occupied level concentrations for levels A and B 
in system AB. The bulk thermal equilibrium concentrations are respectively ntA0 and KtB0· c Charge density ρ 
divided by electronic charge q for system AB
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FIGURE 5 a Illumination pattern and optical generation rates for system AB as function of position x for 
transitions gnA, gpA, gnB and gpB. b Recombination rates as function of position x for rntA, rptA, rntB and rptB, as 
defined in Fig. 1

In the framework of the steady-state analysis, it is possible to determine the effect of one particular parameter, 
corresponding either to the host crystal, the impurity levels or to the experimental conditions on the resulting 
quantities, such as the maximum electric field strength Em, the first Fourier component E\ and the gain 
coefficient Γ, as defined by (20).

In Fig. 6a we show for the same system Em, E1 and Γ as functions of the energy position of the second level B, 
all other parameters being kept constant. The zero value of EtB corresponds to the valence-band edge. As the 
figure shows, the evolution of the three quantities goes in parallel. Roughly four distinct regions can be 
separated. For values of EtB lower than 0.4 eV, the three functions under study remain essentially constant with 
the parameter value EtB. Beyond that region, there is a minimum for (EtB - Ev) = 0.50 eV, followed by an 
increase leading to a constant value from 0.6 to 0.85 eV, and a slightly larger value for EtB beyond this value of 
0.85 eV.

This behavior can be compared with the corresponding evolution as a function of EtB of the various carrier 
concentrations n, p, ntA and ntB, as given in Fig. 6b. These are taken under sinusoidal illumination conditions, at a 
particular position, namely x = 0, i.e. at the maximum illumination. The hole concentration p remains the 
dominant free carrier. Comparison of Fig. 6a and b shows the four regions in common to all quantities. For EtB 
lower than 0.4 eV, ntB has its maximum value, being even larger than ntA· For EtB between 0.4 eV and 0.6 eV, 
there is a transition region where ntB decreases by two decades, ntA increasing by about a factor of five. This is 
followed by a constant value of all quantities for EtB between 0.6 and 0.85 eV. Beyond this latter value ntB 
decreases continuously. This evolution is the combined result of several effects. The modification of the level 
position EtB produces a modification of the thermal equilibrium value of the Fermi energy, resulting from the 

Published in: Applied Physics B: Lasers & Optics (2002), vol. 74, pp. 35-42
Authors : N. D. Nguyen, M. Schmeits
Status: Postprint (Author’s version)



charge-neutrality condition. This in turn determines the thermal equilibrium values of the concentrations n, p, ntA 
and ntB and their corresponding values under illumination. This leads to the final charge-density profile and 
electric field pattern. The here shown strong dependence on the value of the parameter EtB also occurs for other 
parameters used in the description of the system.

In Fig. 7 we show, as functions of the illumination maximum Io, the values of Em, E\ and Γ. All three quantities 
are increasing functions of Io. It should be noticed that the ratio E1/Em decreases with Io; a stronger light intensity 
produces an increase of the anharmonic character of the space-charge field.

FIGURE 6 a Maximum value of the electric field Em, absolute value of first Fourier component amplitude E1 
and two-wave-mixing gain Γ as functions of EtB. Other parameters of the system AB are those of Table 1. b 
Electron concentration n, hole concentration p, level-A occupation ntA and level-B occupation ntB at x = 0, the 
maximum of the illumination pattern, as a function of the defect-level position EtB
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FIGURE 7 Maximum electric field Em, first Fourier component E1 and gain Γ for system AB, as functions of 
illumination intensity I0

4. Transient response

From the solution of the full set of basic equations ((2), (14)-(17)), we can obtain the time-dependent variation of 
all basic quantities such as the electric field and the carrier concentrations. In Fig. 8a, we show, for the 
configuration studied up to now, the evolution in the extinction case of the space-charge field. The curves show 
E(x) for different values of t, as indicated in the figure caption. At the instant t = t0 = 0 the illumination is 
switched from Io to zero. In Fig. 8b, we show the corresponding variation of the charge density for x values on 
one illumination period. The curves show a continuous evolution of E(x) and (x) up to t = t3, a small 
modulation at t = t4 = 8 × 10-4 s, followed by a shape with an inverse sign of the functions, when compared to 
the steady-state case. In Fig. 9 we show, as functions of t, the evolution of the maximum space-charge field Em, 
the fundamental component E1 and the two-wave-mixing gain Γ. In Fig. 9a, corresponding to the extinction case, 
the evolution of the maximum E field Em shows two regimes which correspond to the two types of field function 
which appeared in the time-dependent evolution of the charge density. Due to the complexity resulting from the 
number of recombination processes involving the two defects as well as the conduction and the valence band, it 
is not in all cases possible to assign the time constant to a well-defined particular process. In the double-defect 
configuration we have studied here, as can be inferred from Fig. 9b, the first decrease with a time constant 
around 2 x 10-4 s results from a process where the system tends in a first step to reach electrical neutrality 
throughout the structure and then evolves towards thermal equilibrium carrier concentrations with, in our case, 
characteristic time constants of comparable magnitudes for both levels A and B, as can be seen when plotting the 
time-dependent functions ntA and ntB- It should be mentioned that the ratio E1/Em, which is about 0.7 at steady 
state, reduces to values of 0.1-0.2 beyond t = 10-3 s, a consequence of the highly non-sinusoidal shape of the 
time-dependent charge density and electric field. Many other shapes of the time evolution of the diffraction 
grating during extinction may occur, depending on the various parameters involved. A function similar to that 
shown in Fig. 9a has been observed experimentally in a molecular material where complementary grating 
competition and bipolar transport was occurring [22]. In Fig. 9b, we show the time evolution of Em, E1 and Γ 
during the writing process. The illumination pattern is switched on at t = 0. The shape of all three functions 
shown is not of the classical exponential type, as is known for the single-defect case. The second defect level is 
responsible for the undulation around 10-3 s.

In Fig. 10 we show, as a function of time, the maximum electric field for two other systems, in addition to the 
case AB studied up to now. Label ABR indicates a system similar to the system AB, but where an interlevel 
recombination rate rAB has been added; ABRG is system ABR, but with an additional generation rate gΑΒ between 
levels A and B. Experimental values of the coefficients σAB and λAB are not available. We have chosen σAB = 
10-21 cm2and λAB = 10-31 cm5, which produces the steady-state occupied defect concentrations ntA and ntB, as 
shown in the inset of Fig. 10. For system ABR the maximum electrical field Em decreases uniformly with time, 
with a time constant of the order of 10-3 s. For system ABRG, the additional generation process leads to an 
increase of the level occupation intermediate between those of the systems AB and ABR, with a resulting slope 
of Em(t) having similarities with the two aforementioned characteristics.
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FIGURE 8 a Illumination pattern and extinction electric field E(x) for system AB, for x values between x = 0 
and x = A, for times t0 = 0, t1 = 1CΓ5 s, t2 = 10-4 s, t3 = 3 × 10-4 s,t4 = 8x 10-4 s, t5 = 10-2 s and t6 = 6 x 10-2 s. b 
Charge density ρ divided by electronic charge q for same values of t
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FIGURE 9 a Extinction values of maximum electric field Em, first Fourier component E1 and two-wave-mixing 
gain Γ for system AB, with parameters as in Table 1. b Time-dependent evolution of same quantities during 
grating formation
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FIGURE 10 Extinction values of maximum electric field Em for system AB with parameters of Table 1. System 
ABR has the same parameters as AB except that there is a non-zero recombination rate rAB between levels A and 
B, with σAB = 10-21 cm2, and curve ABRG corresponds to system ABR, plus optical generation between levels A and 
B, with ΛAB = 10-31 cm . The inset shows steady-state occupation of levels A (three upper curves) and B (three 
lower curves), for systems AB (full lines), ABR (dotted lines) and ABRG (dash-dotted lines)

5. Conclusion

In summary, we have included multiple defects in the formal description of the photorefractive effect in 
semiconducting materials. The resulting set of basic equations can be solved numerically, for any value of the 
modulation depth m, within the inclusion of all recombination and generation mechanisms to which both levels 
can give rise. Finding an analytical solution in the general case is impossible, thus requiring use of numerical 
integration of the basic equations. The numerical procedure allows us to solve exactly the set of equations, once 
the parameters describing the system and the experimental conditions are given. In particular, one is not 
restricted to the low-modulation case. When the modulation index m is close to one, the full charge field function 
E(x) is obtained, from which the fundamental Fourier component can be deduced.

In the application to the photorefractive effect in InP, with two defects, we have shown that it is possible to 
determine the effect of any parameter describing either the host material, the defects or the experimental 
conditions on the microscopic quantities of the photorefractive system and on the resulting experimentally 
accessible macroscopic quantities.

The studied example allows one to stress the existence of a complexity which is far beyond that of the 
extensively studied single-defect case. The second level leads in a first step to modified thermal equilibrium 
carrier and occupied level concentrations of the host crystal. This in turn determines the carrier generation and 
recombination processes, which are basic steps in the formation of the space-charge field. A point to which 
particular attention should be drawn is that the effect of the second level does not simply add to that of the first 
one, as if they would act independently. In most cases, there is an interaction between the two levels, either 
directly or indirectly, at all stages of the grating formation or extinction. The final space-charge field may be the 
result of the balance between quantities of nearly equal magnitude, whose explicit functions can only be 
determined from a detailed numerical analysis.

The developments could be extended to systems with more than two defect levels, or to defects leading to a 
continuous density of states in the semiconducting gap [23]. Application to organic photorefractive materials is 
also possible, with an appropriate inclusion of all effects occurring in this particular type of materials.
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