Benoît Bidaine (ULg, Belgium ; EUI-NG/TEC-EEP) June 26th, 2006 ULg, Liège, Belgium - "Please minimize the positioning error!" - "We think we could help you for ionospheric delay!" Where does positioning error come from? 2. Ionosphere? 3. Modelling 4. Analysis Where does positioning error come from? ## 2. Ionosphere? What does ionosphere look like? ## 3. Modelling - 4. Analysis - 5. Tests Where does positioning error come from? ## 2. Ionosphere? What does ionosphere look like? ## 3. Modelling How is it modelled? ## 4. Analysis Where does positioning error come from? ## 2. Ionosphere? What does ionosphere look like? ## 3. Modelling How is it modelled? ## 4. Analysis Let's assess NeQuick! Where does positioning error come from? ## 2. Ionosphere? What does ionosphere look like? ## 3. Modelling How is it modelled? ## 4. Analysis Let's assess NeQuick! #### 5. Tests A little drawing is better than a long speech... 2. Ionosphere? 3. Modelling 4. Analysis Positioning error comes from systems and atmospheric issues... # ...and is calculated on the basis of range errors. - Position accuracy = DOP * UERE - Iono delay = $40.3 * TEC / f^2$ TEC \rightarrow 1 TECu = 10^{16} el. m⁻² ~ 0.16 m (L1) $f \rightarrow$ need of model only for single frequency users 2. Ionosphere? 3. Modelling 4. Analysis ## 2. Ionosphere? # Atmosphere is ionized by sun radiations... • Electrially charged part / dispersive ## 2. Ionosphere? ...which influence varies according to different parameters. → lat, long \rightarrow mth → F10.7/R \rightarrow UT 2. Ionosphere? 3. Modelling 4. Analysis ## 3. Modelling # The model chosen for Galileo is called NeQuick... • « Profiler » → E, F1 and F2 peaks = anchor points • Input = ionospheric variables • Output = electron density ## 3. Modelling ...and is due to be used in a daily effective way. • Monthly flux replaced by daily parameter (Az) 2. Ionosphere? 3. Modelling 4. Analysis ## 4. Analysis ## How to use NeQuick for Galileo single-frequency receivers? Understand NeQuick • Improve physical behaviour Effective use Implementation ## 4. Analysis ## Physical related issues change between different versions... • 2001: ITU-R baseline (v1) • 2002: basic and intermediate parameters • 2005a: topside (k parameter) • 2005b: new files (v2) ## 4. Analysis ## ...and are currently studied. 2. Ionosphere? 3. Modelling 4. Analysis ## How could we investigate... FORTRAN drivers using NeQuick Matlab GUI ## ...vTEC maps? | NeQuick | | |--|------| | NeQuick model □ Tools □ Electron densities | Quit | | NeQuick_vTEC | 2006 | | Vertical total electron contents Maps Instructions Space Height Latitude Longitude Wonth May Version 2001 Version 1 2001 Minimum One version | dits | | Flux 100 UT LT 12 Plot Version 2 2006 ▼ Haximum 23222 90 180 Step 5 10 | | | Analysis Input Version 1 2001 Version 2 2006 Minimum 0 Maximum 23 Mean Maximum RMS Maximum RMS UT dependence Bias Max RMS Wean Maximum RMS UT dependence Bias Max RMS | | ## ...vTEC maps? 2001 Max = 70 ## ...vTEC maps? ## 2005b Max = 50 ## ...vTEC maps? 2006 Max = 45 # "We have now a complete basis... Understanding Check list Tools • First results ## ... to be continued!" - Broader physical behaviour analysis - Topside - Az calculation method - Intrinsic modification for daily use - Effective use analysis