INCREASED PULSE PRESSURE AND
SYSTOLIC x HEART RATE DOUBLE PRODUCT AND
CARDIOVASCULAR AUTONOMIC NEUROPATHY
IN TYPE 2 DIABETIC PATIENTS

A.J. Scheen, J.C. Philips, M. Marchand

Division of Diabetes, Nutrition & Metabolic Disorders, Department of Medicine, CHU Sart Tilman, B-4000 Liège, Belgium
The BP Components of the Arterial Pulse Wave

“Pulsatile stress”

Pulse pressure

Mean pressure = 1/3 SBP + 2/3 DBP

Diastolic decay curve

Diastolic pressure

Systolic pressure

Dicrotic notch (aortic valve closes)

Pressure (mm Hg)

Time
Background

Arterial pulse pressure (PP), a surrogate marker of large artery stiffness, was shown to be an independent cardiovascular disease (CVD) risk factor in several large longitudinal studies in patients with type 2 diabetes mellitus.

Aims

• To compare PP and systolic blood pressure (SBP) x heart rate (HR) double product during an active orthostatic test in patients with T2DM and in nondiabetic individuals matched for age (40-60 years), body mass index (BMI) and sex ratio (1/1).

• To analyze the relationships between pulsatile stress and cardiovascular autonomic neuropathy in patients with T2DM
Methods: population

<table>
<thead>
<tr>
<th></th>
<th>Patients with type 2 diabetes (T2DM)</th>
<th>Nondiabetic overweight/obese subjects (OC)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Male/Female)</td>
<td>20/20</td>
<td>20/20</td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>50 ± 6</td>
<td>50 ± 6</td>
<td>0.8971</td>
</tr>
<tr>
<td>Diabetes duration (yrs)</td>
<td>8 ± 7</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.7 ± 3.7</td>
<td>28.6 ± 2.7</td>
<td>0.1288</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.8 ± 1.6</td>
<td>-</td>
<td>NA</td>
</tr>
</tbody>
</table>

Patients with arterial hypertension, renal insufficiency or CVD or taking medications interfering with vascular reactivity (including any type of antihypertensive agents) were excluded from the study.
Non-invasive beat-to-beat monitoring of arterial blood pressure was obtained using a Finapres® device (Finger Arterial Pressure, Ohmeda, Louisville, CO, USA) and a photoelectric method. Several studies have demonstrated the accuracy of such indirect measurement with direct intra-arterial blood pressure and its reproducibility during various laboratory tests.

The Finapres® device provides a beat to beat set of 3 measured parameters: systolic (SBP), diastolic (DBP) and mean (MAP) arterial blood pressure. Heart rate (HR) was derived from pressure wave after having verified a perfect concordance with ECG recording, and pulse pressure (PP) was calculated as the difference between systolic and diastolic pressure values.
Methods: Squatting Test

All patients were evaluated with a continuous arterial blood pressure monitoring (Finapres®) in standing (1min), squatting (1min) and again standing position (1min).
Squatting and pulse pressure
Recent reports in type 1 diabetes

Philips JC, Marchand M, Scheen AJ

Squatting amplifies pulse pressure increase according to duration of type 1 diabetes.
Diabetes Care 2008; 31: 322-324.

Pulse pressure and cardiovascular autonomic neuropathy according to duration of type 1 diabetes.

Changes in pulse pressure, heart rate, and the pulse pressure x heart rate product during squatting in Type 1 diabetes according to age.
Diabetic Medicine 2010; in press.
Cardiovascular autonomic neuropathy (CAN) was assessed by the baroreflex gain measured by comparing HR and SBP changes during the transition from squatting to standing.

Baroreflex gain: slope of the regression line relating R-R intervals to SBP changes (well correlated with other CAN indices).
Results

Similar Mean Arterial Pressure (MAP) in selected T2DM patients and overweight/obese nondiabetic controls (exclusion of patients with hypertension)

Higher pulse pressure (PP) in T2DM patients than in overweight/obese nondiabetic controls (in relation to arterial stiffness)

Higher heart rate (HR) in T2DM patients than in overweight/obese nondiabetic controls (in relation to cardiovascular autonomic neuropathy or CAN)
Results

<table>
<thead>
<tr>
<th></th>
<th>Patients with type 2 diabetes (T2DM) (n = 40)</th>
<th>Nondiabetic overweight/obese subjects (OC) (n = 40)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean BP (mm Hg)</td>
<td>88 ± 13</td>
<td>86 ± 12</td>
<td>0.5991</td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>128 ± 20</td>
<td>122 ± 18</td>
<td>0.1087</td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>70 ± 13</td>
<td>70 ± 10</td>
<td>0.1662</td>
</tr>
<tr>
<td>PP (mm Hg)</td>
<td>58 ± 16</td>
<td>52 ± 13</td>
<td>0.0451</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>91 ±10</td>
<td>84 ± 13</td>
<td>0.0029</td>
</tr>
<tr>
<td>SBP x HR product (mm Hg*min⁻¹)</td>
<td>12082 ± 2521</td>
<td>10195 ± 2291</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

Significantly higher PP, HR and SBP x HR product in type 2 diabetes, despite similar BP
Patients with type 2 diabetes (T2DM) have significantly reduced baroreflex gain when compared to nondiabetic individuals, demonstrating the presence of cardiovascular autonomic neuropathy (CAN).

<table>
<thead>
<tr>
<th></th>
<th>Patients with type 2 diabetes (T2DM)</th>
<th>Nondiabetic overweight/obese subjects (OC)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baroreflex gain mmHg/min^-1</td>
<td>2.05 ± 1.31</td>
<td>2.97 ± 2.18</td>
<td>0.0256</td>
</tr>
</tbody>
</table>
Results: PP / NAC correlations

Highly significant negative correlations between PP or SBPxHR and baroreflex gain in patients with T2DM

No significant correlations between PP or SBPxHR and baroreflex gain in nondiabetic individuals
Discussion: Relationships between arterial stiffness and autonomic nerve function

- Ahlgren AR et al.
 Increased aortic stiffness in women with type 1 diabetes mellitus is associated with diabetes duration and autonomic nerve function.

- Mattace-Raso FU et al.
 Arterial stiffness, cardiovagal baroreflex sensitivity and postural blood pressure changes in older adults: the Rotterdam Study.
Conclusion

• Patients with T2DM have higher PP, an indirect marker of arterial stiffness, and higher SBP x HR double product, an index of cardiac workload, than nondiabetic patients with similar age and BMI, as well as markers of CAN, which all may contribute to the higher cardiovascular risk associated with T2DM.