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Abstract— Reinforcement learning is a promising paradigm
for learning optimal control. We consider policy iteration (PI)
algorithms for reinforcement learning, which iteratively evalu-
ate and improve control policies. State-of-the-art, least-squares
techniques for policy evaluation are sample-efficient and have
relaxed convergence requirements. However, they are typically
used in offline PI, whereas a central goal of reinforcement
learning is to develop online algorithms. Therefore, we propose
an online PI algorithm that evaluates policies with the so-called
least-squares temporal difference for Q-functions (LSTD-Q).
The crucial difference between this online least-squares policy
iteration (LSPI) algorithm and its offline counterpart is that, in
the online case, policy improvements must be performed once
every few state transitions, using only an incomplete evaluation
of the current policy. In an extensive experimental evaluation,
online LSPI is found to work well for a wide range of its
parameters, and to learn successfully in a real-time example.
Online LSPI also compares favorably with offline LSPI and
with a different flavor of online PI, which instead of LSTD-Q
employs another least-squares method for policy evaluation.

I. INTRODUCTION

Reinforcement learning (RL) algorithms [1], [2] can in

principle solve nonlinear, stochastic optimal control prob-

lems without using a model. A RL controller learns how

to control the process by interacting with it. The immediate

performance is measured by a scalar reward, and the goal is

to find an optimal control policy that maximizes the value

function, i.e., the cumulative long-term reward as a function

of the process state and possibly of the control action. A

value function that depends on the state and action is called

a Q-function. RL solutions cannot always be represented

exactly, and approximation must be used in general. State-

of-the-art RL algorithms use weighted summations of ba-

sis functions to approximate the value function, and least-

squares techniques to find the weights [3]–[6].

This paper concerns approximate policy iteration (PI),

which in every iteration evaluates the current policy, by

computing its approximate value function, and then finds

a new, improved policy using this value function. Least-

squares techniques for policy evaluation have relaxed con-

vergence requirements and approach their solution quickly as

the number of samples increases [7], [8]. They have mainly

been employed in offline PI, which improves the policy

only after an accurate value function has been found using

many samples. This approach is feasible in the offline case,

because only the performance of the final policy is important.
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However, a central goal of RL is to develop algorithms that

learn online, in which case the performance should improve

once every few transition samples.

Therefore, in this paper, we propose and empirically eval-

uate an online PI algorithm that evaluates policies with the

least-squares temporal difference for Q-functions (LSTD-Q).

We call this algorithm online LSPI, after its offline coun-

terpart, called LSPI [5]. The crucial difference from the

offline case is that policy improvements must be performed

once every few samples, before an accurate evaluation of the

current policy can be completed. Such policy improvements

are called ‘optimistic’ [2]. Moreover, online LSPI has to

collect its own samples, which makes exploration necessary.

Many existing online PI algorithms rely on gradient-based

policy evaluation [1], [9], which is less efficient than least-

squares policy evaluation. While using least-squares methods

online has been proposed [2], [5], little is known about

how they behave in practice. In particular, to the best of

our knowledge, the combination of LSTD-Q with optimistic

policy updates has not been studied yet. A competing algo-

rithm to LSTD-Q, called least-squares policy evaluation for

Q-functions (LSPE-Q) [4], has previously been used in op-

timistic PI [10]. We focus on LSTD-Q, while also providing

a comparison with LSPE-Q. The authors of [11] evaluate

LSPI with online sample collection, focusing on the issue

of exploration. However, unlike our online LSPI variant,

their method does not perform optimistic policy updates, but

fully executes LSPI between consecutive sample-collection

episodes; this incurs large computational costs.

After describing the necessary theoretical background

in Section II, we introduce online LSPI in Section III.

Section IV provides an extensive experimental evaluation

of online LSPI, including real-time control results, for the

problem of swinging up an underactuated inverted pendulum.

Section V concludes the paper.

II. THE RL PROBLEM. APPROXIMATE PI WITH

LEAST-SQUARES POLICY EVALUATION

Consider a Markov decision process with state space X
and action space U . Assume for now that X and U are

countable. The probability that the next state xk+1 is reached

after action uk is taken in state xk is f(xk, uk, xk+1), where

f : X × U × X → [0, 1] is the transition probability

function. After the transition to xk+1, a reward rk+1 =
ρ(xk, uk, xk+1) is received, where ρ : X×U×X → R is the

reward function. The expected infinite-horizon discounted

return of initial state x0 under a policy h : X → U is:

Rh(x0) = lim
K→∞

Exk+1∼f(xk,h(xk),·)

{
K∑

k=0

γkrk+1

}
(1)
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where γ ∈ [0, 1) is the discount factor, and the notation

xk+1 ∼ f(xk, h(xk), ·) means that xk+1 is drawn from the

distribution f(xk, h(xk), ·). The goal is to find an optimal

policy h∗, i.e., a policy that maximizes the return (1) from

every x0 ∈ X .

The Q-function Qh : X × U → R of the policy h gives,

for every pair (x, u), the expected return when starting in x,

applying u, and following h thereafter. For any policy, Qh

is unique and can be found by solving the Bellman equation

Qh = Th(Qh), where the policy evaluation mapping Th is:

[Th(Q)](x, u) = Ex′∼f(x,u,·) {ρ(x, u, x′) + γQ(x′, h(x′))}

The PI algorithm starts with an arbitrary initial policy h0.

At every iteration ℓ ≥ 0, the algorithm evaluates the current

policy, i.e., computes its Q-function Qhℓ , and then finds an

improved policy using:

hℓ+1(x) = arg max
u

Qhℓ(x, u) (2)

The PI algorithm converges to an optimal policy h∗.

In general, the Q-function must be approximated (e.g.,

when X or U contain an infinite number of elements). In

this paper, we consider linearly parameterized Q-function

approximators, which use a vector of n basis functions (BFs)

φ(x, u) = [φ1(x, u), . . . , φn(x, u)]T, and a parameter vector

θ ∈ R
n. Approximate Q-values are computed with:

Q̂(x, u) = φT(x, u)θ (3)

To find an approximate Q-function for a policy h, a

projected form of the Bellman equation can be solved:

Q̂h = Pw(Th(Q̂h)) (4)

where Pw performs a weighted least-squares projection

on the space of representable Q-functions, i.e., the space{
φT(x, u)θ | θ ∈ R

n
}

. The weight function w : X × U →
[0, 1] has to satisfy

∑
x,u w(x, u) = 1, because it is also

interpreted as a probability distribution. Equation (4) can be

written as a linear equation in the parameter vector:

Γθh = γΛθh + z (5)

where Γ,Λ ∈ R
n×n and z ∈ R

n. Using a solution of this

equation in (3) gives Q̂h. For more details about projection-

based policy evaluation, see, e.g., Ch. 6 of [2].

The matrices Γ, Λ and the vector z can be estimated from

transition samples. Consider a set of samples {(xls , uls , x
′
ls
∼

f(xls , uls , ·), rls = ρ(xls , uls , x
′
ls
)) | ls = 1, . . . , ns}, con-

structed by drawing state-action samples (x, u) and then

computing corresponding next states and rewards. The prob-

ability of each (x, u) must be w(x, u). The estimates of Γ,

Λ, and z are initialized to zeros and updated with:

Γls = Γls−1 + φ(xls , uls)φ
T(xls , uls)

Λls = Λls−1 + φ(xls , uls)φ
T(x′

ls
, h(x′

ls
))

zls = zls−1 + φ(xls , uls)rls

(6)

LSTD-Q is a policy evaluation algorithm that processes

the batch of samples using (6) and then solves the equation:

1

ns
Γns

θ̂h = γ
1

ns
Λns

θ̂h +
1

ns
zns

(7)

to find an approximate parameter vector θ̂h. When ns →∞,

we have that 1
ns

Γns
→ Γ, 1

ns
Λns

→ Λ, and 1
ns

zns
→

z, and therefore that θ̂h → θh. To obtain an algorithm

for approximate PI, the solution θ̂h found by LSTD-Q is

substituted in (3) to obtain an approximate Q-function, which

is used to perform a policy improvement with (2). Then,

the procedure repeats at the next iteration. The resulting

algorithm is called LSPI [5].

An alternative to LSTD-Q is LSPE-Q [10], [12], which

starts with an arbitrary initial parameter vector θ0 and

updates it using:

θls = θls−1 + β(θ†ls − θls−1), where:

1

ls
Γlsθ

†
ls

= γ
1

ls
Λlsθls−1 +

1

ls
zls

(8)

with β a step size parameter. The matrix Γ should be

initialized to a small multiple of the identity matrix. The Q-

function given by θ̂h = θns
can be used for policy improve-

ment in approximate PI. Note that, to guarantee the asymptot-

ical convergence of LSPE-Q to θh, the weight of each state-

action pair w(x, u) must be identical to the steady-state prob-

ability of this pair along an infinitely-long trajectory gener-

ated with the policy h [2]. In contrast, LSTD-Q (7) may have

meaningful solutions for many weight functions w.

As long as the policy evaluation error is bounded, ap-

proximate PI algorithms eventually produce policies with a

bounded suboptimality. Although for the derivation above

it was assumed that X and U are countable, LSTD-Q and

LSPE-Q can also be applied in uncountable (e.g., continuous)

state-action spaces. The remainder of this paper will focus on

LSTD-Q and LSPI, although LSPE-Q will also be revisited.

III. ONLINE LSPI

LSPI is a state-of-the-art algorithm for approximate PI.

However, it only works offline: it improves the policy only

after an accurate Q-function has been obtained by running

LSTD-Q on a large batch of samples. In contrast, one of

the main goals of RL is to develop algorithms that learn

online, in which case the policy should improve once every

few samples. Therefore, in this paper, we introduce an online

variant of LSPI. The crucial difference from the offline case

is that policy improvements must be performed once every

few transitions, before an accurate evaluation of the current

policy can be completed. In the extreme case, the policy is

improved after every transition, and then applied to obtain

a new transition sample. Then, another policy improvement

takes place, and the cycle repeats. Such a variant of PI

is called fully optimistic [2], [13]. In general, online LSPI

improves the policy once every several (but not too many)

transitions; this variant is partially optimistic.

A second major difference between offline and online

LSPI is that, while offline LSPI is supplied with a set

of transition samples by the experimenter, online LSPI is

responsible for collecting its own samples, by interacting

with the controlled process. This immediately implies that

online LSPI has to explore, i.e., try other actions than those

given by the current policy. Without exploration, only the
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actions dictated by the current policy would be performed

in every state, and samples of the other actions in that state

would not be available. This would lead to a poor estimation

of the Q-values of these other actions, and the resulting Q-

function would not be reliable for policy improvement [2].

Furthermore, exploration helps to obtain data from regions

of the state space that would not be reached using only

the greedy policy. In this paper, ε-greedy exploration is

used: at every step k, a uniform random exploratory action

is applied with probability εk ∈ [0, 1], and the greedy

(maximizing) action with probability 1 − εk, see, e.g., [1].

Typically, εk decreases over time, as k increases, so that

the algorithm increasingly exploits the current policy, as this

policy (expectedly) approaches the optimal one.

Algorithm 1 Online LSPI with ε-greedy exploration

Input: BFs φl, l = 1, . . . , n; γ; Kθ; {εk}k≥0; δ
1: ℓ← 0; initialize policy h0

2: Γ0 ← δIn×n; Λ0 ← 0n×n; z0 ← 0n

3: measure initial state x0

4: for each time step k ≥ 0 do

5: uk ←

{
hℓ(xk) w.p. 1− εk

a uniform random action w.p. εk

6: apply uk, measure next state xk+1 and reward rk+1

7: Γk+1 ← Γk + φ(xk, uk)φT(xk, uk)
8: Λk+1 ← Λk + φ(xk, uk)φT(xk+1, hℓ(xk+1))
9: zk+1 ← zk + φ(xk, uk) rk+1

10: if k = (ℓ + 1)Kθ then

11: solve 1
k+1Γk+1θℓ = 1

k+1Λk+1θℓ + 1
k+1zk+1

12: hℓ+1(x)← arg maxu φT(x, u)θℓ ∀x
13: ℓ← ℓ + 1
14: end if

15: end for

Algorithm 1 presents online LSPI with ε-greedy explo-

ration. Online LSPI uses two new, essential parameters that

are not present in offline LSPI: the number Kθ ∈ N, Kθ >
0 of transitions between consecutive policy improvements,

and the exploration schedule {εk}k≥0. When Kθ = 1, the

policy is updated after every sample and online LSPI is

fully optimistic. When Kθ > 1, the algorithm is partially

optimistic. The number Kθ should not be chosen too large,

and a significant amount of exploration is recommended,

i.e., εk should not approach 0 too fast. In this paper, the

exploration probability is initially set to a value ε0, and

decays exponentially once every second with a decay rate

of εd ∈ (0, 1):

εk = ε0 ε
⌊kTs⌋
d (9)

where Ts is the sampling time of the process, and ⌊·⌋ denotes

the floor operator.1 Note that, in practice, improved policies

do not have to be explicitly computed in online LSPI (line

12), but can be computed on demand using (2). To ensure

1Exponential decay does not asymptotically lead to infinite exploration,
which is required by some online RL algorithms [14]. Nevertheless, for
an experiment having a finite duration, εd can be chosen large enough to
provide any desired amount of exploration.

its invertibility, Γ is initialized to a small multiple δIn×n of

the identity matrix, where δ > 0.

Offline LSPI rebuilds Γ, Λ, and z from scratch before

every policy improvement. Online LSPI cannot do this,

because the few samples that arrive before the next pol-

icy improvement are not sufficient to construct informative

new estimates of Γ, Λ and z. Instead, these estimates are

continuously updated. The underlying assumption is that the

Q-functions of subsequent policies are similar, which means

that the previous values of Γ, Λ, and z are also representative

for the improved policy. Note that the computational and

memory demands of online LSPI are independent of the

number of samples observed.

IV. EXPERIMENTAL STUDY

This section provides an extensive experimental evaluation

of online LSPI, for the problem of swinging up an under-

actuated inverted pendulum. This problem is challenging and

highly nonlinear, but low-dimensional (the pendulum has

two state variables and one action variable), which means

extensive simulations can be performed with reasonable

computational costs. We study the effects of the policy

improvement interval and of the exploration decay rate on the

performance of online LSPI. Then, we compare online LSPI

with its offline counterpart, and with an online PI algorithm

with LSPE-Q. Finally, we provide real-time learning results.

The inverted pendulum (Figure 1) consists of a weight

of mass m attached to a disk, which is actuated by a DC

motor and rotates in a vertical plane. The motor power is

insufficient to push the pendulum up in a single rotation from

every initial state. Instead, from certain states (e.g., pointing

down), the pendulum needs to be swung back and forth to

gather energy, prior to being pushed up and stabilized.

m

l

motor

α

Fig. 1. Inverted pendulum schematic (left) and the real system (right).

A continuous-time model of the pendulum dynamics is:

α̈ = 1/J · [mgl sin(α)− bα̇−K2α̇/R + Ku/R]

where J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 m/s2,

l = 0.042 m, b = 3 · 10−6 Nms/rad, K = 0.0536 Nm/A,

R = 9.5 Ω. The angle α varies in the interval [−π, π) rad,

with α = 0 pointing up, and ‘wraps around’ so that, e.g.,

a rotation of 3π/2 corresponds to α = −π/2. The state is

x = [α, α̇]T. The control action u is constrained to [−3, 3] V,

and the velocity α̇ is restricted to [−15π, 15π] rad/s, using

saturation. The sampling time is Ts = 0.005 s, and the

discrete-time transitions are obtained by numerically inte-

grating the continuous-time dynamics between consecutive

time steps. The goal is to stabilize the pendulum in the

488



unstable equilibrium x = 0 (pointing up), and is expressed

by the reward function:

rk+1 = ρ(xk, uk) = −xT
k Qrewxk −Rrewu2

k

where: Qrew = diag[5, 0.1], Rrew = 1

Here, Qrew is chosen to penalize nonzero values of the

two state variables to a similar extent, given their relative

magnitudes; and Rrew penalizes energy consumption, to a

smaller extent than the state deviations. The discount factor

is γ = 0.98, sufficiently large to lead to a good control policy.

1) Approximator and performance criterion: To approxi-

mate the Q-function, an equidistant 11×11 grid of Gaussian

radial BFs (RBFs) is defined over the state space, and the

action space is discretized into 3 discrete values: Ud =
{−3, 0, 3}. The RBFs are normalized, axis-parallel, and have

identical radii. The RBF radius along each dimension is

identical to the distance between two adjacent RBFs along

that dimension (the grid step). To obtain the n = 3 · 112 =
363 state-action BFs, the RBFs are replicated for every

discrete action, and all the BFs that do not correspond to the

current discrete action are taken equal to 0. So, if the vector

of RBFs is φ̄(x) = [φ̄1(x), . . . , φ̄121(x)]T, then the vector

of state-action BFs is φ(x, u) = [I(u = −3) · φ̄T(x), I(u =
0) · φ̄T(x), I(u = 3) · φ̄T(x)]T, where the indicator function

I is 1 when its argument is true, and 0 otherwise.

After each simulated experiment with online LSPI is com-

pleted, snapshots of the current policy at increasing moments

of time are evaluated. This produces a curve recording

the control performance of the policy over time. During

performance evaluation, learning and exploration are turned

off. Policies are evaluated using simulation, by estimating

their average return over the grid of initial states X0 =
{−π,−π/2, 0, π/2}×{−10π,−3π,−π, 0, π, 3π, 10π}. The

return from each state is estimated with a precision εR = 0.1.

2) Effects of the tuning parameters: In this section, we

study the effects of varying the tuning parameters of online

LSPI, in particular the number of transitions between con-

secutive policy improvements, Kθ, and the exploration decay

rate, εd. Each experiment is run for 600 s, and is split into

trials having a length of 1.5 s, which is sufficient for a good

policy to swing up and stabilize the inverted pendulum. The

initial state of each trial is drawn from a uniform random

distribution over X . The decaying exploration schedule (9)

is used, with ε0 = 1, which means that a fully random policy

is initially used. Any small positive value is appropriate for

δ; we set this parameter to 0.001.

To study the influence of Kθ, the following values are

used: Kθ = 1, 10, 100, 1000, and 5000. The first experiment

(Kθ = 1) is fully optimistic: the policy is improved after

every sample. The exploration decay rate is εd = 0.9962.

Figure 2 shows how the performance of the policies learned

by online LSPI evolves. The mean performance across 20
independent runs of each experiment is reported. To avoid

cluttering, confidence intervals are shown only for the ex-

treme values of Kθ, in a separate graph. The performance

converges quickly, in roughly 120 s, i.e., 80 trials. The

algorithm is robust to changes in the Kθ parameter, with
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Fig. 2. Performance of online LSPI for varying Kθ . Top: mean per-
formance for all the experiments; bottom: mean performance with 95%
confidence intervals, for the extreme values of Kθ . The marker locations
indicate the moments in time when the policies were evaluated.

all the values leading to a similar performance except Kθ =
5000. For this large value, the performance is worse, and

the difference from smaller Kθ is statistically significant, as

illustrated in the bottom graph. Thus, policy improvements

in online LSPI should not be performed too rarely.

To study the influence of εd, the following values are used:

εd = 0.8913, 0.9550, 0.9772, 0.9924, 0.9962, and 0.9996.

Larger values of εd correspond to more exploration; in

particular, for εd = 0.9996, most of the actions taken

during learning are exploratory. The policy is improved

once every Kθ = 10 transitions. Figure 3 presents the

performance of online LSPI across 20 independent runs.

There is no discernible effect of εd on the learning rate,

but the final performance improves with more exploration.

The difference between the performance of large and small
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Fig. 3. Performance of online LSPI for varying εd. Top: mean performance
for all the experiments; bottom: mean performance with 95% confidence
intervals, for the extreme values of εd.

489



exploration schedules is statistically significant, as illustrated

in the bottom part of the figure. These results are not

surprising, since the considerations in Section III already

indicated that online LSPI requires significant exploration.

(Note however that too much exploration will decrease the

control performance obtained during learning. This effect is

not visible in Figure 3, because exploration is turned off

when evaluating policies.)

Figure 4 shows the mean execution time for varying

Kθ. The 95% confidence intervals are left out, since they

are too small to be visible at the scale of the figure. The

execution time is larger for smaller Kθ, because the most

computationally expensive operation is solving the linear

system in (7), which must be done once every Kθ steps.

The execution time for all values of εd is around 330 s (it

does not change much with the exploration schedule, since

choosing random actions is computationally cheap).
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Fig. 4. Execution time of online LSPI for varying Kθ .

3) Comparison of online LSPI and offline LSPI: In this

section, offline LSPI is used to find policies for the swingup

problem. These policies are compared with the final policies

found by online LSPI, at the end of the learning process.

Offline LSPI employs the same approximator as online LSPI.

Whereas online LSPI generates its own samples during learn-

ing, a number of ns = 20000 pre-generated random samples

are used for offline LSPI, uniformly distributed throughout

the state-discrete action space X×Ud. The offline experiment

is run 20 times with independent sets of samples. Table I

compares the performance and the execution time of offline

and online LSPI. Two representative online experiments from

the study of Kθ are selected for comparison: the experiment

with the best mean performance, and the experiment with the

worst mean performance. Two experiments from the study

of εd are similarly selected. The performance and execution

times are rounded to integer precision.

TABLE I

OFFLINE VERSUS ONLINE LSPI (MEAN; 95% CONFIDENCE INTERVAL).

Experiment Performance Execution time [s]

Offline −1497; [−1504,−1490] 83; [80, 86]
Kθ = 10 (best) −1478; [−1483,−1473] 345; [344, 345]
Kθ = 5000 (worst) −1526; [−1533,−1519] 115; [115, 115]
εd = 0.9962 (best) −1479; [−1482,−1476] 336; [333, 339]
εd = 0.8913 (worst) −1534; [−1547,−1521] 334; [332, 336]

The final performance of online LSPI is comparable with

the performance of offline LSPI, and is better for good

selections of the parameters. On the other hand, online LSPI

is more computationally expensive than offline LSPI, because

it performs more policy improvements. Note that offline

LSPI employs 20000 samples, whereas the online algorithm

processes the same number of samples in 100 s, and 120000
samples during the entire learning process. Nevertheless, Fig-

ures 2 and 3 showed that the online performance is already

good after 120 s, i.e., 24000 samples. Also, offline LSPI

loops through the samples once at every iteration, whereas

online LSPI processes samples only once. Therefore, online

LSPI compares favorably with offline LSPI in the number of

samples required to reach a good performance.

4) Comparison of online LSPI and online PI with LSPE-

Q: In this section, we consider an online PI algorithm that

evaluates policies with LSPE-Q (8), rather than with LSTD-

Q as online LSPI does. Unlike online LSPI, online PI with

LSPE-Q updates the parameter vector after every transition:

θk+1 = θk + β(θ†k+1 − θk), where:

1

k + 1
Γk+1θ

†
k+1 = γ

1

k + 1
Λk+1θk +

1

k + 1
zk+1

(10)

where Γ, Λ, and z are computed as in online LSPI (Algo-

rithm 1). The policy is improved once every Kθ transitions.

We apply online PI with LSPE-Q to the swingup problem,

using the same values of Kθ as for online LSPI. The

approximator, exploration schedule, and trial length are also

the same; Γ is initialized to 0.001 · In×n. Online PI with

LSPE-Q has an additional step size parameter, β, which was

not present in online LSPI. In order to choose β, preliminary

experiments were performed for each value of Kθ, using

several values of β: 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, and 1.

In these experiments, the following values of β performed

reasonably: 0.005, 0.01, 0.01, 0.1, and 0.1, for, respectively,

Kθ = 1, 10, 100, 1000, and 5000. With these values of β, 20
independent runs are performed for every Kθ.

Figure 5 presents the performance of online PI with LSPE-

Q across these 20 runs; compare with Figure 2. Online

PI with LSPE-Q is less reliable than online LSPI: there

is a larger variation in performance across the 20 runs,
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Fig. 5. Performance of online PI with LSPE-Q for varying Kθ . Top: mean
performance for all the experiments; bottom: mean performance with 95%
confidence intervals, for the extreme values of Kθ .
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which can be seen, e.g., in the much larger 95% confidence

intervals. To explain this, recall that in order to guarantee

the convergence of LSPE-Q, state-action samples must be

generated according to their steady-state probabilities along

an infinitely-long trajectory generated with the current policy

(Section II). In online PI, the policy is changed often and

many exploratory actions are taken, which severely violates

this requirement, destabilizing the update (10). While online

LSPI is also affected by the imprecision in the values of

Γ, Λ, and z, it may be more stable because it only uses

them to compute ‘one-shot’ solutions, rather than updating

the parameter vector recursively like online PI with LSPE-Q.

The mean execution time of online PI with LSPE-Q is

around 1200 s for all values of Kθ. Compared to online LSPI

(Figure 4), online PI with LSPE-Q is more computationally

expensive when Kθ > 1, since it must solve a linear system

at every step; in contrast, online LSPI only solves a linear

system before policy improvements.

5) Online LSPI for the real pendulum: Next, online LSPI

is used to control the inverted pendulum system in real time,

rather than in simulation as in the earlier sections. To make

the problem slightly easier for the learning controller, the

sampling time is increased to Ts = 0.02 s (from 0.005 s),

and the maximum available control is increased to 3.2 V

(from 3 V); even so, a swingup is still required to turn the

pendulum upright. The same approximator is used as in the

simulation experiments, and online LSPI is run for 300 s,

split in trials of 2 s each. Half of the trials start in the stable

equilibrium (pointing down), and half in a random initial

state obtained by applying a sequence of random actions.

The initial exploration probability is ε0 = 1 and decays with

εd = 0.9848, which leads to a final value of ε = 0.01. Policy

improvements are performed only after each trial, because

solving the linear system at line 11 of Algorithm 1 may take

longer than the sampling time.

Figure 6 presents a subsequence of learning trials, con-

taining 1 out of each 10 trials. These trajectories include

the effects of exploration. The controller successfully learns

how to swing up and stabilize the pendulum, giving a good

performance roughly 120 s into learning. This is similar to

the learning rate observed in the simulation experiments.

V. CONCLUSIONS

In this paper, we have introduced online least-squares

policy iteration: an online PI algorithm with LSTD-Q policy

evaluation. We have provided an extensive experimental

study of online LSPI for the problem of swinging up an

inverted pendulum. In this study, the algorithm learned fast

and reliably, without much sensitivity to its tuning param-

eters. Online LSPI also performed well in comparison to

its offline counterpart, worked in real-time control, and was

more stable than online PI with LSPE-Q, even though LSPE-

Q has previously been deemed more appropriate for online

learning than LSTD-Q [2], [10]. These results indicate that

online LSPI is a promising algorithm for learning control.

Analyzing whether the asymptotical performance of online

LSPI can be guaranteed is an important research topic. The
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Fig. 6. A representative subsequence of learning trials for the real inverted
pendulum. Each trial is 2 s long, and only 1 out of every 10 trials is shown.
The starting time of each trial is given on the horizontal axis, and trials are
separated by vertical lines. Thus, each line corresponds to a ‘gap’ of 18 s
in real time.

performance guarantees of offline PI rely on bounded policy

evaluation errors. Because online LSPI improves the policy

before an accurate value function is available, the policy

evaluation error can be very large, and the guarantees for

offline PI cannot be directly applied to the online case.
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