University of Liège Department of Aerospace and Mechanical Engineering

A Full Discontinuous Galerkin Formulation Of Euler Bernoulli Beams In Linear Elasticity With Fractured Mechanic Applications

G. Becker & L. Noels

Computational & Multiscale Mechanics of Materials, ULg
Chemin des Chevreuils 1, B4000 Liège, Belgium

<u>Gauthier.Becker@ulg.ac.be</u>

L.Noels@ulg.ac.be

WCCM/APCOM – July 2010

Topics

- Dynamic Fracture by Cohesive Approach
- Key principles of DG methods
- C0/DG formulation of thin structures
- Fracture of thin structures
 - Full DG formulation of beams
 - DG/Extrinsic cohesive law combination
 - Numerical example
- Conclusions & Perspectives

Dynamic Fracture by Cohesive Approach

- Two methods
 - Intrinsic Law
 - Cohesive elements inserted from the beginning σ_{max}
 - Drawbacks:
 - Efficient if a priori knowledge of the crack path
 - Mesh dependency [Xu & Needelman, 1994]
 - Initial slope modifies the effective elastic modulus
 - This slope should tend to infinity [Klein et al. 2001]:
 - » Alteration of a wave propagation
 - » Critical time step is reduced
 - Extrinsic Law
 - Cohesive elements inserted on the fly when failure criterion is verified [Ortiz & Pandolfi 1999]
 - Drawback
 - Complex implementation in 3D (parallelization)
- New DG/extrinsic method [Seagraves, Jerusalem, Radovitzky, Noels]
 - Interface elements inserted from the beginning
 - Consistent and scalable approach

Main idea

- Finite-element discretization
- Same discontinuous polynomial approximations for the
 - **Test** functions φ_h and
 - **Trial** functions $\delta \varphi$

- Definition of operators on the interface trace:
 - **Jump** operator: $\llbracket \bullet \rrbracket = \bullet^+ \bullet^-$
 - Mean operator: $\langle \bullet \rangle = \frac{\bullet^+ + \bullet^-}{2}$
- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has the optimal convergence rate

- Application to non-linear mechanics
 - Formulation in terms of the first Piola stress tensor P

$$\mathbf{\nabla}_0 \cdot \mathbf{P}^T = 0 \text{ in } \Omega$$
 & $\begin{cases} \mathbf{P} \cdot \mathbf{N} = \bar{\mathbf{T}} \text{ on } \partial_N \Omega \\ \boldsymbol{\varphi}_h = \bar{\boldsymbol{\varphi}}_h \text{ on } \partial_D B \end{cases}$

– New weak formulation obtained by integration by parts on each element Ω^e

- Interface term rewritten as the sum of 3 terms
 - Introduction of the numerical flux h

$$\int_{\partial_I B_0} \left[\!\!\left[\delta \boldsymbol{\varphi} \cdot \mathbf{P} \left(\boldsymbol{\varphi}_h \right) \right]\!\!\right] \cdot \boldsymbol{N}^- \ d\partial B \to \int_{\partial_I B_0} \left[\!\!\left[\delta \boldsymbol{\varphi} \right]\!\!\right] \cdot \boldsymbol{h} \left(\mathbf{P}^+, \, \mathbf{P}^-, \, \boldsymbol{N}^- \right) \ d\partial B$$

- Has to be consistent: $\left\{\begin{array}{l} \boldsymbol{h}\left(\mathbf{P}^{+},\,\mathbf{P}^{-},\,\boldsymbol{N}^{-}\right)=-\boldsymbol{h}\left(\mathbf{P}^{-},\,\mathbf{P}^{+},\,\boldsymbol{N}^{+}\right)\\ \boldsymbol{h}\left(\mathbf{P}_{\mathrm{exact}},\,\mathbf{P}_{\mathrm{exact}},\,\boldsymbol{N}^{-}\right)=\mathbf{P}_{\mathrm{exact}}\cdot\boldsymbol{N}^{-} \end{array}\right.$
- One possible choice: $h\left(\mathbf{P}^{+},\,\mathbf{P}^{-},\,N^{-}\right)=\langle\mathbf{P}\rangle\cdot N^{-}$
- Weak enforcement of the compatibility

$$\int_{\partial_I B_0} \llbracket \boldsymbol{\varphi}_h \rrbracket \cdot \left\langle \frac{\partial \mathbf{P}}{\partial \mathbf{F}} : \boldsymbol{\nabla}_0 \delta \boldsymbol{\varphi} \right\rangle \cdot \boldsymbol{N}^- \ d\partial B$$

- Stabilization controlled by parameter β , for all mesh sizes h^s $\int\limits_{\partial_t B_0} \llbracket \varphi_h \rrbracket \otimes N^- : \left\langle \frac{\beta}{h^s} \frac{\partial \mathbf{P}}{\partial \mathbf{F}} \right\rangle : \llbracket \delta \varphi \rrbracket \otimes N^- \ d\partial B :$ Noels & Radovitzky, IJNME 2006 & JAM 2006

 Those terms can also be explicitly derived from a variational formulation (Hu-Washizu-de Veubeke functional)

Combination with extrinsic cohesive law

Scalable & Consistent

Radovitzky, Seagraves, Tupek, Noels CMAME Submitted

Rigid Sphere

C0/DG formulation of thin structures

- Previous developments for thin bodies
 - Continuous field / discontinuous derivative
 - No new nodes
 - Weak enforcement of C^1 continuity
 - Displacement formulations of high-order differential equations

- Usual shape functions in 3D (no new requirement)
- Applications to
 - Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells & Dung, CMAME 2007]
 - Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 2009]
 - Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; Bala-Chandran et al. 2008]

C0/DG formulation of thin structures

Deformation mapping

$$egin{aligned} \mathbf{F} &= oldsymbol{
abla} \Phi \circ \left[oldsymbol{
abla} \Phi_0
ight]^{-1} & ext{with} \ oldsymbol{
abla} \Phi &= oldsymbol{g}_i \otimes oldsymbol{E}^i & oldsymbol{g}_i &= oldsymbol{
abla} \Phi oldsymbol{E}_i &= rac{\partial oldsymbol{\Phi}}{\partial \mathcal{E}^i} \end{aligned}$$

$$-$$
 Tension $oldsymbol{n}^{lpha}=rac{1}{ar{j}}\int_{h_{\min 0}}^{h_{\max 0}}oldsymbol{\sigma}oldsymbol{g}^{lpha}\det\left(oldsymbol{
abla}oldsymbol{\Phi}
ight)d\xi^{3}$

- Bending
$$\tilde{m}^{lpha} = rac{1}{\overline{j}} \int_{h_{\min 0}}^{h_{\max 0}} \xi^3 \sigma g^{lpha} \det \left(\mathbf{\nabla} \mathbf{\Phi} \right) d\xi^3$$

Shearing is neglected

$$- \text{ As } t = \frac{\varphi_{,1} \wedge \varphi_{,2}}{\|\varphi_{,1} \wedge \varphi_{,2}\|} \implies \begin{cases} t_{,\alpha} = \lambda_{\alpha}^{\mu} \varphi_{,\mu} \\ \bar{j} = \|\varphi_{,1} \wedge \varphi_{,2}\| \end{cases}$$

- The formulation is displacement based only
- Continuity on t is ensured weakly by DG method

C0/DG formulation of thin structures

Pinched open hemisphere

- Properties:
 - 18-degree hole
 - Thickness 0.04 m; Radius 10 m
 - Young 68.25 MPa; Poisson 0.3
 - Quadratic, cubic & distorted el.
- Comparison of the DG methods with literature

- Extension of DG/ECL combination to shells
 - We have to substitute the C0/DG formulation by a full DG

- Kinematics of linear beams
 - Beam's equation are deduced from Kirchhoff-Love shell kinematics
 - So the DG formulations can be related to each other

- This time DG method is applied to
 - Shape functions
 - Derivative of shape functions

- Full DG/ECL combination for Euler-Bernoulli beams
 - When rupture criterion is satisfied at an interface element
 - · Shift from
 - DG terms ($\alpha_s = 0$) to
 - Cohesive terms (α_s = 1)

$$-\gamma_s = 1$$
 until the end of fracture process $\gamma_s = 0$

$$\sum_{n} \int_{l_e} \left[n^{11} \delta u_{1,1} + m^{11} \delta(-u_{3,11}) \right] dx$$

$$+\sum_{s} \left\{ (1-\alpha_{s}) \left(\left\langle n^{11} \right\rangle \llbracket \delta u_{1} \rrbracket + \left\langle Eh\delta u_{1,1} \right\rangle \llbracket u_{1} \rrbracket + \llbracket u_{1} \rrbracket \left\langle \frac{\beta_{2}Eh}{h_{s}} \right\rangle \llbracket \delta u_{1} \rrbracket \right. \\ + \left\langle m^{11} \right\rangle \llbracket \delta (-u_{3,1}) \rrbracket + \left\langle \frac{Eh^{3}}{12} \delta (-u_{3,11}) \right\rangle \llbracket -u_{3,1} \rrbracket + \llbracket -u_{3,1} \rrbracket \left\langle \frac{\beta_{1}Eh^{3}}{12h_{s}} \right\rangle \llbracket -\delta u_{3,1} \rrbracket \right) \\ + \left. \gamma_{s} \llbracket u_{3} \rrbracket \left\langle \frac{\beta_{3}Eh}{2(1+v)h} \right\rangle \llbracket \delta u_{3} \rrbracket \right\}$$

$$+\sum_{s} \alpha_{s} \left(N(\Delta_{true}^{*})\delta \left[\!\left[u_{1}\right]\!\right] + M(\Delta_{true}^{*})\delta \left[\!\left[-u_{3,1}\right]\!\right]\right) = 0$$

What remain to be defined are the cohesive terms

New cohesive law for Euler-Bernoulli beams

- Should take into account a through the thickness fracture
 - Problem: no element on the thickness
 - Very difficult to separate fractured and not fractured parts

– Solution:

- · Application of cohesive law on
 - Resultant stress

$$n^{11} \Longrightarrow N(\Delta^*)$$

Resultant bending stress

$$\tilde{m}^{11} \Longrightarrow M(\Delta^*)$$

• In terms of a resultant opening Δ^*

- Resultant opening Δ^* and cohesive laws $N(\Delta^*)$ & $M(\Delta^*)$
 - Defined such that
 - At fracture initiation

$$-N_0 = N(0)$$
 and $M_0 = M(0)$
satisfy $\sigma(\pm h/2) = \pm \sigma_{max}$

- After fracture
 - Energy dissipated = $h G_C$
- Solution

•
$$\Delta^* = (1 - \beta)\Delta_x + \beta \frac{h}{6}\Delta_r$$

• Null resistance for $\Delta^* = \Delta_c = 2G_C/\sigma_{\text{max}}$

 Δ_{χ}

- Numerical example
 - DCB with pre-strain

- When the maximum stress is reached Beam should shift from a DCB configuration to 2 SCB configurations
- During the rupture process (2 cases)
 - 1. The variation of internal energy is larger than hG_C
 - » rupture is achieved in 1 increment of displacement
 - 2. The variation of internal energy is smaller than hG_C
 - » Complete rupture is achieved only if flexion is still increased
 - » Whatever the pre-strain, after rupture, the energy variation should correspond to $hG_{\mathcal{C}}$

Stable fracture

- Effect of pre-strain
 - Dissipated energy always = hG_C

Conclusions & Perspectives

- Development of discontinuous Galerkin formulations
 - Formulation of high-order differential equations
 - Full DG formulation of beams
 - New degree of freedom
 - No rotation degree or freedom
 - As interface elements exist: cohesive law can be inserted

- Perspectives :
 - Extension to non-linear shells
 - Plasticity & ductile material

