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Dynamic Fracture by Cohesive Approach

e Two methods

— Intrinsic Law t
« Cohesive elements inserted from the beginning
« Drawbacks:
— Efficient if a priori knowledge of the crack path
— Mesh dependency [Xu & Needelman, 1994]
— Initial slope modifies the effective elastic modulus 3
— This slope should tend to infinity [kiein et al. 2001]:
» Alteration of a wave propagation
» Critical time step is reduced t

— Extrinsic Law
» Cohesive elements inserted on the fly when

Gmax

——

Gmax

failure criterion is verified [ortiz & Pandolfi 1999] Ge
* Drawback -
— Complex implementation in 3D (parallelization) 0

 New DG/extrinsic method [Seagraves, Jerusalem, Radovitzky, Noels]
— Interface elements inserted from the beginning

— Consistent and scalable approach "
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Key principles of DG methods

 Main idea
— Finite-element discretization
— Same discontinuous polynomial approximations for the

+ Test functions ¢, and \
 Trial functions ¢ J / /

Field

(@-1)(a-1)*(a) (@)* (a+1) (a+1)”
— Definition of operators on the interface trace:
« Jump operator; [e]=e"—o"

o+—0—o*
 Mean operator: (s) = s

— Continuity is weakly enforced, such that the method
* |s consistent
* |s stable
» Has the optimal convergence rate

P A
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Key principles of DG methods

* Application to non-linear mechanics
— Formulation in terms of the first Piola stress tensor P

P.-N =T on oxQ
V,-PT=0m0 & N

@n = @p on opB
— New weak formulation obtained by integration by parts on
each element Q¢

Z]VO-PT(qoh)-ésodBo
I

—P(Lph):VocSLde+Z/5@-P(<ph)-NdaB:0
¢ a0g
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Key principles of DG methods

* |nterface term rewritten as the sum of 3 terms
— Introduction of the numerical flux h
f [6p P (pn)] - N~ ddB — / [0¢] - h (P, P~, N7) dOB

dr Bo OrBo

_ h(P*,P~,N~)=_-h(P, P, N*)
« Has to be consistent:

R (Pexacts Pexacts N ™) = Poyace - N~
* One possible choice: h(PY,P~,N")=(P)-N~
— Weak enforcement of the compatibility
f [[cph]]-<g—§ :V06<p>-N dOB
57 Bo
— Stabilization controlled by parameter g, for all mesh sizes hs

oP
/ [en] o N—: <%_8F> o] ©® N~ doB -
o1 Bo Noels & Radovitzky, IINME 2006 & JAM 2006

— Those terms can also be explicitly derived from a variational
formulation (Hu-Washizu-de Veubeke functional) HA
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Key principles of DG methods

« Combination with extrinsic cohesive law »li‘if!;E. |
— Scalable & Consistent :

.~ Alumina Plate

Max Principal Strass (Pa)
AesCe ., Ba Rhuead 40

a e : 1.40+09

Radovitzky, Seagraves, Tupek, Noels CMAME
Submitted
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CO/DG formulation of thin structures

* Previous developments for thin bodies

— Continuous field / discontinuous derivative
* No new nodes EJ P

« Weak enforcement of C*continuity \/
- Displacement formulations of
high-order differential equations @l @ (@+l)
« Usual shape functions in 3D (no new requirement)

» Applications to

— Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells &
Dung, CMAME 2007]

X

— Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 2009]

— Damage & Strain Gradient [wells et al., CMAME 2004; Molari, CMAME 2006; Bala-
Chandran et al. 2008]

do. 4
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CO/DG formulation of thin structures

« Deformation mapping

F— Vo[V~ with
oP
gt

 Resultant stress Dy=o(E', D)+Eto(E], &)

1 hmaXU
— TenSIOn n" = :,/h o‘g‘ldet (V(I)) dfg

J J hming A
e 1 fhmexe -
— Bending®” = 3/h Eogdet (V) de® ﬁ_/é“_/_/

min( E1

* Shearing is neglected
 pe 4o #ales _}{ to= i,

lea A esll J=lleiAesll

Vb=goFE & g,=VPE;, =

— The formulation is displacement based only
— Continuity on t is ensured weakly by DG method

: )
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CO/DG formulation of thin structures

 Pinched open hemisphere

— Properties:
« 18-degree hole
 Thickness 0.04 m; Radius 10 m
* Young 68.25 MPa; Poisson 0.3
« Quadratic, cubic & distorted el.
— Comparison of the DG methods
with literature

20
— 8x,=-8yg, linear 0.000 J;;_f’;e-’rUUE;JqL” “!jzrlr,rj:r'r}jhf grre??;ewm 5,00+ 005
—— -Byg, 12 bi-quad. el. B '
15} 1 — 5XA, 12 bi-quad. el.
8 yB, 8 bi-cubic el.
. 93 xA, 8 bi-cubic el.
E 10} o 80 - -3yg, 8 bi-cubic el. dist.
° | oeseesSSTTT « 8x,, 8bi-cubicel. dist.
ol o -0 Vg Areias et al. 2005
50 i - 5 o xA, Areias et al. 2005
07 Il 1 Il
0 200 400 600 800
P (N)
3
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Fracture of Thin Structures

 Extension of DG/ECL combination to shells
— We have to substitute the CO/DG formulation by a full DG

Field

@1 (@ (@+1)

.
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e -1”
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(a-1)(a-1)*(a) (@)* (a+1)(a+1)*
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Fracture of Thin Structures

 Kinematics of linear beams

— Beam'’s equation are deduced from Kirchhoff-Love shell
Kinematics

 So the DG formulations can be related to each other

* This time DG method is applied to
— Shape functions
— Derivative of shape functions

"‘-ﬁ
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Fracture of Thin Structures

 Full DG/ECL combination for Euler-Bernoulli beams

— When rupture criterion is satisfied at an interface element

A E3
« Shift from
—|DG terms (a, = 0)|to ey
—|Cohesive terms (a. = 1) — IL — E,

_Iﬁ = 1 until the end of fracture process y, = Ol
Z_[l [ ouy g +mtto(—uz11)] da

+2 {a=an (@) Bl + (Brsuns) ] + ful {22 ) o]

T (m11> [6(—us1)] + ElI;B 5(—“3,11)> [—usa] + [—us1] <B]Eh3> [[—5'1!3,1]])

12/
B Eh N
+ 7o [ us] < M3t > [ous]

2(1 4+ v)hy

+ Z Qg (*Nr(Azrue)é [[u'l]] + ﬂ':[(ArTue)é‘ [[*11’3’1]]) =0 ‘

- What remain to be defined are the cohesive terms M
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Fracture of Thin Structures

« New cohesive law for Euler-Bernoulli beams

— Should take into account a through the £

Gmax

thickness fracture

* Problem : no element on the thickness G,

« Very difficult to separate fractured and

not fractured parts

— Solution: ﬂ
- Application of cohesive law on N, M4

— Resultant stress
ntle=> N(AY)

— Resultant bending stress
mtte=y M(AY)

* In terms of a resultant opening A*

: )
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Fracture of Thin Structures

« Resultant opening A* and cohesive laws N(A*) & M(A%)
— Defined such that N, M 4

o At fracture initiation Mg t.
— N, = N(0) and M, = M(0)
satisfy o(xh/2) =+ 5.,

» After fracture
— Energy dissipated = h G

— Solution
« A" =(1-70)A, +,,8%Ar
— A, = Opening is tension and A, = Opening in rotation

— Couplina narameter

B 16/ 1Mo
" T Np+|6/hMp| )
* Null resistance for A* = A, = 2G./c

- max
&

Department of Aerospace and Mechanical Engineering Universite U2




Fracture of Thin Structures

 Numerical example

— DCB with pre-strain

displacemen t (0/60)
o DDo0s 0.001 ¥
| B XT;'

 When the maximum stress is reached Beam should shift from a
DCB configuration to 2 SCB configurations
» During the rupture process (2 cases)
1. The variation of internal energy is larger than hG.
» rupture is achieved in 1 increment of displacement
2. The variation of internal energy is smaller than hG.
» Complete rupture is achieved only if flexion is still increased

» Whatever the pre-strain, after rupture, the energy variation
should correspond to hG.

"‘-5;
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Fracture of Thin Structures

3
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Fracture of Thin Structures

- Stable fracture et

— Analytic

— Geometry such that variation
of internal energy < hG.
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Fracture of Thin Structures

o Stable fracture

— Effect of pre-strain
» Dissipated energy always

-0.54

|
—
. |
m N
1 I

z Force [N]
po
a R

|
L]
T

_3.5;

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

Prescribed z displacement [mm]
—-0.62 0 0.b2 04 0.66 0.08 011
Axo[mm]
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Conclusions & Perspectives

* Development of discontinuous Galerkin formulations

— Formulation of high-order differential equations

* Full DG formulation of beams
— New degree of freedom
— No rotation degree or freedom
— As interface elements exist: cohesive law can be inserted

» Perspectives :  displacement

— Extension to non-linear shells
— Plasticity & ductile material Initial cracke

displacement (0/70)
0 1.49e+05 287e+05
I B
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