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Dynamic Fracture by Cohesive Approach 

• Two methods
– Intrinsic Law

• Cohesive elements inserted from the beginning
• Drawbacks:

– Efficient if a priori knowledge of the crack path 
– Mesh dependency [Xu & Needelman, 1994]
– Initial slope modifies the effective elastic modulus
– This slope should tend to infinity [Klein et al. 2001]:

» Alteration of a wave propagation
» Critical time step is reduced

– Extrinsic Law
• Cohesive elements inserted on the fly when 

failure criterion is verified [Ortiz & Pandolfi 1999]

• Drawback
– Complex implementation in 3D (parallelization)

• New DG/extrinsic method [Seagraves, Jerusalem, Radovitzky, Noels]
– Interface elements inserted from the beginning
– Consistent and scalable approach
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Key principles of DG methods

• Main idea
– Finite-element discretization
– Same discontinuous polynomial approximations for the

• Test functions ϕh and 
• Trial functions δϕ

– Definition of operators on the interface trace:
• Jump operator:
• Mean operator:

– Continuity is weakly enforced, such that the method
• Is consistent
• Is stable
• Has the optimal convergence rate
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Key principles of DG methods

• Application to non-linear mechanics 
– Formulation in terms of the first Piola stress tensor P

&

– New weak formulation obtained by integration by parts on
each element Ω 
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Key principles of DG methods

• Interface term rewritten as the sum of 3 terms
– Introduction of the numerical flux h

• Has to be consistent:

• One possible choice:
– Weak enforcement of the compatibility

– Stabilization controlled by parameter β, for all mesh sizes hs

– Those terms can also be explicitly derived from a variational 
formulation (Hu-Washizu-de Veubeke functional)

Noels & Radovitzky, IJNME 2006 & JAM 2006
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Key principles of DG methods

• Combination with extrinsic cohesive law
– Scalable & Consistent

Radovitzky, Seagraves, Tupek, Noels CMAME 
Submitted
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C0/DG formulation of thin structures

• Previous developments for thin bodies
– Continuous field / discontinuous derivative

• No new nodes
• Weak enforcement of  C1 continuity
• Displacement formulations of 
high-order differential equations
• Usual shape functions in 3D (no new requirement)
• Applications to

– Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells & 

Dung, CMAME 2007]

– Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 2009]

– Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; Bala-
Chandran et al. 2008]
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C0/DG formulation of thin structures

• Deformation mapping

• Resultant stress

– Tension

– Bending

• Shearing is neglected

– As

– The formulation is displacement based only
– Continuity on t is ensured weakly by DG method
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• Pinched open hemisphere 
– Properties:

• 18-degree hole
• Thickness 0.04 m; Radius 10 m
• Young 68.25 MPa; Poisson 0.3
• Quadratic, cubic & distorted el.

– Comparison of the DG methods 
with literature

C0/DG formulation of thin structures
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Fracture of Thin Structures

• Extension of DG/ECL combination to shells
– We have to substitute the C0/DG formulation by a full DG 

Field
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Fracture of Thin Structures

• Kinematics of linear beams        
– Beam’s equation are deduced from Kirchhoff-Love shell 

kinematics
• So the DG formulations can be related to each other

• This time DG method is applied to
– Shape functions
– Derivative of shape functions
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• Full DG/ECL combination for Euler-Bernoulli beams
– When rupture criterion is satisfied at an interface element

• Shift from 

– DG terms (αs = 0) to

– Cohesive terms (αs = 1) 

– γs = 1 until the end of fracture process γs = 0

– What remain to be defined are the cohesive terms

Fracture of Thin Structures
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Fracture of Thin Structures

• New cohesive law for Euler-Bernoulli beams
– Should take into account a through the 

thickness fracture
• Problem : no element on the thickness

• Very difficult to separate fractured and 

not fractured parts 

– Solution:
• Application of cohesive law on 

– Resultant stress                                      

– Resultant bending stress 

• In terms of a resultant opening ∆*
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Fracture of Thin Structures

• Resultant opening        and cohesive laws           &
– Defined such that

• At fracture initiation
– N0 = N(0) and M0 = M(0)  

satisfy σ(±h/2) = ± σmax

• After fracture
– Energy dissipated = h GC

– Solution
•

– ∆x = Opening is tension and ∆r = Opening in rotation

– Coupling parameter     

=

• Null resistance for ∆* = ∆c = 2GC /σmax
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• Numerical example

– DCB with pre-strain 

• When the  maximum stress is reached Beam should shift from a 
DCB configuration to 2 SCB configurations

• During the rupture process (2 cases)
1. The variation of internal energy is larger than hGC

» rupture is achieved in 1 increment  of displacement
2. The variation of internal energy is smaller than hGC

» Complete rupture is achieved only if flexion is still increased
» Whatever the pre-strain, after rupture, the energy variation 

should correspond to hGC

Fracture of Thin Structures

increasing

constant
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Fracture of Thin Structures

• Instable fracture
– Geometry such that variation 

of internal energy > hGC
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Fracture of Thin Structures

• Stable fracture
– Geometry such that variation 

of internal energy < hGC
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Fracture of Thin Structures

• Stable fracture
– Effect of pre-strain

• Dissipated energy always = hGC
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Conclusions & Perspectives

• Development of discontinuous Galerkin formulations
– Formulation of high-order differential equations

• Full DG formulation of beams
– New degree of freedom
– No rotation degree or freedom
– As interface elements exist: cohesive law can be inserted

• Perspectives :  
– Extension to non-linear shells
– Plasticity & ductile material

Prescribed 
displacement

Initial cracked


