

Bioprocess scale-up – Tracking the informations relevant for scaling-up by GFP reporter strains

Frank Delvigne

Gembloux Agro-Bio Tech – University of Liège
Unité de bio-industries
Passage des Déportés, 2
5030 Gembloux, Belgique

Background

Bioprocess scale-up – general scheme

Stirred bioreactor – lab-scale

Shaken bioreactors – lab-scale

Reactor dimension (D)

Lack of efficieency compared with stirred reactors:

- Lower transfer efficiency
- No regulation of the main environmental variables (pH, dissolved oxygen)

Drop of mixing efficiency when D at constant P/V
Generation of heterogeneities (substrate, dissolved
oxygen, pH, temperature,...)

Background

Exposure to spatial heterogeneities – hydrodynamic aspects

Experimental strategy

Fluorescent reporter system

Basic principle:

Using the microbial population as « physiological tracer » for the estimation of the bioreactor mixing and transfer efficiency (potentially capturing the stochasticity linked with the CTD)

Extracellular simuli (S, O2, pH)

Experimental strategy

Flow cytometry — an efficient tool to characterize microbial population heterogeneity

Experimental strategy

Choosing the right ORF for my application

E. coli: about 4000 ORFs:

A

Transcriptional network

B

RpoN

OmpR CRP

HNS

FNR

NarLArcA

RpoS

Transcriptional network – hierarchical classification

Ma et al. [2004] BMC Bioinformatics, 5:199

Screening among an E. coli GFP clones library

Cultivation in shake flasks on mineral medium

prpoS::gfp

Screening among an E. coli GFP clones library Representativeness of shaken bioreactor

Shake flask: easy to handle, well suited to perform parallel cultures, but lack of representativeness compared to the performances of stirred bioreactors

Screening among an E. coli GFP clones library Representativeness of shaken bioreactor

Screening among an E. coli GFP clones library Representativeness of shaken bioreactor

Cultures of GFP clones in shaken bioreactors (1L baffled shake flask : initial working volume : 200mL ; final working volume : 400 mL)

Screening among an E. coli GFP clones library Representativeness of shaken bioreactor

prpoS::gfp

puspA::gfp

Screening among an E. coli GFP clones library

Two modes of expression: binary or graded

Screening among an E. coli GFP clones library

Binary mode of gene expression → sources :

- -Short mRNA and protein half-lives
- -High sensitivity for the detection of the reporter protein

Generally not observed for GFP reporter system considering the high protein stability of this system compared with β-galactosidase and luciferase reporters

This mechanism of gene induction give rise to differentially expressed phenotypes at the protein level. Can potentially be used to gain more sensitivity about the impact of extracellular fluctuations

Behaviour of prpoS::gfp strain in fed-batch stirred bioreactor

Regulation of the addition of glucose by the dissolved oxygen level (SP = 30%) PID control

Behaviour of prpoS::gfp strain in fed-batch stirred bioreactor

Regulation of the addition of glucose by the dissolved oxygen level (SP = 30%), ON/OFF control

Behaviour of prpoS::gfp strain in fed-batch stirred bioreactor

Basic observations:

- Binary mode for GFP expression at the end of the batch phase and during the transition from batch to fed-batch phase
- After the induction of the major part of the population (all the cells are in the GFP+ state), graded mode of GFP expression is observed
- Successive glucose excess tends to slow down the binary expression phase

Behaviour of prpoS::gfp strain in two-compartment scale-down bioreactor

Operating conditions:

- Stirred bioreactor, working volume 10L
- Mineral medium, glucose as carbon source
- Fed-batch with exponential feed algorithm
- Scale-down approaches with DOcontrolled fed-batch and partitioned reactor

Behaviour of prpoS::gfp strain in two-compartment scale-down bioreactor

A pcya::GFPmut2 strain is not influenced by hydrodynamic conditions

Cultures performed under constant glucose feed

Cultures performed under constant glucose feed

Cultures performed under constant glucose feed : pcsiE::gfp strain

Cultures performed under constant glucose feed: puspA::gfp strain

To be validated by using a DO-controlled feed Prytz *et al* [2003] Biotech bioeng **83**:595-603

Synopsis: relation between GFP expression level and cell density

Two main mechanisms proposed to regulate rpoS in high cell density cultures:

- Cell density

DeLisa and Bentley [2002] Microbial cell factories, 1:5

- Decreasing growth rate

Ihssen and Egli [2004] Microbiology, 150:1637:1648

prpoS::GFP strains seems to react to the degree of homogeneity inside the bioreactor :

Homogenous reactor: GFP+

Inhomogenous reactor: GFP-

Two questions have to be raised:

- Flow cytometry combined with P_{stress} ::GFP expression \rightarrow impact of extrinsic fluctuations
 - What about the intrinsic fluctuations?
- Characteristic times of hydrodynamic mechanisms compared with those of the biological processes behind GFP synthesis

Complex phenomena:

- Two sources of noise (extrinsic and intrinsic)
- Very different characteristic time constants (physical and biological pocesses)
- \rightarrow A model is required

$$\begin{array}{c} \overset{k_1}{\rightarrow} TA \\ TA + DNA \overset{k_2}{\rightarrow} TA_DNA \\ TA_DNA \overset{k_3}{\rightarrow} TA + DNA \\ TA \overset{k_4}{\rightarrow} \emptyset \\ TA_DNA \overset{k_5}{\rightarrow} TA_DNA + RNA \\ RNA \overset{k_6}{\rightarrow} RNA + GFP \\ RNA \overset{k_7}{\rightarrow} \emptyset \\ GFP \overset{k_8}{\rightarrow} \emptyset \end{array}$$

Reaction scheme: **Exposure to** glucose excess $= f(t_m, t_c)$ $TA + DNA \xrightarrow{k_2} TA_DNA$ $TA_DNA \xrightarrow{k_3} TA + DNA$ $TA \stackrel{k_4}{\rightarrow} \emptyset$ $TA_DNA \xrightarrow{k_s} TA_DNA + RNA$ $RNA \stackrel{k_6}{\rightarrow} RNA + GFP$ $RNA \stackrel{k_7}{\rightarrow} \emptyset$ $GFP \stackrel{k_g}{\rightarrow} \emptyset$ **Generation time:** $k8 = log(2)/t_a$

ODEs system:

$$\frac{dTA}{dt} = k_1 - k_2.TA.DNA - k_4.TA + k_3.TA_DNA$$

$$\frac{dTA_DNA}{dt} = k_2.TA.DNA - k_5.TA_DNA - k_3.TA_DNA$$

$$\frac{dDNA}{dt} = k_3.TA_DNA - k_2.TA.DNA$$

$$\frac{dRNA}{dt} = k_5.TA_DNA - k_6.RNA - k_7.RNA$$

$$\frac{dGFP}{dt} = k_6.RNA - k_8.GFP$$

$$GFP_{steady-state} = RNA_{steady-state}. \left(\frac{k_6}{k_6}\right)$$

8 rates (including the characteristic time constants) to specify

These equations can be used in the classical deterministic formalism (ODEs solver), but more interestingly in the stochastic formalism :

Probablity that reaction μ occurs at time τ (Gillespie algorithm)

Gillespie [1977] J. of physical chemistry, 81:2340-2361

Example: simulation of 30,000 cells after 6 hours of induction

Thank you

This work has been supported by the **FNRS** (postdoctoral researcher grant n°FC 65530, CGRI-FNRS grant « Tournesol »)

Special thanks to Nathalie Gorret, Stéphane Guillouet et Carole Jouve (LISBP, INSA Toulouse)