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Abstract

Traditionally, dependency theory has been developed for uninterpreted data.

Specifically, the only assumption that is made about the data domains is that

data values can be compared for equality. However, data is often interpreted and

there can be advantages in considering it as such, for instance obtaining more com-

pact representations as done in constraint databases. This paper considers depen-

dency theory in the context of interpreted data. Specifically, it studies constraint-

generating dependencies. These are a generalization of equality-generating depen-

dencies where equality requirements are replaced by constraints on an interpreted

domain. The main technical results in the paper are a general decision procedure

for the implication and consistency problems for constraint-generating dependen-

cies, and complexity results for specific classes of such dependencies over given

domains. The decision procedure proceeds by reducing the dependency problem to

a decision problem for the constraint theory of interest, and is applicable as soon as

the underlying constraint theory is decidable. The complexity results are, in some
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cases, directly lifted from the constraint theory; in other cases, optimal complex-

ity bounds are obtained by taking into account the specific form of the constraint

decision problem obtained by reducing the dependency implication problem.

1 Introduction

Relational database theory is largely built upon the assumption of uninterpreted data.

While this has advantages, mostly generality, it foregoes the possibility of exploiting the

structure of specific data domains. The introduction of constraint databases [25] was a

break with this uninterpreted-data trend. Rather than defining the extension of relations

by an explicit enumeration of tuples, a constraint database uses constraint expressions to

implicitly specify sets of tuples. Of course, for this to be possible in a meaningful way, one

needs to consider interpreted data, that is, data from a specific domain on which a basic

set of predicates and functions is defined. A typical example of constraint expressions

and domain are linear inequalities interpreted on the reals. The potential gains from this

approach are in the compactness of the representation (a single constraint expression can

represent many, even an infinite number of, explicit tuples) and in the efficiency of query

evaluation (computing with constraint expressions amounts to manipulating many tuples

simultaneously).

Related developments have concurrently been taking place in temporal databases.

Indeed, time values are intrinsically interpreted and this can be exploited for finitely

representing potentially infinite temporal extensions. For instance, in [24] infinite tem-

poral extensions are represented with the help of periodicity and inequality constraints,

whereas in [11, 12] and [2] deductive rules over the integers are used for the same pur-

pose. Constraints have also been used recently for representing incomplete temporal

information [28, 29, 43].

If one surveys the existing work on databases with interpreted data and implicit rep-

resentations, one finds contributions on the expressiveness of the various representation

formalisms [5, 4, 3, 18, 19, 7, 37], on the complexity of query evaluation [33, 43, 13],

and on data structures and algorithms to be used in the representation of constraint

expressions and in query evaluation [36, 8, 26, 40, 9, 41]. However, much less has been

done on extending other parts of traditional database theory, for instance schema design

and dependency theory. It should be clear that dependency theory is of interest in this

context. For instance, in [23], one finds a taxonomy of dependencies that are useful
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for temporal databases. Moreover, many integrity constraints over interpreted data can

be represented as generalized dependencies. For instance, the integrity constraints over

databases with ordered domains studied in [22, 44] can be represented as generalized

dependencies. Also, some versions of the constraint checking problem studied in [21] can

be viewed as generalized dependency implication problems.

One might think that the study of dependency theory has been close to exhaustive.

While this is largely so for dependencies over uninterpreted data (that is, the context in

which data values can only be compared for equality) [39], the situation is quite different

for dependencies over data domains with a richer structure. The subject of this paper is

the theory of these interpreted dependencies.

Specifically, we study the class of constraint-generating dependencies . These are the

generalization of equality-generating dependencies [6], allowing arbitrary constraints on

the data domain to appear wherever the latter only allow equalities. For instance, a

constraint-generating dependency over an ordered domain can specify that if the value

of an attribute A in a tuple t1 is less than the value of the same attribute in a tuple t2,

then an identical relation holds for the values of an attribute B. This type of dependency

can express a wide variety of constraints on the data. For instance, most of the temporal

dependencies appearing in the taxonomy of [23] are constraint-generating dependencies.

Our technical contributions address the implication and the consistency1 problems

for constraint-generating dependencies. The natural approach to these problems is to

write the dependencies as logical formulas. Unfortunately, the resulting formulas are

not just formulas in the theory of the data domain. Indeed, these formulas also contain

uninterpreted predicate symbols representing the relations and thus are not a priori

decidable, even if the data domain theory is decidable.

To obtain decision procedures, we show that the predicate symbols can be eliminated.

Since the predicate symbols are implicitly universally quantified, this can be viewed as

a form of second-order quantifier elimination. It is based on the fact that it is sufficient

to consider relations with a small finite number of tuples. This then allows quantifier

elimination by explicit representation of the possible tuples. The fact that one only needs

to consider a small finite number of tuples is analogous to the fact that the implication

problem for functional dependencies can be decided over 2-tuple relations [32]. Fur-

thermore, for pure functional dependencies, our quantifier elimination procedures yields

1Though consistency is always satisfied for equality-generating dependencies, more general constraints

turn it into a nontrivial problem.
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exactly the usual reduction to propositional logic. For more general constraint depen-

dencies, it yields a formula in the theory of the data domain. Thus, if this theory is

decidable, the implication and the consistency problems for constraint-dependencies are

also decidable. Our approach is based on simple general logical arguments and provides

a clear and straightforward justification for the type of procedure based on containment

mappings used for instance in [21].

The complexity of the decision procedure depends on the specific data domain being

considered and on the exact form of the constraint dependencies. We consider three typ-

ical constraint languages: equalities/inequalities, ordering constraints, and linear arith-

metic constraints. We give a detailed picture of the complexity of the implication problem

for dependencies over these theories and show the impact of the form of the dependencies

on tractability.

2 Constraint-Generating Dependencies

Consider a relational database where some attributes take their values in specific domains,

such as the integers or the reals, on which a set of predicates and functions are defined.

We call such attributes interpreted . The domain of an interpreted attribute, together

with the functions and predicates defined on that domain constitute a structure to which

corresponds a first-order language. Since it is usual to refer to the predicates we will be

dealing with as “constraints”, we will refer to the first-order language of an interpreted

attribute’s domain as a constraint language or constraint theory consisting of constraint

formulas or constraints. For the simplicity of the presentation, let us assume that the

database only contains one (universal) relation r and let us ignore the noninterpreted

attributes. In this context, it is natural to generalize the notion of equality-generating

dependency [6]. Rather than specifying the propagation of equality constraints, we write

similar statements involving arbitrary constraints (i.e., arbitrary formulas in the theory of

the data domain). Specifically, we define constraint-generating k-dependencies as follows

(the constant k specifies the number of tuples the dependency refers to).

Definition 2.1 Given a relation r, a constraint-generating k-dependency over r (with

k ≥ 1) is a first-order formula of the form

(∀t1) · · · (∀tk)
[

[

r(t1) ∧ · · · ∧ r(tk) ∧ C[t1, . . . , tk]
]

⇒ C ′[t1, . . . , tk]
]
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where C[t1, . . . , tk] and C ′[t1, . . . , tk] denote arbitrary constraint formulas relating the

values of various attributes in the tuples t1, . . . , tk. There are no restrictions on these

formulas, they can include all constructs of the constraint theory under consideration, in-

cluding constants and quantification on the constraint domain. For instance, a constraint

C[t1, t2] could be ∃z(t1[A] < z ∧ z < t2[A] < a).

Note that we have defined constraint-generating dependencies in the context of a single

relation, but the generalization to several relations is immediate.

Constraint-generating 1-dependencies as well as constraint-generating 2-dependen-

cies are the most common. Notice that functional dependencies are a special form of

constraint-generating 2-dependencies. Constraint-generating dependencies can naturally

express a variety of arithmetic integrity constraints. The following examples illustrate

their definition and show some of their potential applications.

Example 2.1 In [23], an exhaustive taxonomy of dependencies that can be imposed on

a temporal relation is given. Of the more than 30 types of dependencies that are defined

there, all but 4 can be written as constraint-generating dependencies. These last 4 require

a generalization of tuple-generating dependencies [6] (see Section 5).

In temporal databases, two basic temporal dimensions have been identified: valid

time (the time when an event happened in the real world) and transaction time (the

time when an event was recorded in the database). Thus, consider a relation r(tt, vt)

with two temporal attributes: valid time (vt) and transaction time (tt). The property

“an event can only be recorded when it happens or within c time instants afterwards” is

called “r being strongly retroactively bounded with bound c ≥ 0” [23]. This property is

expressed as the constraint-generating 1-dependency

(∀t1)
[

r(t1) ⇒ [(t1[tt] ≤ t1[vt] + c) ∧ (t1[vt] ≤ t1[tt])]
]

.

Another property, “there are no updates to the past,” is called “r being globally

nondecreasing” [23]. It is expressed as the constraint generating 2-dependency

(∀t1)(∀t2)
[

[r(t1) ∧ r(t2) ∧ (t1[tt] < t2[tt])] ⇒ (t1[vt] ≤ t2[vt])
]

.
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Example 2.2 Let us consider a relation emp(name, boss , salary). Then the fact that an

employee cannot make more than her boss is expressed as

(∀t1)(∀t2)
[

[emp(t1) ∧ emp(t2) ∧ (t1[boss ] = t2[name])] ⇒ (t1[salary ] ≤ t2[salary ])
]

.

3 Decision Problems for Constraint-Generating De-

pendencies

There are two basic decision problems for constraint-generating dependencies.

• Implication: Does a finite set of dependencies D imply a dependency d0?

• Consistency : Does a finite set of dependencies D have a non-trivial model, that is,

is D true in a nonempty relation?

The implication problem is a classical problem of database theory. Its practical moti-

vation comes from the need to detect redundant dependencies, that is, those that are

implied by a given set of dependencies. It is also the basis for proving the equivalence of

dependency sets, and consequently for finding covers with desirable properties, such as

minimality. The consistency problem has a trivial answer for uninterpreted dependencies:

every set of equality- and tuple-generating dependencies has a 1-element model. How-

ever, even a single constraint-generating dependency may be inconsistent, as illustrated

by

(∀t)[r(t) ⇒ t[1] < t[1]].

We only study the implication problem since the consistency problem is its dual: a set

of dependencies D is inconsistent if and only if D implies a dependency of the form:

(∀t)[r(t) ⇒ C]

where C is any unsatisfiable constraint (we assume the existence of at least one such

unsatisfiable constraint formula).

The result we prove in this section is that the implication problem for constraint-

generating dependencies reduces to the validity problem for a formula in the underlying
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constraint theory. Specific dependencies and theories will be considered in Section 4, and

the corresponding complexity results provided. The reduction proceeds in three steps.

First, we prove that the implication problem is equivalent to the implication problem

restricted to finite relations of bounded size. Second, we eliminate from the implication

to be decided the second-order quantification (over relations). Third, we eliminate the

first-order quantification (over tuples) from the dependencies themselves and replace it

by quantification over the domain – a process that we call symmetrization. This gives us

the desired result.

3.1 Statement of the Problem and Notation

Let r denote a relation with n interpreted attributes. Let d0, d1, . . . , dm denote constraint-

generating k-dependencies over the attributes of r. The value of k does not need to be

the same for all di’s. We denote by k0 the value of k for d0.

The dependency implication problem consists in deciding whether d0 is implied by the

set of dependencies D = {d1, . . . , dm}. In other words, it consists in deciding whether d0

is satisfied by every interpretation that satisfies D, which can be formulated as

(∀r)
[

r |= D ⇒ r |= d0

]

, (1)

where D stands for d1 ∧ · · · ∧ dm. We equivalently write (1) as

(∀r)
[

D(r) ⇒ d0(r)
]

when we wish to emphasize the fact that the dependencies apply to the tuples of r.

3.2 Towards a Decision Procedure

3.2.1 Reduction to k-tuple Relations

The following three lemmas establish that when dealing with constraint-generating k-

dependencies, it is sufficient to consider relations of size2 k. Their proofs are straightfor-

ward.

2In what follows, we consider relations as multisets rather than sets. This has no impact on the

implication problem, but simplifies our procedure, starting with Lemma 3.1.
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Lemma 3.1 Let d denote any constraint-generating k-dependency. If a relation r does

not satisfy d, then there is a relation r′ of size k that does not satisfy d. Furthermore, r′

is obtained from r by removing and/or duplicating tuples.

Lemma 3.2 If a relation r satisfies a set of constraint-generating k-dependencies D =

{d1, . . . , dm} and does not satisfy a constraint-generating k0-dependency d0, then there is

a relation r′ of size k0 that satisfies D but does not satisfy d0.

Lemma 3.3 Consider an instance (D, d0) of the dependency implication problem where

d0 is a constraint-generating k0-dependency. The dependency d0 is implied by D over all

relations if and only if it is implied by D over relations of size k0; i.e., (∀r)
[

r |= D ⇒

r |= d0

]

iff (∀r′)
[

|r′| = k0 ⇒
[

r′ |= D ⇒ r′ |= d0

]]

.

The above lemmas generalize properties of uninterpreted dependencies.

3.2.2 Second-order Quantifier Elimination

By Lemma 3.3, in order to decide the implication problem, we just need to be able to

decide this problem over relations of size k for a given k. Deciding the implication (1)

thus reduces to deciding

(∀r′)
[

[|r′| = k ∧ D(r′)] ⇒ d0(r
′)

]

. (2)

Let r′ = {tx1
, . . . , txk

} denote an arbitrary relation of size k where tx1
, . . . , txk

are arbi-

trary tuples. We can eliminate the (second-order) quantification over relations from the

implication (2) and replace it with a quantification over tuples (that is, over vectors of

elements of the domain). We get

(∀tx1
) · · · (∀txk

)
[

D({tx1
, . . . , txk

}) ⇒ d0({tx1
, . . . , txk

})
]

. (3)

3.2.3 Symmetrization

Next, we simplify the formula (3), whose validity is equivalent to the constraint depen-

dency implication problem, by eliminating the quantification over tuples that appears

within the dependencies of D ∪ {d0}. We refer to this quantifier elimination procedure
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for dependencies as symmetrization. For the sake of clarity, we present the details of

the symmetrization process for the case where all dependencies are 1-dependencies or 2-

dependencies and where d0 is a 2 dependency, which implies that the implication problem

can be solved over relations of size 2, i.e. k = 2. The process can be extended directly

to the more general case.

For the case where k = 2, the formula (3) to be decided is the following.

(∀tx)(∀ty)
[

D({tx, ty}) ⇒ d0({tx, ty})
]

.

We can simplify this formula further by eliminating the quantification over tuples that

appears in the dependencies d({tx, ty}) in D ∪ {d0}. Every such dependency d({tx, ty})

can indeed be rewritten as a constraint formula cf2(d) in the following manner (the

subscript 2 in cf2 recalls the fact that we are applying symmetrization in the context of

a reduction to implication over 2-tuple relations).

1. Let d be a 1-dependency, that is, d is of the form (∀t)
[

[r′(t) ∧ C[t]] ⇒ C ′[t]
]

. This

dependency considered over r′ = {tx, ty} is equivalent to the constraint formula

cf2(d) :
[

C[tx] ⇒ C ′[tx]
]

∧
[

C[ty] ⇒ C ′[ty]
]

,

which is a conjunction of k = 2 constraint implications. Notice that the tx and ty

appearing in this formula are just tuples of variables ranging over the domain of

the constraint theory of interest.

2. Let d be a 2-dependency, that is, d is of the form

(∀t1)(∀t2)
[

[r′(t1) ∧ r′(t2) ∧ C[t1, t2]] ⇒ C ′[t1, t2]
]

.

This dependency considered over r′ = {tx, ty} is equivalent to the constraint formula

cf2(d) :
[

C[tx, ty] ⇒ C ′[tx, ty]
]

∧
[

C[ty, tx] ⇒ C ′[ty, tx]
]

∧
[

C[tx, tx] ⇒ C ′[tx, tx]
]

∧
[

C[ty, ty] ⇒ C ′[ty, ty]
]

,

which is a conjunction of kk = 4 constraint implications.

The rewriting of d as cf2(d) is what we call the symmetrization of d, for rather ob-

vious reasons. It extends directly to any value of k. Notice that for a given k, any

j-dependency d is rewritten as a constraint formula cfk(d), which is a conjunction of
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kj constraint implications. Interestingly, in the case of functional dependencies, sym-

metrization degenerates and produces only a single constraint implication. This is due to

the fact that the underlying constraints are equalities, which are already symmetric, and

to the special form of functional dependencies. Hence, in that special case, besides trivial

formulas, symmetrization would only produce multiple instances of the same constraint

formula.

Applying the symmetrization process to all the dependencies appearing in the for-

mula (3), we get

(∀tx1
) · · · (∀txk

)
[

cfk(d1) ∧ · · · ∧ cfk(dm) ⇒ cfk(d0)
]

. (4)

Notice that in formula (4), each tuple variable can be replaced by n domain variables, and

thus the quantification over tuples can be replaced by a quantification over elements of

the domain. For the sake of clarity, we simply denote by (∀∗) the adequate quantification

over elements of the domain (the universal closure). Formula (4) thus becomes

(∀∗)
[

cfk(d1) ∧ · · · ∧ cfk(dm) ⇒ cfk(d0)
]

, (5)

where each cfk(d) is a conjunction of kj constraint implications if d is a j-dependency

and d0 is a k-dependency. Thus, we have proved the following theorem.

Theorem 3.4 For constraint-generating k-dependencies, with bounded k, the implica-

tion problem is linearly reduced to the validity of a universally quantified formula of the

constraint theory.

Example 3.1 Let us consider the following constraint-generating 2-dependencies over a

relation r with a single attribute.

d1 : (∀x)(∀y)
[

r(x) ∧ r(y) ⇒ x ≤ y
]

d2 : (∀x)(∀y)
[

r(x) ∧ r(y) ⇒ x = y
]

Symmetrizing them produces the following constraint formulas.

cf2(d1) : x ≤ y ∧ y ≤ x ∧ x ≤ x ∧ y ≤ y

cf2(d2) : x = y ∧ y = x ∧ x = x ∧ y = y

It is clear that these two constraint formulas are equivalent, as they should be.

We should point out that the implication problem for constraint-generating dependen-

cies requires moving beyond purely Horn reasoning, as should be clear from the following

example.
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Example 3.2 Consider the following dependencies over a relation r with two attributes

A and B.

d3 : (∀t1)(∀t2)
[

[r(t1) ∧ r(t2) ∧ t1[A] ≤ t2[A]] ⇒ t1[B] = t2[B]
]

d4 : (∀t1)(∀t2)
[

[r(t1) ∧ r(t2) ∧ t1[A] ≥ t2[A]] ⇒ t1[B] = t2[B]
]

d5 : (∀t1)(∀t2)
[

[r(t1) ∧ r(t2)] ⇒ t1[B] = t2[B]
]

The set {d3, d4} implies d5 because the set of formulas (implications)

{

t1[A] ≤ t2[A] ⇒ t1[B] = t2[B], t1[A] ≥ t2[A] ⇒ t1[B] = t2[B]
}

implies t1[B] = t2[B]. But this conclusion requires a type of reasoning that can handle

case analysis, which is beyond the scope of Horn reasoning.

4 Complexity Results

4.1 Clausal dependencies

In this section, we study the complexity of the implication problem for some classes

of constraint-generating dependencies occurring in practice, in particular dependencies

with equality, order, and arithmetic constraints. We restrict our attention to atomic

constraints and clausal dependencies as defined below.

Definition 4.1 An atomic constraint is a formula consisting of an interpreted predicate

symbol applied to terms. A clausal formula is a conjunction of disjunctions of atomic

constraints. A clausal constraint-generating dependency is a constraint-generating de-

pendency such that the constraint in the antecedent is a conjunction of atomic constraints

and the constraint in the consequent is an atomic constraint.

Notice that a constraint-generating dependency in which the constraint in the an-

tecedent and the constraint in the consequent are both conjunctions of atomic constraints

can be rewritten as a set of clausal constraint-generating dependencies (by decomposing

the conjunction in the consequent). Essentially all the dependencies mentioned in [23]

can be written in clausal form.
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Moreover, we assume that the constraint language is closed under negation, i.e., the

negation of an atomic constraint of the language is also a basic predicate of the con-

straint language.3 This is again satisfied by many examples of interest, the most notable

exception being the class of functional dependencies. We start our study with classes of

k-dependencies for fixed values of k (mainly k = 2). This makes it possible to contrast

our results with the results about functional dependencies which are 2-dependencies and

for which the implication problem can be solved in O(n). We then examine how letting

k vary impacts our results.

We proceed by reducing clausal dependency implication to unsatisfiability of clausal

formulas. More precisely, we negate the result of the symmetrization (i.e., formula 5) to

obtain

(∃∗)
[

cfk(d1) ∧ · · · ∧ cfk(dm) ∧ ¬cfk(d0)
]

. (6)

For a clausal k-dependency d0, cfk(d0) is a conjunction of kk clauses of the size of d0.

Thus ¬cfk(d0) is a disjunction of kk conjunctions. We thus split formula (6) into kk

formulas of the form

Ψ = (∃∗)
[

∧

i

(

∨

j

(cij

)]

, (7)

where each cij is an atomic constraint and where, if |D| = m, the number of clauses is

at most equal to m · kk plus the number of constraints in d0. The number of literals in

each clause is equal to the number of atomic constraints in the dependencies of D, or

to 1 for the clauses obtained from the decomposition of d0. Thus deciding the validity

of the implication problem for k-dependencies (k fixed) can be done by checking the

unsatisfiability of kk conjunctions of clauses of length that is linear in the size of D∪{d0}.

We can replace the variables in the constraint formulas by the corresponding Skolem

constants and view the formulas Ψ as ground formulas.

The opposite LOGSPACE reduction, from unsatisfiability of clausal formulas to im-

plication, also exists and requires only 1-dependencies. Assume we are given a clausal

formula of the constraint language

Ψ =
∧

1≤i≤p

(

∨

1≤j≤qi

(cij

)

over n variables x1, . . . , xn. We construct a set of clausal dependencies DΨ in the following

way: for every conjunct
∨

1≤j≤qi
(cij), 1 ≤ i ≤ p of Ψ, DΨ contains a dependency di of the

3Note that in this context, the distinction between positive and negative atomic constraints is

meaningless.
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form

r(x1, . . . , xn),¬ci,1, . . . ,¬ci,qi−1 ⇒ ci,qi
.

Note that since the constraint theory is closed under negation, the negations of atomic

constraints are also atomic constraints. Finally, the dependency d0 is chosen to be

r(x1, . . . , xn) ⇒ A

where A is any unsatisfiable constraint in the domain theory. Clearly, Ψ is unsatisfiable

iff DΨ implies d.

4.2 Equality and order constraints

We consider here atomic constraints of the form xθy where θ ∈ {=, 6=, <,≤} over integers,

rationals, or reals.4 This constraint language has two sublanguages closed under negation

which we also study: {=, 6=}-constraints and {<,≤}-constraints. We make the additional

assumption that no domain constants appear in the dependencies. (If this assumption

is not satisfied, the complexity usually shifts up. For example, in Theorem 4.1 the first

case becomes co-NP-complete for the integers by the results of [34].) Finally, our results

assume that we are dealing with k-dependencies for a fixed k, but that the database

schema, i.e. the number of attributes and hence the number of available variables in

k-dependencies, can vary.

Theorem 4.1 The implication problem for clausal constraint-generating k-dependencies

is:

1. in PTIME for dependencies with one atomic {=, 6=, <,≤}-constraint (no constraints

in the antecedent),

2. co-NP-complete for dependencies with two or more atomic {=, 6=}-constraints,

3. co-NP-complete for dependencies with two or more atomic {<,≤}-constraints.

Proof: The first result follows from [42, page 892]. (For recent efficient algorithms

for this problem, see [38, 20].) The membership in co-NP for the two remaining cases

4In fact, our lower bounds hold for any infinite linearly-ordered set.
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follows from the fact that checking the satisfiability of a conjunction of equality and order

constraints can be done in polynomial time.

To prove the lower bounds, we reduce an NP-complete problem to satisfiability of a

set of ground clauses with at most two literals corresponding to the formula Ψ in equa-

tion (7) above. This reduction is then composed with the reduction from unsatisfiability

to dependency implication.

For {=, 6=}-constraints, we use a reduction from GRAPH-3-COLORABILITY. For a

graph with n vertices, we need 2n + 2 Skolem constants: a, b, a1, . . . , an, b1, . . . , bn. The

idea is to use the pair (ai, bi) to encode the color of the vertex i: (a, a) stands for 1, (a, b)

for 2, and (b, a) for 3. For every vertex i, we have the following clauses: (ai = a∨ai = b),

(bi = a ∨ bi = b), and (ai = a ∨ bi = a). For every edge (i, j), we have the clause

(ai 6= aj ∨ bi 6= bj). Finally, there is a clause a 6= b.

For {<,≤}-constraints, we use a reduction from BETWEENNESS [14, page 279]:

given a finite set A (of n elements) and a collection S of ordered triples (a, b, c) of distinct

elements from A, determine whether there is a 1-1 function f : A → {1, . . . , n} such that

for each (a, b, c) ∈ S, we have either f(a) < f(b) < f(c) or f(c) < f(b) < f(a).

The set A is represented as the set of indices {1, . . . , n} and the collection S ac-

cordingly. The Skolem constants are: a1, . . . , an. For every i 6= j, we have the clause

(ai < aj ∨aj < ai) to encode that f is 1-1. For every (i, j, ℓ) ∈ S, we have (ai < aj ∧aj <

aℓ)∨ (aℓ < aj ∧ aj < ai). The last formula can be rewritten as four 2-literal clauses. This

reduction encodes a 1-1 function from A onto {x1, . . . , xn}, an n-element subset of the

domain. Because the domain is linearly ordered, a 1-1 function f from A to {1, . . . , n}

can be defined as

f(i) = index of xi in {x1, . . . , xn}.

Note that it is enough for f to be uniquely defined. It may be the case that the con-

struction of f itself is very hard, possibly even non-recursive, for some linearly-ordered

domains.

Notice that we only use two literals per clause, whereas a propositional encoding

of these problems would require three literals per clause. Notice also that we have been

assuming infinite domains. For finite domains of size greater than 2, the implication prob-

lem is co-NP-complete even for dependencies with one atomic constraint. For domains

of size 2, the implication is in PTIME by an easy reduction to 2-SAT.
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The above results are rather negative. To obtain more tractable classes, we propose

to further restrict the syntax of dependencies by typing.

Definition 4.2 A clausal dependency is typed if each atomic constraint involves only

the values of one given attribute in different tuples.

The second dependency in Example 2.1 of Section 2 (i.e., the property of r being “globally

nondecreasing”) is typed, while the first one (the property of r being “strongly retroac-

tively bounded”) and the dependency of Example 2.2 are not. Functional dependencies

are also typed.

Notice that for typed dependencies, the reduction from unsatisfiability to dependency

implication given above is not useful for obtaining lower bounds. Indeed, it reduces unsat-

isfiability to implication of 1-dependencies which are not typed. Furthermore, this reduc-

tion cannot in general be adapted to yield typed 2-dependencies. Indeed, because of the

symmetrization procedure, the constraint problem obtained from typed 2-dependencies

has a particular symmetric structure (for 1-dependencies, there is no symmetrization).

The question thus is whether this symmetric structure is sufficient for lowering the com-

plexity of the constraint problem that has to be solved. As shown in the following

theorem, the answer is fortunately positive.

Theorem 4.2 The implication problem for typed clausal constraint-generating 2-depen-

dencies with at most two atomic {=, 6=, <,≤}-constraints is in PTIME (O(n)).

Proof: A typed 2-dependency is of the form

(∀tx)(∀ty)
[

[r(tx) ∧ r(ty) ∧ (tx[i] predℓ ty[i])] ⇒ (tx[j] predr ty[j])
]

(8)

where each of predℓ and predr is one of {=, 6=, <,≤}. By Lemma 3.3, the implication

problem for typed 2-dependencies coincides with the implication problem over 2-tuple

relations. The remaining steps of the reduction given in Section 3 show how this impli-

cation can be reduced to a pure constraint problem. However, since we need to take into

account the specific nature of the constraint problem obtained for typed 2-dependencies,

our starting point for the proof of this theorem is further upstream. We consider the

problem of deciding whether for a typed 2-dependency d0 and a set D of dependencies

of the same kind, D |= d0 over 2-tuple relations, or equivalently whether D ∧ ¬d0 is un-

satisfiable over 2-tuple relations. We give a PTIME algorithm for deciding satisfiability

(and hence unsatisfiability) over 2-tuple relations of D ∧ ¬d0.

15



Among the predicates in {=, 6=, <,≤}, we distinguish the set eq-pred : {=,≤}, and

the set diff-pred : {6=, <}. The intuition is that members of eq-pred can be satisfied when

their arguments are equal, whereas members of diff-pred cannot be satisfied in that case.

This allows us to define four classes of constraint dependencies:

eq-pred ⇒ eq-pred (9)

eq-pred ⇒ diff-pred (10)

diff-pred ⇒ eq-pred (11)

diff-pred ⇒ diff-pred (12)

Notice that (10) and (11) are self-contrapositives, whereas (9) and (12) are each other’s

contrapositives. We thus only need one of the latter two categories and choose to keep

(12). Furthermore, all dependencies of the form (10) are unsatisfiable (over nonempty

relations). Indeed, if in (8) one chooses tx = ty, then (tx[i] eq-pred tx[i]) is true whereas

(tx[j] diff-pred ty[j]) has to be false and the implication is false. Thus, if such a depen-

dency occurs in D, this set is trivially unsatisfiable and we can assume without loss of

generality that D only contains dependencies of the forms (11) and (12). Similarly, if d0

is of the form (10), ¬d0 is valid and, since D is always satisfiable by a one tuple relation if

it does not contain dependencies of the form (10), D∧¬d0 is satisfiable. We can thus also

assume without loss of generality that d0 is either of the form (11) or of the form (12).

Since the dependencies are typed, each dependency d involves two attributes of the

relation r which we refer to as ld (the one on the left of the implication) and rd (the one

on the right of the implication). We are looking for a 2-tuple model of D ∧ ¬d0. The

first step of the procedure is to partition the attributes of the relation r into the set of

those that must have a different value in the two tuples of the relation and those that

may have the same value. We call the first diff -attributes and the second eq-attributes.

The set DA of diff -attributes is obtained by the following procedure.

The initial extension of DA is obtained from d0. If d0 is of the form diff-pred ⇒

eq-pred , then DA initially contains both ld0
and rd0

; whereas if d0 is of the form diff-pred ⇒

diff-pred , then initially DA = {ld0
}. One then repeatedly applies the following step until

saturation: if there is a dependency d of the form diff-pred ⇒ diff-pred such that the

attribute ld is in DA, then the attribute rd is added to DA. This procedure is similar to

the one computing the closure of a set of attributes under a set of functional dependen-

cies and hence can be implemented in linear time. From now on, let DA be the set of

attributes obtained by this procedure.

16



A direct consequence of the way in which DA is constructed is that any 2-tuple model

in which both tuples give the same value to some attributes in DA cannot satisfy D∧¬d0.

Furthermore, we claim that if D ∧ ¬d0 has a 2-tuple model, it has a 2-tuple model in

which all attributes in DA have different values in the two tuples; and all attributes

not in DA have the same value in both tuples. To prove this, assume there is a model

and give an arbitrary identical value in both tuples to the attributes not in DA. Since

dependencies of the form 12 cannot have their attribute rd out of DA without also having

their attribute ld out of DA, this can only change the truth value of the dependencies in

D and of ¬d0 from false to true, and hence we still have a model.

Thus, in order to find a model for D ∧ ¬d0, it is sufficient to find values for the at-

tributes in DA. We know that these values have to be different and, given the restrictions

on the theory we are working within, the only relevant property of these values is their

order (which one is smaller than the other). Let us call the two possible orders u (up)

and d (down). The choice between u and d for each attribute i can be encoded by one

boolean proposition u[i] (true if the order for i is u, false if it is d). The problem thus

is to find truth values for the propositions u[i] in such a way that they define a model of

D ∧ ¬d0.

To do this, we encode the conditions imposed by the dependencies referring to at-

tributes that are both in DA. Indeed, for dependencies in D (and for ¬d0), if one of the

atomic constraints does not refer to an attribute in DA, the dependency (¬d0) is satisfied

whatever the order chosen for the attributes.

We construct the constraints on the propositions u for dependencies in positive form

as they appear in D. For ¬d0, one applies the construction to d0 and negates the result.

There are 9 cases of dependencies of the form diff-pred ⇒ diff-pred :

6= ⇒ 6= (13)

6= ⇒ < (14)

6= ⇒ > (15)

< ⇒ 6= (16)

< ⇒ < (17)

< ⇒ > (18)

> ⇒ 6= (19)

> ⇒ < (20)

> ⇒ > (21)

Cases 13, 16, and 19 translate to true (we have imposed that attributes in DA have

different values in both tuples). Cases 14 and 15 are always unsatisfiable (by symmetry)

and thus translate to the constraint false. Cases 17 and 21 translate to

(u[ld] ⇒ u[rd]) ∧ (¬u[ld] ⇒ ¬u[rd]) ,
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whereas cases 18 and 20 translate to

(u[ld] ⇒ ¬u[rd]) ∧ (¬u[ld] ⇒ u[rd]) .

There are also 9 cases of dependencies of the form diff-pred ⇒ eq-pred :

6= ⇒ = (22)

6= ⇒ ≤ (23)

6= ⇒ ≥ (24)

< ⇒ = (25)

< ⇒ ≤ (26)

< ⇒ ≥ (27)

> ⇒ = (28)

> ⇒ ≤ (29)

> ⇒ ≥ (30)

Cases 22, 23, 24, 25, and 28 are contradictory and translate to false. Cases 26 and 30

translate as 17 and 21 and, similarly, 27 and 29 are translated as 18 and 20.

The result of this encoding is a set of Boolean clauses with at most two literals per

clause. Deciding if it is satisfiable can thus be done with the 2-SAT procedure which is

in PTIME (O(n)) [1].

Theorem 4.3 The implication problem for typed clausal constraint-generating 2-depen-

dencies is:

1. co-NP-complete for dependencies with three or more atomic {=, 6=}-constraints,

2. co-NP-complete for dependencies with three or more atomic {<,≤}-constraints.

Proof: Proving the lower bounds in the typed case is more difficult than in Theorem

4.1 because the reverse reduction, from unsatisfiability of ground clauses to dependency

implication that uses 1-dependencies, is not available. We can continue, however, to work

with ground clauses as in the proof of Theorem 4.1 provided the clauses can be mapped

back to typed 2-dependencies.

The proofs in both cases involve a reduction from SET SPLITTING [14, page 221]:

given a collection S of 3-element subsets of a finite set U , determine whether there is

a disjoint partition of U into two sets A and U − A such that no set in S consists of

elements only from A or only from U − A.

The proof thus proceeds in two steps. We first reduce SET SPLITTING to a collection

of ground clauses C; then we show how to construct an instance of the implication
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problem D |= d0 for typed 2-dependencies such that the set of clauses Ψ (see formula 7)

obtained for this instance is equisatisfiable with C.

Let us consider first {=, 6=}-constraints. We let U = {x1, . . . , xn}. We use 2n Skolem

constants a1, . . . , an, b1, . . . , bn, and for i = 1, . . . , n, we represent the fact that xi is in A

by ai = bi and the opposite situation by ai 6= bi. Now, for every set in S consisting of xi,

xj, and xk (at most three elements), we have the following two clauses.

ai = bi ∨ aj = bj ∨ ak = bk (31)

ai 6= bi ∨ aj 6= bj ∨ ak 6= bk (32)

The resulting set of clauses is satisfiable iff U has the desired partition. We have to

check now whether the above clauses can be obtained as a result of the symmetrization

procedure.

Let us assume that we deal with a relation r with n attributes and that we use Skolem

constants a1, . . . , an for the variables referring to elements of the first tuple, and Skolem

constants b1, . . . , bn for the variables referring to elements of the second tuple used in

the symmetrization procedure. A clause such as (31) is what is obtained from a typed

dependency in D of the form:

(∀tx)(∀ty)
[

[r(tx) ∧ r(ty) ∧ (tx[i] 6= ty[i]) ∧ (tx[j] 6= ty[j])] ⇒ (tx[k] = ty[k])
]

.

However, a clause such as (32) can only be obtained by considering D and d0 together.

It cannot be obtained by symmetrizing a single dependency d ∈ D alone, because we

would also obtain an unsatisfiable clause by instantiating tx and ty to the same tuple.

The idea is to cook up clauses of the form (32) from other “good” clauses. We need

the following ingredient clauses. (There is one new pair of Skolem constants am and bm

for each clause of the form (32), and a single pair of new Skolem constants ap and bp that

can be shared among all ingredient clauses.)

ai 6= bi ∨ am 6= bm ∨ ap = bp (33)

ap 6= bp (34)

am = bm ∨ aj 6= bj ∨ ak 6= bk (35)

The restriction of every valuation that makes the set of ingredient clauses true makes

also (32) true. And vice versa: every valuation that makes (32) true can be extended to

a valuation that makes the set of ingredient clauses true.
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It remains to be shown how to get the ingredient clauses. If there are k clauses of the

form (32), we consider a relation with n + k + 1 attributes. The ingredient clauses of the

form (33) and (35) are not problematic because they can be obtained by including the

appropriate functional dependencies in D. The ingredient clause (34) is obtained from the

negation of cf (d0), where d0 is the dependency (∀tx)∀ty)
[

[r(tx) ∧ r(ty)] ⇒ tx[p] = ty[p]
]

.

Let us consider now {<,≤}-constraints. We represent the fact that xi is in A by

ai < bi and the opposite situation by bi < ai. Now, for every set in S consisting of xi, xj,

and xk (at most three elements), we have the following clauses.

ai ≤ bi ∨ aj ≤ bj ∨ ak ≤ bk (36)

bi ≤ ai ∨ bj ≤ aj ∨ bk ≤ ak (37)

Additionally we force ai and bi, for all i, to be not equal by the clause

ai 6= bi. (38)

The resulting set of clauses is satisfiable iff U has the desired partition. The clauses (36)

and (37) are obtained directly from constraint dependencies. Inequality constraints (38)

are manufactured as follows. First, notice that every unary functional dependency can

be represented as a set of typed 2-dependencies with three {<,≤}-constraints. From

such a functional dependency, we can obtain a set of clauses that is equivalent to (ai 6=

bi ∨ am = bm), for some new Skolem constants am and bm. These clauses together with

am 6= bm yield the effect of having the clause ai 6= bi. The clause am 6= bm can be obtained

from ¬cf (d0) as in the previous proof (using ≤ instead of = yields the same dependency

because of the symmetry).

It should be clear that the size of the set of constraints C and the corresponding sets

of constraint dependencies are polynomial in the size of the instance of SET SPLITTING

and can be obtained in LOGSPACE for both constraint languages considered.

Theorem 4.2 yields a new class of dependencies with a tractable implication problem.

This class properly contains that of unary functional dependencies and is incompara-

ble with the class of all functional dependencies. Together, Theorems 4.1, 4.2 and 4.3

give a complete classification of tractable and intractable classes of untyped and typed

2-dependencies with {=, 6=, <,≤}-constraints. The case of typed k-dependencies (k > 2)

with two {=, 6=, <,≤}-constraints is open. (The implication problem for such dependen-

cies with three constraints is clearly co-NP-complete by Theorems 4.1 and 4.3.)
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4.3 Linear arithmetic constraints

We consider now linear arithmetic constraints, i.e., atomic constraints of the form a1x1 +

· · ·+ akxk ≤ a (domain constants are allowed here). We can use here directly the results

about the complexity of linear programming [35].

Theorem 4.4 For linear arithmetic constraints, the implication problem for clausal con-

straint-generating k-dependencies with one atomic constraint per dependency is in PTIME

for the reals, and co-NP-complete for the integers.

Proof: It is easy to see that the formula 7 represents in this case a linear programming

problem.

4.4 The impact of k on the complexity

It is quite natural to ask what our complexity results would become if one allowed k

to vary. The question is mostly of theoretical interest (it is hard to think of naturally

occurring dependencies that are not 2- or 3-dependencies), but leads to interesting ob-

servations.

Let us first see what impact letting k vary has on our PTIME results for clausal

dependencies. In Theorem 4.1 case 1, the dependencies must be at most 2-dependencies

since they each involve only one binary predicate. The same result thus trivially holds

when k is allowed to vary. Theorem 4.2 is not just restricted to a fixed k, but to 2-

dependencies. Letting k be part of the input rather than a fixed parameter thus makes

no sense in this case. Finally, in the case of linear arithmetic constraints over the reals,

letting k vary leads to a linear programming problem of size that is exponential in k

and the PTIME result thus fails in this case, even for dependencies with a single atomic

constraint.

In the construction we have given, k clearly has an exponential impact on the size

of the constraint problem to be solved. So, it is natural to expect that in the cases

where k is allowed to vary, the complexity would shoot up by one exponential, e.g. from

NP to NEXPTIME. Fortunately, the situation is not that bad. After the second order

quantifier elimination, we have to solve a ∀ ∗ ∃∗ constraint validity problem. Indeed,

the elimination of the quantification on relations introduces a universal quantification
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on domain elements and the quantification on tuples within the dependencies becomes

existential since it is negated by the implication. Our costly symmetrization step thus

aims at reducing a ∀ ∗ ∃∗ constraint validity problem to a ∀∗ validity problem, which

in the cases we consider is in co-NP. Furthermore, in the case of order constraints, this

quantifier elimination can be achieved much more efficiently as described in [27]. This

implies that letting k vary only moves up the complexity one level up in the polynomial

hierarchy, i.e. from co-NP to ΠP
2
.

5 Conclusions and Related Work

A brief summary of this paper is that constraint-generating dependencies are an inter-

esting concept, and that deciding implication of such dependencies is basically no harder

than deciding the underlying constraint theory, which, a priori, was not obvious. The

obvious applications of constraint-generating dependencies are constraint database de-

sign theory and consistency checking. Apart from the constraint languages considered

in this paper, other languages may be relevant as well, for instance the congruence con-

straints that appear in [23, 24]. Also, the impact that the presence of domain constants

in equality and order constraints has on the complexity of implication should be fully

studied.

As far as related work, we should first mention that Jensen and Snodgrass [23] induced

us to think about constraint dependencies. We should note that the integrity constraints

over temporal databases postulated there involve both typed and untyped constraint-

generating dependencies, as well as tuple-generating ones.

Two other relevant papers on implication constraints by Ishakbeyoǧlu, Ozsoyoǧlu and

Zhang [22, 44], as well as a paper on efficient integrity checking by Gupta, Sagiv, Ullman,

and Widom [21] contain work fairly close to ours. However, there are several important

differences. Foremost, all three papers discuss a fixed language of constraint formulas,

namely equality (=), inequality (6=), and order (<,≤) constraints, while our results are

applicable to any decidable constraint theory thanks to our general reduction strategy.

In particular, the papers [44, 21], which were written independently of the first version

of this paper, both present results equivalent to our Theorem 3.4, but formulated in

the context of a fixed constraint language. Also, the proof techniques in those papers,

based on the theory of conjunctive queries, are quite different from ours. Moreover, the

complexity results of [44] are obtained in a slightly different model. Both the number
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of database literals and the arity of relations in a dependency are considered as parts of

the input, while we consider only the latter. We think that our model is more intuitive

because it is difficult to come up with a meaningful dependency that references more

than a few tuples in a relation. Our intractability results are stronger than those of

[44] while our positive characterizations of polynomial-time decidable problems do not

necessarily carry over to the framework of [44]. Also, in [22, 44], the tractable classes

of dependencies are not defined syntactically but rather by the presence or absence of

certain types of refutations.

A clausal constraint-generating dependency (quantifiers omitted)

r(t1) ∧ · · · ∧ r(tk) ∧ C1 ∧ · · · ∧ Cn ⇒ C0

can be viewed as an integrity constraint (in the notation of [21])

panic : − r(t1) & · · ·& r(tk) & C1 & · · ·& Cn &¬C0.

Thus the implication of a dependency by a set of dependencies is equivalent to the sub-

sumption of an integrity constraint by a set of integrity constraints. Therefore the results

about the complexity of implication from Section 4 transfer directly to the context of

constraint subsumption. The paper [21] applies the results about constraint subsumption

to develop techniques for efficient integrity checking. Unfortunately, this application re-

quires introducing constants into constraints, so our complexity results, developed under

the assumption that constants do not appear in dependencies, are not applicable here,

though our general reduction is.

Order dependencies, proposed by Ginsburg and Hull [15, 16], are typed clausal 2-

dependencies over the theory of equality and order (without 6=). The order is not re-

quired to be total. Ginsburg and Hull provided an axiomatization of such dependencies

and proved that the implication problem is co-NP-complete for dependencies with at

least three constraints. To prove the lower bound they used, however, dependencies with

equality and order constraints, while we proved the lower bounds for both theories sepa-

rately (Theorem 4.3). Ginsburg and Hull also supplied a number of tractable dependency

classes which are, again, different from ours and involve mainly partial orders.

Maher [30] considered constrained extensions of functional dependencies and of finite-

ness dependencies, which may be of interest in the analysis and optimization of CLP pro-

grams. These are functional (or finiteness) dependencies that hold only of those tuples

in a relation that satisfy the given constraint. Maher addresses the implication problem
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for such constrained dependencies by providing axiomatic proof systems and algorithms

for computing the closure of a set of dependencies. In the case of constrained functional

dependencies, he proves that the implication problem is in PTIME when the constraint

theory satisfies a property called independence of negative constraints and the constraint

implication problem is solvable in PTIME. Maher’s constrained functional dependencies

are actually a special case of our constraint-generating dependencies. His PTIME com-

plexity result is obtained under different restrictive hypotheses than ours. It should be

noted that the independence of negative constraints condition is only really meaningful

in the context of equality constraints, and does not hold for constraint languages closed

under negation, such as order constraints or linear arithmetic constraints.

Other forms of constraint dependencies can also be of interest. An obvious candidate

is the concept of tuple-generating constraint dependency. in order to solve the implication

problem for such dependencies, the chase procedure needs to be appropriately general-

ized. Maher and Srivastava [31] have proposed two different generalizations of the chase

algorithm for constraint tuple-generating dependencies that are shown to be equivalent

when the constraint theory satisfies the independence of negative constraints.
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