Recognition of Homopyrimidine Mismatches by Distance-Constrained Macrocyclic bisintercalators.

Matthias Bahr¹, Valerie Gabélícia² Anton Granzhán ³, Elmar Weinhold¹ and Marie-Paule Teulade-Fichou.³

¹ Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany, ²Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, 4000 Liège, Belgium ³Institut Curie, UMR176 CNRS, Centre Universitaire, F-91405 Orsay, France.

ABSTRACT

Binding of three macrocyclic bisintercalators to mismatch-containing duplexes was analyzed by thermal denaturation experiments, electrospray mass spectrometry studies (ESI-MS) and fluorescent intercalator displacement (FID) titrations. The macrocyclic bisintercalators bind to duplexes containing mismatched thymine bases with high selectivity over the fully matched one and affinity in the submicromolar range (Kd). The FID results also demonstrate that the macrocyclic naphthalene derivative BisNP preferentially binds to pyrimidine–pyrimidine mismatches compared to all other possible base mismatches. This ligand also efficiently competes with a DNA enzyme (M.TaqI) for binding to a duplex with a TT-mismatch.

INTRODUCTION

Base mispairs can be hazardous to the cell in altering its ability to transfer the information content of DNA.¹ In particular, mismatches may result in point mutations which are potentially harmful, depending on where they occur in the genome. Consequently, every organism has evolved a variety of control and repair strategies based on complex enzymatic machineries responsible for the maintenance of DNA integrity. Therefore, studies aimed at a deeper understanding of the recognition of mismatches by repair enzymes have raised continued attention for more than a decade. Several models have been proposed to rationalize the mechanisms of mismatch recognition, but these are still poorly understood. Given the complexity of these processes the task is highly challenging and requires several approaches, such as genetic, biochemical and chemical ones. In particular, a chemical tool for studying mismatch recognition is represented by small molecules that, similar to the mismatch-recognizing enzymes, can bind base mispairs with a high selectivity over fully paired DNA. Such mismatch-binding ligands may eventually interfere with the repair systems with negative or positive consequences, leading to inhibition or promotion of repair, and thus display high therapeutic potential.

Thus, in the past decade several series of mismatch-recognizing agents have emerged. Among these are molecular systems that operate via intercalation, such as rhodium-based metalloinsertors,¹ or via bisintercalation, such as bisruthenium derivatives.² Minor groove binders such as imidazole-rich polyamides have also been shown to selectively bind to the GT mismatched sites. In another approach, we have shown that a macrocyclic bisacridine compound (BisA, Scheme 1) recognizes base-pairing defects, like abasic sites and thymine-containing mismatches, such as TT, TC and, to a lesser extent, TG-mismatched base pairs, via a putative threading bisintercalation mode.³,⁴

RESULTS AND DISCUSSION

In order to get deeper insight into the interaction of macrocyclic compounds, such as BisA, with mismatches, we carried out a systematic study aimed at the determination of structural factors that determine the binding, as well as the stoichiometric and thermodynamic parameters of the binding event. To achieve this goal, we extended the macrocyclic series by several analogues of BisA (scheme 1) and studied their mismatch-binding properties by a number of biochemical and spectroscopic methods. All tested macrocyclic ligands strongly stabilize the mismatch-containing duplexes, whereas their effect on the fully matched duplex 12-TA is much less pronounced (figure 1).

Scheme 1: Structures of macrocyclic ligands and acyclic control compounds used in this study.
CONCLUSION

Recognition of DNA mismatches is under a focus of interest as this may give clues about the initial DNA recognition event(s) triggering the complex repair process. In addition, binding of mismatches by small molecules may provide novel therapeutic alternatives to anticancer therapies. The macrocyclic family studied in the present work thus represents a new class of very efficient and selective DNA mismatch binders. Therefore, these remarkable properties make our compounds valuable candidates to further investigate potential interference with repair enzymes that directly bind mismatched DNA.

REFERENCES


*Corresponding Author. E-mail: marie-paule teulade-fichou@curie.fr