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ORIGINAL ARTICLE

Simultaneous alteration of de novo and salvage pathway to the
deoxynucleoside triphosphate pool by (E)-2?-Deoxy-
(fluoromethylene)cytidine (FMdC) and zidovudine (AZT) results
in increased radiosensitivity in vitro

PHILIPPE A. COUCKE1, ELIANE COTTIN2 & LAURENT A. DECOSTERD3

1Université de Liège, Centre Hospitalier Universitaire Vaudois, Department of Radiation Oncology, Domaine Universitaire du

Sart Tilman, Belgium, 2Laboratory of Radiation Biology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,

and 3Laboratory of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

Abstract
To test whether a thymidine analog zidovudine (�/AZT), is able to modify the radiosensitizing effects of (E)-2?-Deoxy-
(fluoromethylene)cytidine (FMdC). A human colon cancer cell line Widr was exposed for 48 hours prior to irradiation to
FMdC. Zidovudine was added at various concentrations immediately before irradiation. We measured cell survival and the
effect of FMdC, AZT and FMdC�/AZT on deoxynucleotide triphosphate pool. FMdC results in a significant increase of
radiosensitivity. The enhancement ratios (ER�/surviving fraction irradiated cells/surviving fraction drug treated and
irradiated cells), obtained by FMdC or AZT alone are significantly increased by the combination of both compounds.
Adding FMdC to AZT yields enhancement ratios ranging from 1.25 to 2.26. FMdC reduces dATP significantly, with a
corresponding increase of TTP, dCTP and dGTP. This increase of TTP, dCTP and dGTP is abolished with the addition of
AZT. Adding AZT to FMdC results in a significant increase of the radiosensitizing effect of FMdC. This combination
appears to reduce the reactive enhancement of TTP, dCTP and dGTP induced by FMdC while it does not affect the
inhibitory effect on dATP.

Several chemotherapeutic compounds have been

tested to increase the response of tumor cells to

ionizing radiation. Some of these compounds inter-

act at the level of the nucleoside triphosphate

(dNTP) pool [1�4]. Perturbations of the dNTP-

pool have been shown to result in significant radia-

tion sensitization [1,5�8]. The cellular dNTP-pool

depends on de novo biosynthesis in which ribo-

nucleotide reductase (RR), dihydrofolate reduc-

tase (DHFR) and thymidylate synthetase (TS) are

key enzymes, and the salvage pathway in which

thymidine kinase (TK) plays a major role [9�12].

Hydroxyurea (HU), gemcitabine (dFdC) and

more recently (E)-2?-Deoxy-(fluoromethylene) cyti-

dine (FMdC) are known to act as inhibitors of

RR. All those compounds have been shown to be

able to sensitize tumor cells to ionizing radiation

both in vitro and in vivo [1,8,11�22].

Inhibitors of RR are able to modify the pool of

dNTP. The change in the pool, especially the low-

ering of the dATP, will result in a modification of the

activity of the salvage pathway especially at the level

of TK. One might expect a reactive increase of

thymidine incorporation, resulting from an increased

activity of thymidine kinase (feedback loop on the

salvage pathway) [1,21,23,24]. Hence, we decided

to investigate whether, the radiosensitizing effect

observed after alteration of the de novo pathway by

FMdC, could be further modified through mani-

pulation of the salvage pathway, i.e. by presenting an

analog of thymidine to TK. The purpose of the

salvage pathway is to provide the cell with a low

supply of deoxynucleotides (e.g., for DNA repair)

during the time interval when the de novo synthesis is

not or less active. We used the thymidine analog

(TA) zidovudine (AZT) as this drug is known to
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interact at the level of TK and is widely used in

clinical practice as an inhibitor of reverse transcrip-

tase in the treatment of HIV infection.

The combination of FMdC with a TA, aimed at

modifying both the de novo pathway and the salvage

pathway, has been tested in vitro on a human colon

cancer cell line (WiDr). We selected a colorectal

cancer cell-line because there is usually a high

proliferative capacity and hence an increased TK

activity, which is known to be a marker of presence

of human neoplasia and/or disease progression in

many cancer [12,25]. We aimed at defining whether

the addition of AZT to FMdC yields increased

radiation induced cell death as compared to FMdC

alone and whether there is any more change in the

NTP and dNTP levels to eventually illustrate our

hypothesis.

Materials and methods

Chemicals and cell cultures

FMdC was kindly provided by Chiron Pharmaceu-

ticals, Inc. (San Francisco, California, USA). Zido-

vudine (AZT) was obtained from Wellcome

Research Laboratories (UK). Cell culture media

and supplements were from Gibco BRL (Basel,

Switzerland). Fetal calf serum (FCS) was purchased

from Fakola AG (Basel, Switzerland).

The cell line WiDr was purchased from American

Type Culture Collection (Rockville, Maryland,

USA). The cells were maintained in Minimum

Essential Medium with 0.85 g/l NaHCO3, supple-

mented with 10% FCS, 1% non-essential amino-

acids (NE-AA), 2 mM L-Glutamine, and 1%

penicillin-streptomycin solution. Cells were pas-

saged twice weekly. A test for mycoplasma was

routinely performed every 6 months, and found

negative for contamination.

Irradiation technique and clonogenic assay

Exponentially growing cells were trypsinized, and

seeded in 60�/15 mm Falcon Primaria culture flasks

with 5 ml medium, allowed to attach and incubated

for 24 h before adding the inhibitor of RR. Medium

containing the chosen concentration of freshly pre-

pared FMdC was added thereafter and replaced at

24 h. After exposure to this drug, the cells were

trypsinized, and resuspended in fresh medium at low

density. Cells were plated into 100�/20 mm Falcon

Primaria culture dishes containing 10 ml medium.

After a 3 h incubation in order to obtain cell

attachment, the cells were exposed to different

concentrations of AZT (25 mM, 50 mM and

100mM) added immediately prior to irradiation.

The cells were irradiated at room temperature

with an Oris IBL 137 Cesium source at a dose rate of

80.2 cGy/min. We used a range of single doses from

0 to 8 Gy, using a 2 Gy dose increment. For each

radiation dose (0�2�4�6�8 Gy), four dishes were

utilized, both for control and drug-exposed cells.

The dishes were incubated at 37oC in air and 5%

CO2 for 2 weeks. The cells were fixed in ethanol,

stained with crystal violet, and the colonies were

manually counted. Colonies of more than 50 cells

were considered survivors. All experiments were

done in triplicate.

For all the data obtained by clonogenic assays, the

surviving fraction of drug treated cells was adjusted

for drug toxicity to yield corrected survivals of 100%

for unirradiated but drug treated cells. The effect

shown is therefore the sensitizing action, after the

substraction of the direct cytotoxic effect of each of

the drugs.

The impact of the different drugs (FMdC and

AZT) and the combination of each on the radiation

sensitivity of the WiDr cell line was calculated at

different survival levels (2, 20 and 50%).

Analysis of dNTP and NTP pools by gradient elution

ion-pair reversed phase high-performance liquid

chromatography (HPLC)

Simultaneous quantitation of dNTP and NTP in

WiDr cells was performed by gradient elution ion-

pair reversed phase HPLC with a modification of a

previously described method reported in detail else-

where [26]. Briefly, exponentially growing WiDr

cells were exposed to the drugs in the same experi-

mental conditions as for the clonogenic assays. The

cells were trypsinized, washed, centrifuged and

resuspended in ice cold ultrapure water (dilution

according to cells count) and deproteinized with the

same volume trichloroacetic acid (TCA) 6% (final

applied concentration�/TCA 3%). Acid cell extracts

were centrifuged and the resulting supernatants

were stored at �/808C prior to analysis. Before the

HPLC assay, samples were thawed and aliquots of

100 ml were neutralized with 4.3 ml saturated

Na2CO3 solution. In the present series of experi-

ments, aliquots of 25 ml were injected onto the

HPLC column with satisfactory sensitivity. All

experiments were done in triplicate, with the tripli-

cation process starting at the cell culture step, to

detect variability associated with the culture growth

conditions. Results were expressed as the concentra-

tion of the four dNTP (expressed in pMole/106 cells)

and as the absolute levels of the four NTP (as

measured by NTP peak areas). The optimization

and full validation of the analytical method is

described in detail elsewhere [26].
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Statistical analysis

Data are presented as the mean�/the standard error

of three independent experiments. Surviving frac-

tions were compared using a two-sided paired t-test.

The difference was considered significant if a 0.05

p-value was reached. Dose response curves (from

0 to 8Gy), were fitted using a second degree

polynomial regression analysis, yielding a linear

quadratic equation. The curve fitting was obtained

using Statview 5.0 software on a MacIntosh G3

computer. From this linear quadratic equation we

calculated the ER values at 50%, 20% and 2%

survival levels.

Results

Effect of FMdC and AZT on clonogenicity

At a concentration of 30 nM there was no major

impact of FMdC on the plating efficiency (PE) of

WiDr cells as compared to untreated controls. The

data with AZT alone or combined to FMdC are

tabulated in Table I. At higher concentrations of

AZT (50 and 100 mM) there is a significant drop in

clonogenicity induced by the combination as com-

pared to each drug alone.

Effect on the radiation dose response curve

As illustrated in Figure 1, the use of FMdC alone

and AZT alone reduction of the shoulder of the dose

response indicating a radiation sensitizing effect.

The combination of AZT and FMdC, however,

yields a significant increase of the radiation sensitiv-

ity of the WiDr cell line as compared to each drug

alone combined to irradiation.

The calculated enhancement ratios (ER) at differ-

ent survival levels obtained from the linear quadratic

fitting of the curves are shown in Figure 2. At the low

concentration of FMdC (30 nM) the ER values for

survival levels ranging from 2 to 50% are ranging

from 1.18 to 1.28. AZT alone yields radiosensitiza-

tion especially at higher doses of AZT (50 and 100

mM). The largest effect, based on the ER value, is

obtained at clinical relevant radiation doses, i.e. in

the initial part of the radiation dose response curve

(see progression of the calculated ER values with

increasing survival level). When FMdC is combined

with AZT, the ER values are significantly increased

compared to each drug alone.

Effect of AZT and FMdC on dNTP pool measured by

HPLC

In order to obtain a clear cut and reproducible effect

of FMdC on the pools it was decided � based on

our previous published results � to use 50 nM and

100 nM instead of 30 nM which was the concentra-

tion used in the clonogenic assays.

All the data are grouped under Figure 3. The

HPLC analysis confirms our previous data: we

observe a highly significant reduction of the dATP

level with a corresponding increase of the dCTP and

TTP levels. As far as the NTP levels are concerned,

we reiterate the previous results i.e. a global increase

in the NTP levels which may in part be explained by

cell cycle redistribution [1].

Table I. Effect of FMdC (30 nM), AZT (range 25�100 mM) and the combination on the plating efficiency of WiDr cells in vitro. Data are

given for as the mean value plus or minus standard error for 100 cells plated. All experiments have been done in triplicate.

FMdC AZT FMdC�/AZT FMdC�/AZT FMdC�/AZT

Control 30 nM 25 mM 50 mM 100 mM 25 mM 50 mM 100 mM

1029/1.5 87.29/11.1 100.29/1.2 96.29/3.0 80.59/5.8 84.99/5.5 73.59/11.2 43.29/10.9

0.1

1

10

100

SF
%

0 2 4 6

Dose Gy

FMdC(30nM) + AZT(25/50/100microM)

FMdC+AZT(100)

FMdC+AZT(50)

FMdC+AZT(25)

AZT(100)

AZT(50)

AZT(25)

FMdC

Control

Figure 1. Dose reponse curve of WiDr cell line irradiated in vitro ;

upper curves illustrating the effect of AZT alone; lower curves

FMdC (30 nM/48 h) alone versus the combination with the

various concentrations of AZT. The data are plotted with

corresponding standard error (often contained within the size of

the symbols used).
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AZTat the lowest concentration (25 mM) does not

influence the dNTP levels compared to untreated

controls but at this low concentration, the combina-

tion with 50 nM FMdC yields a significant drop of

dCTP and TTP levels compared to FMdC treated

cells (data not shown). The combination of higher

doses of AZT with 50 nM FMdC results in a

significant decrease of dCTP and TTP as compared

to FMdC alone (Figure 3). In fact the reactive

increase of dCTP and TTP by FMdC is abbrogated

if FMdC is used in presence of AZT. The changes in

dGTP are less clear cut. On the other hand, AZT

does not seem to affect the clear decrease of dATP

induced by FMdC, but the levels of dATP are close

to the lowest detectable levels.

In summary, the combination of FMdC, known to

interact at the level of RR resulting in especially a

dATP drop and rise in TTP and dCTP, to AZT

results in a significant lowering of the levels of these

latter dNTP while for dGTP the effect is less

consistent.

Discussion

Radiation sensitivity of cell lines depends among

other factors on the pool of dNTP [1,6�8,27]. This

pool is regulated through two different pathways, the

de novo biosynthesis and the pyrimidine salvage

pathway. In the first pathway Ribonucleotide Re-

ductase (RR), Dihydrofolate Reductase (DHFR),

and Thymidylate Synthetase (TS) are key enzymes.

The enzyme RR is, however, the rate-limiting step in

the de novo pathway, whereas for the salvage pathway

thymidine kinase (TK) is the key enzyme [12].

Thymidine kinase is subject to feedback regulation

by dNTP, i.e. a reduction of dNTP results in an

increased activity of the salvage pathway (positive

feedback loop).

One of the first compounds active at the level

of RR to be used in a clinical setting has

been Hydroxyurea (HU). More recently, drugs

such as gemcitabine (2?,2?-difluoro-2?-deoxycyti-

dine�/dFdC) and (E)-2?-Deoxy-(fluoromethylene)

cytidine (FMdC) have been developed as new

inhibitors of RR [28,29]. These compounds are

able to lower the dNTP-pool. Gemcitabine (dFdC)

is under active investigation as a radiosensitizer in

pancreatic cancer [7,8]. On the other hand, FMdC

has been shown to be on a variety of cell lines such as

colon (WiDr), cervix (C4-1, C-33-A, SiHa, Hela),

and breast (MCF-7) cancer cell lines [1,17,30�33].

In some of those published data, radiosensitiza-

tion has been highlighted [1,5,18�20]. The present

experiments aimed at demonstrating that radio-

sensitization observed at very low levels of FMdC

(30 nM) can substantially be modified by interacting

at the level of the salvage pathway.

There are at least three good rationales for

modulating TK in our experimental setting. First,

ionizing radiation is known to induce TK transcrip-

tion and enzymatic activity in human cells [34].

Second, it has been shown that cellular radioresis-

tance, at least in a rat glioma cell line, is related to

the expression of the thymidine kinase gene [35].

Third, in the case of inhibition of one of the key

enzymes in the de novo pathway, there will be an

increase of TK activity-as a result of the lowering of

one of the dNTP-and hence an increased capacity of

phosphorylation of thymidine analogs such as AZT,

resulting in incorporation and hence potentially

radiosensitization [14,36,37]. The utmost impor-

tance of TK in radiation response makes it an

attractive target to interact with either by reduction

of TK expression by targeted mutagenesis and

antisense strategies, or direct modulation of TK

itself. We decided to investigate this latter strategy.

We did already demonstrate the proof of principle in

an earlier paper using the combined effect of FMdC

and iodo-deoxy-uridine, but decided to use a com-

pound more readily available for clinical use [23].

From the research in AIDS, it is currently known

that the phosphorylation and hence anti-HIV activity

of AZT, can be substantially increased by modula-

tion of de novo pyrimidine biosynthetic pathway

by methotrexate and 5-fluoro-2?-deoxyuridine, espe-

cially at the level of DHFR and TS, respectively

[12,21,36�38]. Based on this mechanism, some

investigators are combining AZT, 5-fluorouracil

and leucovorin in the treatment of metastatic colo-

rectal cancer [12,39�41].

Kuo et al. highlighted the importance of simulta-

neous modulation of the de novo and salvage path-

0.5

1

1.5

2

2.5
E
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0 10 20 30 40 50 60
Survival level in %

FM+AZT100

FM+AZT50

FM+AZT25

AZT100

AZT50

AZT25

FMdC

Figure 2. Effect of FMdC, AZT or the combination on the ER-

values, calculated from the linear quadratic equation, obtained at

survival levels of 2%, 20% and 50%.
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Figure 3 (Continued)
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Figure 3 (Continued)
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way. They demonstrated the effect of interaction of

hydroxyurea (HU) and iododeoxyuridine (IdUrd)

on the radiation sensitivity of the 647V cell line [42].

HU is an inhibitor of the M2 subunit of RR. This

drug lowers dATP, or at higher concentrations, acts

as a more general inhibitor of deoxynucleotide

biosynthesis. Inhibitors of RR are known to be able

to modify the radiation response both in vitro and in

vivo [1,5,8,13,18�20,22,43�45].The addition of

IdUrd to HU results in an increased radiosensitiza-

tion because the thymidine salvage pathway is

stimulated resulting in an increased incorporation

of IdUrd [42]. This thymidine analogue, incorpo-

rated in the dNTP pool after phosphorylation by

TK, has been shown to sensitize tumor cells to

ionizing radiation both in vitro and in vivo

[3,4,15,42,46�49]. The radiosensitizing capacity

depends on the incorporation into DNA [7]; this

incorporation may be augmented by decreasing

competing TTP pools through feedback inhibition

of RR [6]. Therefore, exploiting the inhibition of RR

with a positive feedback regulation on TK through a

reduced dATP may result in a net increase of

incorporation of AZT, and hence an increased

susceptibility of DNA to single-strand breaks from

radiation-induced free radicals. The combination of

FMdC and AZT applied simultaneously yielded in

our hands a significant increase of the radiation

sensitivity of WiDr cells as compared to either

compound separately. We tentatively explain the

observation by speculating that incorporation of

phophorylated forms of AZT in DNA may result

in chain termination and DNA synthesis inhibition.

We have already published the potential of AZT

alone in specific experimental conditions to protect

cells against ionizing irradiation to a small degree

(ER about 1.1) [50]. However, as shown in the

present experiments, the combination of an inhibitor

of RR such as FMdC used at concentrations not

altering the PE, to a thymidine analogue such as

AZT, provide a powerful pharmacological tool to

obtain at least in vitro a significant increase of the

sensitivity of a WiDr cell line to ionizing radiation.

Moreover, these levels of ER’s are obtained at a

clinically relevant radiation dose level of 2 Gy, and at

concentrations of drugs which are clinically achiev-

able in humans.

In conclusion, these experiments provide supple-

mentary arguments in favor of the importance of

purine and pyrimidine de novo and salvage pathways

in the radiation response. As human tumor cells have

markedly elevated enzyme activity in these pathways,

there might be a differential effect with this biomo-

dulation between tumor and normal cells. The

colorectal model, as chosen in the present experi-

ments, is an ideal model because of the well known

difference in TK and RR activity as compared to

normal cells [11,12]. However, it remains to be

investigated whether this difference in enzymatic

activity between normal and tumor cells can serve

as a basis for a therapeutic differential effect ex-

ploitable in a clinical setting. Nevertheless, based on

the present in vitro data, the combination of FMdC

and AZT deserves in vivo experiments.
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