
Deidability of invariant validation forparameterized systems ?Pasal Fontaine and E. Pasal GribomontUniversity of Li�ege (Belgium)fpfontain,gribomontg�montefiore.ulg.a.beAbstrat. The ontrol part of many onurrent and distributed pro-grams redues to a set � = fp1; : : : ; png of symmetri proesses ontain-ing mainly assignments and tests on Boolean variables. However, the as-signments, the guards and the program invariants an be�-quanti�ed, sothe orresponding veri�ation onditions also involve �-quanti�ations.We propose a systemati proedure allowing the elimination of suhquanti�ations for a large lass of program invariants. At the ore ofthis proedure is a variant of the Herbrand Theorem for many-sorted�rst-order logi with equality.1 IntrodutionAt the heart of onurrent software are ontrol-intensive onurrent algorithms,whih solve a large lass of problems, inluding mutual exlusion, termina-tion detetion, reliable ommuniation through unreliable hannels, synhronousommuniation through asynhronous hannels, fault tolerane, leader eletion,Byzantine agreement, onurrent reading and writing, and so on. (See e.g. [8,25℄ for many examples, with omments and formal or informal proofs). Many ofthose systems are omposed of a parameterized number of idential proesses ornearly idential proesses1. Most variables are Booleans or arrays of Booleans,and operations on the remaining variables are elementary. The veri�ation ofsuh parameterized onurrent systems is the subjet of many reent papers [1,4, 7, 11, 17, 23, 24, 31℄.Requirements of suh algorithms usually fall in safety properties (\somethingbad never happens") and liveness properties (\something good eventually hap-pens"). It is often possible to view a liveness property as the onjuntion ofa safety property and a fairness hypothesis (\progress is made") so, in pra-tie, the veri�ation of safety properties is the main part of formal methods andtools. The lassial invariant method allows to redue the veri�ation of safetyproperties to the validity problem for �rst-order logi. It ould happen that the? This work was funded by a grant of the \Communaut�e fran�aise de Belgique - Di-retion de la reherhe sienti�que - Ations de reherhe onert�ees"1 for example a proess an ompare its identi�er with the identi�er of another proess.This somewhat breaks symmetry.

formula to be proved belongs to a well known deidable lass (for instane, Pres-burger arithmeti), but this is rarely the ase beause Boolean arrays (modeledby uninterpreted prediates) are often used in these algorithms, together withinterpreted prediates2.Quanti�er-free �rst-order logi satis�ability heking is deidable for a verywide range of formulas with non-interpreted and interpreted prediates and fun-tions. Thus deidability is often reahed through quanti�er elimination. We in-trodue here a simple quanti�er elimination method for a large lass of veri�-ation onditions. It is based on a many-sorted logi with equality variant ofthe Herbrand Theorem whih allows to have some kind of �nite model property[12℄ even when some funtions (interpreted or not) and interpreted prediatesare used in formulas. We then give riteria for veri�ation onditions to bene�tfrom this property. Those riteria allow to eliminate quanti�ers in the proof byinvariant of many reative algorithms, and partiularly for parameterized algo-rithms, leading to a powerful invariant validation proedure. It allows to reduethe invariant validation for a system with a parameterized number of proessesto the invariant validation for a system with a known number of proesses n0(Theorem 2). Our method an be seen as an extension of the invariant validationproedure presented in [3℄: our approah does not restrit the use of funtionsand prediates to unary ones, and is not restrited to bounded variables.Our implementation has given good results on several algorithms; in parti-ular, it has been suessful in proving all veri�ation onditions for a parame-terized railroad rossing system [21℄ used as benhmark for STeP, whereas STePitself requires interative veri�ation for some of them [6℄.We �rst present our variant of the Herbrand Theorem. Next, this variant isused to eliminate the quanti�ers in veri�ation onditions from invariant valida-tion of parameterized systems. Last, two examples are presented.2 Herbrand on many-sorted logiIn this setion, Theorem 1 and its ontext is introdued. This theorem willbe used to eliminate quanti�ers in veri�ation onditions, whih will lead toTheorem 2.A many-sorted �rst-order language (a more omplete introdution to many-sorted logi an be found in [13℄) is a tuple L = hT ;V ;F ;P ; r; di suh that Tis a �nite set of sorts (or types), V is the (�nite) union of disjoint �nite setsV� of variables of sort � , F and P are sets of funtion and prediate symbols,r (F [P ! N) assigns an arity to eah funtion and prediate symbol, and d(F[P ! T ?) assigns a sort in T r(f)+1 to eah funtion symbol f 2 F and a sortin T r(p) to eah prediate symbol p 2 P . Nullary prediates are propositions,and nullary funtions are onstants.The sets of � -terms on language L ontain all variables in V� , and for everyfuntion symbol f 2 F of sort h�1; : : : �n; �i, f(t1; : : : tn) is a � -term if t1; : : : tnare �1; : : : �n-terms respetively. Sort(t) = � if t is a � -term.2 Presburger with (unary) uninterpreted prediates is undeidable [20℄.

An atomi formula is either t = t0 where t and t0 are terms of the same sort, ora prediate symbol applied to arguments of appropriate sorts. Formulas are built(as usual) from atomi formulas, onnetors (:, ^, _,), �), and quanti�ers (8,9). The set of all variables used in formula � is noted Vars(�), and Free(�) isthe set of all free variables in �. A formula � is losed if Free(�) = ;. A formulais � -universally quanti�ed if it is of the form 8x	 with x a variable of type � .A formula is in prenex form if it is of the form Q1x1 : : : Qnxn(�) whereQ1; : : : Qn 2 f9;8g, x1; : : : xn 2 V , and � is quanti�er-free. A formula is inSkolem form if it is in prenex form without existential quanti�er.A (normal) interpretation of a formula on a many-sorted �rst-order languageL = hT ;V ;F ;P ; r; di is a pair I = hD; Ii where{ D assigns a non-empty domain D� (set) to eah type � 2 T . Those sets arenot neessarily disjoint;{ I assigns an element in D� to eah variable of sort � ;{ I assigns a funtion D�1 � : : : D�n �! D� to eah funtion symbol f 2 F ofsort h�1; : : : �n; �i;{ I assigns a funtion D�1�: : : D�n �! f>;?g to eah prediate symbol p 2 Pof sort h�1; : : : �ni;{ the identity is assigned to the equality sign (=).I assigns a value in D� to every � -term t. This value is noted I[t℄. Similarly,interpretation I assigns a value in f>;?g to every formula �, whih is notedI[�℄. An interpretation I is a model for formula � if I[�℄ = >. A formula issatis�able if there exists a model for it.Given an interpretation I, the ongruene CI;= = f(ti; t0i) j I [ti℄ = I [t0i℄gis a reexive, symmetri and transitive relation on the set of terms of languageL. This relation is important for the proof of the following theorem.Theorem 1. Given{ a losed formula S in Skolem form on the language L = hT ;V ;F ;P ; r; di;{ � 2 T suh that there is no funtion symbol f 2 F of sort h�1; : : : �n; �i withn > 0, �1; : : : �n 2 T ;the set H� is the set of onstant symbols of sort � (H� = f 2 F j d() = �g).If f 2 F j d() = �g = ;, then H� = fag, where a is an arbitrary new onstantsymbol suh that a 62 F and a 62 V.For every model I = hD; Ii of S, there is a model I 0 = hD0; I 0i suh that{ D0� is the quotient of the set H� by ongruene CI;=;{ D0� 0 = D� 0 for every � 0 6= � ;{ I 0[f ℄ = I[f ℄ for every funtion symbol f 2 F of sort h�1; : : : �n; � 0i suh that�1 6= �; : : : �n 6= �; � 0 6= � (n � 0);{ I 0[p℄ = I[p℄ for every funtion symbol p 2 P of sort h�1; : : : �ni suh that�1 6= �; : : : �n 6= � (n � 0).Proof. Interpretation I 0 is built from I:

{ for every onstant symbol of sort � in F , I 0[℄ is the lass of in D� ;{ for every funtion symbol f 2 F of sort h�1; : : : �n; � 0i (n > 0), and everyd01 2 D0�1 ; : : : d0n 2 D0�n , I 0[f ℄(d01; : : : d0n) = I [f ℄(d1; : : : dn) where di = d0i if�i 6= � . If �i = � , di = I(d00i) where d00i is any element of the lass d0i 2 D� ;{ for every prediate symbol p 2 P of sort h�1; : : : �ni, and every elementsd01 2 D0�1 ; : : : d0n 2 D0�n , I 0[p℄(d01; : : : d0n) = I [p℄(d1; : : : dn) where di = d0i if�i 6= � . If �i = � , di = I(d00i) where d00i is any element of the lass d0i 2 D� .It remains to show that I 0 is a model of S. Let us �rst introdue a notation:given an interpretation J = hD; Ji, the interpretation Jx1=d1;:::xn=dn = hD; J 0i(where x1; : : : xn are variables) is suh that J 0 [xi℄ = di for every xi 2 fx1; : : : xngand J 0 [t℄ = J [t℄ if t 62 fx1; : : : xngFormula S is of the form 8x1 : : :8xn(�). Thus for all elements d01; : : : d0n suhthat d0i belongs to D0� 0 if xi is a variable of sort � 0, the following equality hold:I 0x1=d01;:::xn=d0n [�℄ = Ix1=d1;:::xn=dn [�℄with di = I [d00i ℄ where d00i is any element of the lass d0i 2 D0� if xi is of sort � ,di = d0i otherwise.Interpretation I is a model of formula S, that means Ix1=d1;:::xn=dn [�℄ = >for all elements d1; : : : dn where di belongs to D� 0 if xi is a variable of sort � 0. Itfollows that I 0x1=d01;:::xn=d0n [�℄ = > for all elements d01; : : : d0n suh that d0i belongsto D0� 0 if xi is a variable of sort � 0. So I 0 is a model of S. utThis theorem is not exatly an extension of the Herbrand theorem to many-sorted �rst-order logi. It is stronger than the Herbrand theorem (see for example[14℄ for the standard Herbrand theorem, or [16℄ for a version with equality) inthe sense that the domain does not neessarily beome in�nite in the preseneof funtions. On the other hand, its restrition to one-sorted �rst-order logigives bak the Herbrand theorem, but restrited to the �nite Herbrand universease. Nevertheless this ase is the most interesting one: having a �nite domainmeans that quanti�er elimination is possible. Consider the simple (unsatis�able)formula 8i8j [f (i) > g (j)℄ ^ g(a) = 3 ^ 9i [f (i) < 4℄ (1)where \<" and \>" are the usual order prediates on N�N. Variables i and jand onstants a and b are of sort � 6= N whereas f and g are funtions from � toN. In this ontext, the preeding theorem states that formula (1) is satis�able ifand only if formulaf (a) > g (a) ^ f (a) > g (b) ^ f (b) > g (a) ^f (b) > g (b) ^ g(a) = 3 ^ f (b) < 4is. This last formula belongs to the deidable lass of quanti�er-free �rst-orderlogi with linear arithmetis on N and uninterpreted funtion symbols.Corollary 1. A �-universally quanti�ed formula 8x�(x) verifying the ondi-tions of Theorem 1 is satis�able if and only if the �nite onjuntion V2H� �()is.

3 Interpreted prediates and funtionsA formula ontaining interpreted prediates and funtions is satis�able if andonly if it has a model in a restrited subset of all interpretations, that is the setwhere interpretations assoiate a �xed domain to given sorts and a �xed meaningto those interpreted prediates and funtions. In Theorem 1, both interpretationsI and I 0 assoiate the same domain to every sort but � , and give the same mean-ing to every prediate and funtion, provided none of their arguments is of sort � .In other words, Theorem 1 is ompatible with the use of interpreted prediatesand funtions provided none of their arguments is of sort � . For instane, in thepreeding example (i, j and a are of sort �) the arguments of the order prediates(f(i), g(j), . . .) are not of the sort � . Using Theorem 1, interpretation I and I 0are suh that I[<℄ = I 0[<℄ and I[>℄ = I 0[>℄. And this allows to eliminate thequanti�ers on the sort � in presene of interpreted prediates with no argumentof sort � .But it is also possible to use order prediates on the sort of quanti�ed vari-ables. Let ' be a formula with order prediates (\�", . . .) on sort � , and bethe onjuntion of the axioms of total order theory, = 8x (x � x)^ 8x8y ((x � y ^ y � x)) x = y)^ 8x8y8z ((x � y ^ y � z)) x � z)^ 8x8y (x � y _ y � x)with variables x; y; z of sort � . An interpretation is a model of ^' if and onlyif it is a model of ' interpreting \�", . . . as the usual order prediates on D� .Putting ^ ' in Skolem form does not introdue new Skolem funtions. Theonditions of Theorem 1 are met for ^ ' if they are met for '. Theorem 1an be applied also if some omparisons are made between terms of the sort ofquanti�ed variables 3.4 Quanti�er elimination in invariant validationIn order to verify that the assertion H is an invariant of the transition sys-tem S, one has to validate the Hoare triple fHg�fHg for eah transition4 � 2 S.This is �rst redued to �rst-order logi proving, using Dijkstra [9℄ weakest pre-ondition (wp) operator: Hoare tripe fHg�fHg is valid if and only if formulaH) wp[�;H ℄ an be proved. Weakest preondition alulus is easy, provided3 As in [3℄, \+1" and \�1" funtions an sometimes be eliminated without introduingnew Skolem funtions, by notiing that h = i+1 ! i < h^8j (j � i _ h � j) andh = i� 1 ! [i < h ^ 8j (j � i _ h � j)℄ _ [h < i ^ 8j (h � j _ j � i)℄ :4 An example of transition is (s0[p℄s0[q℄; C �! A; s1[p℄s1[q℄) whih allows the proessesp and q to go from ontrol point s0 to ontrol point s1, exeuting the statements inA. The system transition an be exeuted from a state where formula C (the guard)is ful�lled.

transitions do not ontain full loops in their statement part. The weakest preon-dition module inCaveat aepts assignments, onditional statements, sequenesof statements, and some kind of quanti�ed assignments. This is enough to modelreative algorithms from oarse to �ne-grained versions.In general, the invariant is a onjuntion (H = Vk2K hk) of relatively smallassertions hk. In parameterized systems, these assertions are often quanti�ed overthe (parameterized) set of proesses. In order to avoid the appearane of Skolemfuntions when veri�ation onditions are put in Skolem form, an assumptionis made about these quanti�ed assertions: they an be put both in prenex form9?8? (alled hypothesis form in the following, beause this will be the allowedform in the anteedent of formulas of the form A) B) and in prenex form 8?9?(alled onlusion form in the following, beause this will be the allowed form inthe onlusion of formulas of the form A) B). In pratie, two partiular asesof suh formulas are met frequently:{ formulas in prenex form ontaining one type of quanti�er;{ formulas ontaining only monadi prediates (and no equality)5.There is also an assumption for guards : guards must be formulas in hypothesisform. Guards met in pratie ful�ll this assumption as they are quanti�er-freeformulas or singly quanti�ed formulas.Taking the preeding onditions on quanti�ers into aount, proving formulaH) wp[�;H ℄ (with H = Vk2K hk) redues to prove a set of formulas (alledveri�ation onditions) of the form(h1 ^ : : : hk ^G)) Cjwhere G is the guard of �. All formulas h1 : : : hk; G are in hypothesis form.There is one veri�ation ondition for eah hk (k 2 K). Formula Ck omes fromhypothesis hk: Ck � wp [A;hk℄, where A is the statement part of �. Ck an beput in onlusion form: indeed, hk an be put in onlusion form, and the weakestpreondition operator does not modify the quanti�er struture of a formula, inthe language aepted by Caveat.The last requirement is about funtions: we require that no funtion used inthe invariantH , or in the transition system S has the proess set as domain. Thismay seem rather restritive, but as reative algorithms mainly use Boolean arrays(modeled by prediates, not funtions), this requirement remains aeptable inpratie.Under those onditions, Theorem 1 an be used to eliminate the quanti�ers:Theorem 2. If H is a onjuntive formula, and � is a transition system witha parameterized number n of proesses, where{ all quanti�ed variables in H and in the guard of the transitions of � rangeover the set of proesses;5 Indeed every monadi formula is logially equivalent to a Boolean ombination ofSkolem forms with one quanti�er. So every monadi formula an be put in bothhypothesis and onlusion forms.

{ every onjunt in H an be put both in hypothesis form (9?8?) and in on-lusion form (8?9?);{ every transition guard an be put in hypothesis form;{ no interpreted prediate other than equality and order is used on the set ofproesses, neither in H nor in �;{ no funtion has the proess set as domain, neither in H nor in �;then H is an invariant of � if and only if H is an invariant of the system �0with at most n0 proesses, where n0 is the sum of{ the number of existential quanti�ers in H when put in hypothesis form;{ the maximum number of existential quanti�ers in guards of transitions in �;{ the maximum number of universal quanti�ers in the onjunts of H, whenput in onlusion form;{ the number of onstants in H;{ the maximum number of proesses taking part in a transition6.Proof. Indeed from the theorem onditions, every veri�ation ondition is of theform (h1 ^ : : : hk ^G)) Cwhere formulas h1; : : : hk; G are in hypothesis form, and C is in onlusion form.When put prenex form, this formula is of the form8x1 : : :8xp9y1 : : :9yq '(x1; : : : xp; y1; : : : yq); (2)where p is the number of existential quanti�ers in h1^ : : : hk^G plus the numberof universal quanti�ers in C. Otherwise stated, p annot exeed the sum of{ the number of existential quanti�ers inH (h1^: : : hk) when put in hypothesisform;{ the maximum number of existential quanti�ers in guards (G) of transitionsin �;{ the maximum number of universal quanti�ers in the onjunts (hk fromwhih C is omputed) of H , when put in onlusion form.Formula (2) is provable if and only if formula9x1 : : : 9xp8y1 : : :8yq :'(x1; : : : xp; y1; : : : yq) (3)is unsatis�able or, using Skolemization, if and only if formula8y1 : : :8yq :'(a1; : : : ap; y1; : : : yq) (4)is unsatis�able, where a1; : : : ap are Skolem onstants, i.e. onstants whih donot appear in '(x1; : : : xp; y1; : : : yq). Using Theorem 1, formula (4) is satis�ableif and only if there is a model with a �nite proess set, whih ontains all proessonstants in '(a1; : : : ap; y1; : : : yq), inluding a1; : : : ap. So n0 is the sum of6 usually at most two.

{ p;{ the number of onstants oming from H in ';{ the maximum number of onstants oming from the transitions through Gand C, whih is the maximum number of proesses involved at the sametime in a transition. utComment . The satis�ability problem for the Shn�nkel-Bernays lass, that is,the lass of funtion-free �rst-order formulas of the form9x1 : : : 9xp8y1 : : :8yq '(x1; : : : xp; y1; : : : yq);has �rst been shown to be deidable by Bernays and Shn�nkel without equality[5℄ and by Ramsey with equality [29℄. Theorem 1 extends this deidable lassto allow the use of some funtions (interpreted or not) and some interpretedprediates.Corollary 2. When onditions of Theorem 2 are met, heking if � preservesthe invariant H is redued to a quanti�er-free �rst-order logi satis�ability hek-ing problem.The quanti�er-free satis�ability heking module [15℄ in Caveat is basedon a modi�ed version of the Nelson-Oppen algorithm [26, 27℄. It aepts lineararithmeti, as well as uninterpreted prediates and funtions. When Theorem2 applies, and when the quanti�er-free formulas use only linear arithmeti, anduninterpreted prediates and funtions, the invariant validation problem is de-idable. This is the ase for numerous algorithms. In the next setion a simpleone is presented.5 Parameterized Burns algorithmIn this well-known simple example only one type of variable is used. Theorem 1thus redues to the Herbrand theorem (with equality, without funtions). Thissimple example allows to learly exhibit the underlying fat whih enables quan-ti�er elimination: a �nite Herbrand universe.Burns algorithm [22℄, [25, p. 294℄ guarantees exlusive aess to a ritialsetion for a set of n idential proesses. Eah proess p an be in one of sixdi�erent loation states (i.e. s0. . . s5). A rule expresses the trivial property thateah proess is in one and only one state at eah time: one and only one variablein s0[p℄,. . . , s5[p℄ is true (for eah p). A proess p being in s5 (i.e. s5[p℄ is true)is in the ritial setion.Twelve transitions are possible between the six states:�s0[p℄; ag[p℄:=false; s1[p℄��s1[p℄;:S[p; q℄ ^ q < p ^ ag[q℄ ! 8q : S[p; q℄:=false; s0[p℄��s1[p℄;:S[p; q℄ ^ q < p ^ :ag[q℄ ! S[p; q℄:=true; s1[p℄��s1[p℄; 8q�q < p) S[p; q℄� ! 8q : S[p; q℄:=false; s2[p℄�

�s2[p℄; ag[p℄:=true; s3[p℄��s3[p℄;:S[p; q℄ ^ q < p ^ ag[q℄ ! 8q : S[p; q℄:=false; s0[p℄��s3[p℄;:S[p; q℄ ^ q < p ^ :ag[q℄ ! S[p; q℄:=true; s3[p℄��s3[p℄; 8q�q < p) S[p; q℄� ! 8q : S[p; q℄:=false; s4[p℄��s4[p℄;:S[p; q℄ ^ p < q ^ ag[q℄ ! 8q : S[p; q℄:=false; s4[p℄��s4[p℄;:S[p; q℄ ^ p < q ^ :ag[q℄ ! S[p; q℄:=true; s4[p℄��s4[p℄; 8q�p < q) S[p; q℄� ! 8q : S[p; q℄:=false; s5[p℄��s5[p℄; ag[p℄:=false; s0[p℄�Mutual exlusion is obtained using two waiting rooms (s3 and s4). The �rstone ensures that when a proess p has reahed s4, any other proess q withq < p and ag[q℄ = true (trying to get aess to ritial setion, or in theritial setion) has gone through transition s2 ! s3 after p. The seond waitingroom guarantees that this proess q (with q < p) will be bloked in s4 at leastuntil p resets ag[p℄ to false. Only the highest proess (the one with the highestidenti�er) will thus get aess to ritial setion7.The algorithm uses one single-writer shared register per proess: ag[p℄ is setto true by proess p when it wants to aess to ritial setion. Eah proessp also uses a loal array variable S[p℄. This variable is used in three loops (s1,s3, s4). In the loops for proess p the value of the ag[q℄ variable of the otherproesses q is heked (proesses q suh that q < p or q > p). S[p℄ is used to keeptrak of proesses already heked and those whih still have to be heked. Thealgorithm makes also extensive use of a total order relation between proesses.Formula H =def 8p H1(p) ^ 8p8q [H2(p; q) ^H3(p; q)℄, withH1(p) =def :ag[p℄) (s0[p℄ _ s1[p℄ _ s2[p℄)H2(p; q) =def s2[p℄) :S[p; q℄H3(p; q) =def �q < p ^ ag[q℄ ^ (s5[p℄ _ s4[p℄ _ (s3[p℄ ^ S[p; q℄)) �) �:s5[q℄ ^ :(s4[q℄ ^ S[q; p℄)�is an invariant. It entails8 the mutual exlusion property:8p8q�p 6= q) (:s5[p℄ _ :s5[q℄)�:Every ondition is met for Theorem 2 to be used. Indeed:{ no funtion (at all) is used;{ every guard is in hypothesis form. In fat, every guard is at most one quan-ti�ed;7 Aess to ritial setion will be easier for proesses with high identi�ers. This algo-rithm does not guarantee high-level-fairness.8 together with the rule whih expresses the fat that eah proess is in one and onlyone state at a time.

{ the invariant is a onjuntion of formulas whih are in both hypothesis andonlusion form, as they are universally quanti�ed;{ the only interpreted prediates are equality and order; objets omparedbelong to a �nite, but parameterized, domain: the set of proesses.From Theorem 2, if H is an invariant of this algorithm for n0 = 4 proesses thenH will be an invariant of this algorithm for any number of proesses.Let's see how this work for a given veri�ation ondition: if H is an in-variant, it is preserved by every transition, and in partiular, by transition�1!2 from s1 to s2. Hoare triple fHg�1!2fHg must be provable, so must befHg�1!2f8p H1(p)g, fHg�1!2f8p8q H2(p; q)g and fHg�1!2f8p8q H3(p; q)g.In partiular, from fHg�1!2f8p8qH2(p; q)g omes the veri�ation ondition' =def (h1 ^ h2 ^ h3 ^ g1 ^ g2 ^ l1 ^ l2 ^ l3 ^ l4 ^ l5)) Cwith{ h1 =def 8p H1(p){ h2 =def 8p8q H2(p; q){ h3 =def 8p8q H3(p; q){ g1 =def s1[p℄{ g2 =def 8q�q < p) S[p; q℄�{ l1 =def 8p�s0[p℄) :(s1[p℄ _ s2[p℄ _ s3[p℄ _ s4[p℄ _ s5[p℄)�{ l2 =def 8p�s1[p℄) :(s2[p℄ _ s3[p℄ _ s4[p℄ _ s5[p℄)�{ l3 =def 8p�s2[p℄) :(s3[p℄ _ s4[p℄ _ s5[p℄)�{ l4 =def 8p�s3[p℄) :(s4[p℄ _ s5[p℄)�{ l5 =def 8p�s4[p℄) :s5[p℄�{ C =def 8s8r�(s 6= p) s2[s℄)) :(s 6= p ^ S[s; r℄)�Hypotheses h1;2;3 ome from the invariant, g1;2 from the transition guards9. For-mulas l1;:::5 state that eah proess is in one and only one state. The onlusionC is the result of applying the weakest preondition operator, i. e.,C � wp [8q : S[p; q℄:=false; s1[p℄ := false; s2[p℄ := true;8p8q H2(p; q)℄Every formula from h1 to l5 is in hypothesis form, and C is in onlusion form.The Herbrand universe for the negation of this veri�ation ondition ontainsfour elements (p, q, and the new onstants oming from the Skolemization of C).Every universal quanti�er in hypotheses will then give rise to four instanes, fora total of 61 hypotheses10.Caveat took 5 seonds on a Pentium 1 GHz, to generate and verify 40veri�ation onditions. This inludes the time to verify that the invariant entailsthe mutual exlusion property, and also that the invariant is made true by initialonditions.9 g1 omes from the origin of the transition. Transition (l1; C �! A; l2) with origin l1and destination l2 an be written as transition ((C^l1) �! A; l1 := false; l2 := true).10 eah formula h1, g2, l1:::5 generates four instanes, whereas formulas h2 and h3generate 16 instanes. The 61st hypothesis is g1.

6 Generalized Railroad CrossingThe Generalized Railroad Crossing benhmark [21℄ uses prediates and funtionsfrom arithmeti. It gives a general idea of what Theorem 1 allows to deal with.A ontroller operates on a gate of a railroad rossing proteting N parallelrailroad traks. The gate must be down whenever a train takes the intersetion,so that the interseting road is losed. Eah of the N trains an be in threedi�erent regions: in the intersetion (I), in the setion preeding the intersetion(P), or anywhere else (not here). The array variable \trains" reords the positionof eah train: trains[i℄ an be one of the three values I; P; not here. The gate anbe in four states: the value of variable \gate" an be down; up; going down orgoing up, with obvious meanings. The system should verify the safety property,whih expresses the fat that the gate must be down when any of the N trainsis passing the intersetion:8i (trains[i℄ = I) gate = down) :The gate takes some time to go from the state \up" to \down". This timemust not exeed \gateRiseTime". Similarly the time to go from the \down" tothe \up" states must not exeed \gateDownTime". Trains getting in P wouldtake a minimum time \minTimeToI" and a maximum time \maxTimeToI" to getto the intersetion. It is the ontroller job to know when to lower the gate, andwhen to raise it. Initially, the gate is up, and no train is either in the intersetionor in the setion preeding the intersetion.The system transitions are given on Figure 1. The �rst three transitionsmodel the position hanges of the train i. The two following ones express theontroller deision to lower or raise the gate. The next two mean the gate reahesthe up or down states. The last one models the time ow.Only two transition guards are not quanti�er-free. But they an easily be putin prenex form with a single quanti�er. Funtions are used (trains, �rstEnter,lastEnter, shedTime, +) but they do not range over the proess set. All require-ments are thus met for Theorem 2 to be used, as long as the invariants to beheked also verify the requirements about quanti�ers.Figure 2 shows several invariane properties of the system. Together with thesafety property, they give an invariant for the system. As the safety property isone onjunt of the invariant, it is trivially entailed by the invariant. In orderto validate the invariant, it is neessary to take into aount the onstraintson onstants (Figure 3) as well as the progress axioms11 (Figure 4). They aresupplementary hypotheses to be put in the veri�ation onditions.In the whole proof, only two properties (or guards) are existentially quan-ti�ed, properties are at most one quanti�ed, and at most one train take partin a transition. From Theorem 2, if the invariant (whih guarantees that thealgorithm is safe) is preserved for four trains, the algorithm will be safe for anynumber of trains.11 For example, progress axiom P1 states that the train does not stay inde�nitely insetion P before going in I.

�trains[i℄ = not here �! begintrains[i℄ := P ;�rstEnter[i℄ := T +minTimeToI;lastEnter[i℄ := T +maxTimeToI;shedTime[i℄ := T + onMinI;trainHere[i℄ := trueend��trains[i℄ = P ^ T � �rstEnter[i℄ �! trains[i℄ := I��trains[i℄ = I �! begin trains[i℄ := not here; trainHere[i℄ := false end�� (gate = up _ gate = going up) ^ gstatus = up^ 9i (trainHere[i℄ ^ shedTime[i℄ � T + down + �)�! begingate = going down;lastDown := T + gateDownTime;gstatus := downend�� (gate = down _ gate = going down) ^ gstatus = down^8i (trainHere[i℄) shedTime[i℄ > T + down + up + arPassingTime)�! begingate := going up;lastUp := T + gateRiseTime;gstatus := upend ��gate = going up �! gate := up��gate = going down �! gate := down��T := T + "�Fig. 1. The transitions modeling the General Railroad Crossing system

T1 =def 8i �T < �rstEnter[i℄) trains[i℄ 6= I�T2 =def 8i �trains[i℄ = P)(�rstEnter[i℄ � T +minTimeToI ^ T � lastEnter[i℄^ lastEnter[i℄ � �rstEnter[i℄ = maxTimeToI�minTimeToI)�C1 =def gstatus = up) 8i �trainHere[i℄) T < shedTime[i℄ � down�GC1 =def gstatus = down � (gate = goingDown _ gate = down)GC2 =def gstatus = down) lastDown � T + gateDownTimeGC3 =def gstatus = up) 8i �trainHere[i℄) lastDown < shedTime[i℄�TC1 =def 8i �trainHere[i℄ � trains[i℄ 6= notHere�TC2 =def 8i �trainHere[i℄) shedTime[i℄ < �rstEnter[i℄�Fig. 2. Invariane properties
AC1 = down < onMinIACT1 = onMinI < minTimeToIAGC1 = gateDownTime < downAGC2 = gateRiseTime < upFig. 3. Constraints on onstants

G1 =def gate = goingDown) T � lastDownG2 =def gate = goingUp) T � lastUpP1 =def 8i (trains[i℄ = P) T � lastEnter[i℄)P2 =def gstatus = up) 8i �trainHere[i℄) T < shedTime[i℄ � down�P3 =def gstatus = down)9i �trainHere[i℄ ^ shedTime[i℄ � T + up + arPassingTime + down�Fig. 4. Progress axioms

Caveat took 87 seonds to generate and verify the 221 veri�ation onditionsneessary to prove the safety property.7 Conlusions and future workThe invariant validation proess often has an interative part as well as an au-tomati part [6, 30℄. This interative aspet (even if it is often easy) makes theproof proess longer and tedious. This work is one step further to make the proofby invariants more appliable, either as a method by itself, or as an element ofan automati veri�ation proess.The veri�ation onditions obtained in the ontext of veri�ation of parame-terized algorithm are often quanti�ed over the set of proesses.We have presentedhere a quanti�er elimination proedure based on an enhaned Herbrand Theo-rem, an adaptation of the lassial Herbrand Theorem to many-sorted logi withequality. This quanti�er elimination proedure is suitable for a large lass of veri-�ation onditions inluding formulas oming from veri�ation of parameterizedsystems. It has been suessfully applied to the invariant validation for severalalgorithms inluded the bakery algorithm (with or without bounded tikets), arailroad rossing system, Burns, Dijkstra, Riart & Agrawala, Szymanski. . . Asthe quanti�er-free validity problem is usually deidable, this quanti�er elimina-tion proedure is a key to automati validation of invariants.With bigger algorithms, instantiation itself may beome a problem. Findingsimple and e�etive heuristis to seletively instantiate formulas is also in ouronern. A rigorous hypothesis seletion and elimination method has alreadybeen found in the pure propositional ase [19℄, and the results are promising.We plan to adapt it to the present framework.Referenes1. P. A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling global ondi-tions in parametrized system veri�ation. In Computer Aided Veri�ation Confer-ene, volume 1633 of Leture Notes in Computer Siene, pages 134{145. Springer-Verlag, July 1999.2. K. R. Apt and D. C. Kozen. Limits for automati veri�ation of �nite-state on-urrent systems. Information Proessing Letters, 22(6):307{309, May 1986.3. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuk. Parameterized veri�ation withautomatially omputed indutive assertions. In Computer Aided Veri�ation, vol-ume 2102 of Leture Notes in Computer Siene, pages 221{234. Springer-Verlag,July 2001.4. K. Baukus, Y. Lakhneh, and K. Stahl. Veri�ation of Parameterized Protools.Journal of Universal Computer Siene, 7(2):141{158, Feb. 2001.5. P. Bernays and M. Shn�nkel. Zum entsheidungsproblem der mathematishenlogik. Math. Annalen, 99:342{372, 1928.6. N. S. Bj�rner, Z. Manna, H. B. Sipma, and T. E. Uribe. Dedutive veri�ation ofreal-time systems using STeP. TCS: Theoretial Computer Siene, 253, 2001.

7. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model heking. InComputer Aided Veri�ation, volume 1855 of Leture Notes in Computer Siene,pages 403{418. Springer-Verlag, July 2000.8. K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, Reading,Massahusetts, 1988.9. E. W. Dijkstra. A Disipline of Programming. Prentie-Hall, 1976.10. B. Dreben and W. D. Goldfarb. The Deision Problem: Solvable Classes of Quan-ti�ational Formulas. Addison-Wesley, Reading, Massahusetts, 1979.11. E. A. Emerson and K. S. Namjoshi. Automati veri�ation of parameterized syn-hronous systems. In Computer Aided Veri�ation, volume 1102, pages 87{98.Springer-Verlag, July 1996.12. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspetives in MathematialLogi. Springer-Verlag, Berlin, 1995.13. H. B. Enderton. A Mathematial Introdution to Logi. Aademi Press, In.,Orlando, Florida, 1972.14. M. Fitting. First-Order Logi and Automated Theorem Proving. Springer-Verlag,Berlin, 1990.15. P. Fontaine and E. P. Gribomont. Using BDDs with ombinations of theories.In Logi for Programming, Arti�ial Intelligene, and Reasoning, volume 2514 ofLeture Notes in Computer Siene. Springer, 2002.16. J. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using equa-tional matings and rigid E{uni�ation. Journal of the ACM, 39(2):377{429, Apr.1992.17. S. M. German and A. P. Sistla. Reasoning about systems with many proesses.Journal of the ACM, 39(3):675{735, July 1992.18. S. Graf and H. Sa��di. Verifying invariants using theorem proving. In ComputerAided Veri�ation, volume 1102 of Leture Notes in Computer Siene, pages 196{207. Springer Verlag, 1996.19. E. P. Gribomont. Simpli�ation of boolean veri�ation onditions. TheoretialComputer Siene, 239(1):165{185, May 2000.20. J. Y. Halpern. Presburger arithmeti with unary prediates is �11 omplete. TheJournal of Symboli Logi, 56(2):637{642, June 1991.21. C. Heitmeyer and N. A. Lynh. The generalized railroad rossing | a ase studyin formal veri�ation of real-time systems. In Proeedings 15th IEEE Real-TimeSystems Symposium, San Juan, Puerto Rio, pages 120{131, De. 1994.22. H. E. Jensen and N. A. Lynh. A proof of burns n-proess mutual exlusion algo-rithm using abstration. In Tools and Algorithms for Constrution and Analysisof Systems, volume 1384 of Leture Notes in Computer Siene, pages 409{423.Springer-Verlag, Mar. 1998.23. Y. Kesten, O. Maler, M. Marus, A. Pnueli, and E. Shahar. Symboli modelheking with rih assertional languages. In Computer Aided Veri�ation, volume1254 of Leture Notes in Computer Siene, pages 424{435. Springer-Verlag, 1997.24. R. P. Kurshan and K. MMillan. A strutural indution theorem for proesses. InPriniples of Distributed Computing, pages 239{248. ACM Press, Aug. 1989.25. N. Lynh. Distributed Algorithms. Morgan Kaufmann, San Franiso, CS, 1996.26. G. C. Neula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,Ot. 1998. Available as Tehnial Report CMU-CS-98-154.27. G. Nelson and D. C. Oppen. Simpli�ations by ooperating deision proedures.ACM Transations on Programming Languages and Systems, 1(2):245{257, Ot.1979.

28. A. Pnueli, S. Ruah, and L. D. Zuk. Automati dedutive veri�ation with invisibleinvariants. In Tools and Algorithms for the Constrution and Analysis of Systems,Leture Notes in Computer Siene, pages 82{97, 2001.29. F. Ramsey. On a Problem of Formal Logi. Proeedings of the London MathematialSoiety, 30:264{286, 1930.30. N. Shankar. Veri�ation of Real-Time Systems Using PVS. In Computer AidedVeri�ation, volume 697 of Leture Notes in Computer Siene, pages 280{291.Springer-Verlag, June 1993.31. P. Wolper and V. Lovinfosse. Verifying properties of large sets of proesses withnetwork invariants. In Automati Veri�ation Methods for Finite State Systems,volume 407 of Leture Notes in Computer Siene, pages 68{80. Springer-Verlag,June 1989.

