Use of cDNA-AFLP to study the defencerelated gene expression in bananas (*Musa* spp.), inoculated with *Colletotrichum musae* responsible of crown rot

61st International Symposium on Crop Protection Ghent, Belgium May 19, 2009

Identification of pre- and post-infection genes potentially implied in quantitative banana response to crown rot disease

Ludivine Lassois¹, Luc de Lapeyre de Bellaire², Philippe Lepoivre¹, Haïssam Jijakli¹

¹ Plant Pathology unit, Gembloux Agricultural University, Belgium ² CIRAD-PERSYST, Montpellier, France

Crown rot disease

Crown rot disease

- Banana post-harvest disease
- All producing countries
- The main post-harvest disease
- Losses of up 86% in non chemically area
- First symptoms are generally only noted after maritime shipping
- Parasitical complex
 - Colletotrichum musae

Incidence variation

Incidence variation

Aims

Determining the genetic bases which influence the banana crown susceptibility level to *C. musae*

Materials and methods

Materials and methods

 Studying gene expression by mRNA profil comparison (cDNA-AFLP) between bananas showing 2 susceptibility levels

Susceptibility level evaluation

Susceptibility level

cDNA-AFLP results (1hbi)

Expression profil (1hbi)	Number
cDNA fragments displayed (100-450bp) in S ⁻ and S ⁺	822 and 683
Differentially expressed fragments	157
Upregulated in S ⁻	62
Downregulated in S ⁻	95
TDFs selected and excised	32
TDFs successfully recovered from the gels, reamplified, cloned and sequenced	16
Non redundant significative similarities with the database after analysis	15
Selected TDF's for real time RT-PCR confirmation	7
cDNA-AFLP results confirmation by real time RT-PCR / Biological replicate 1	7
cDNA-AFLP results confirmation by real time RT-PCR / Biological replicate 2	6

cDNA-AFLP results (13dpi)

Expression profil (13dpi)	Number
cDNA fragments displayed (100-450bp) in S ⁻ and S ⁺	811 and 845
Differentially expressed fragments	286
Upregulated in S ⁻	166
Downregulated in S ⁻	120
TDFs selected and excised	99
TDFs successfully recovered from the gels, reamplified, cloned and sequenced	62
Non redundant significatives similarities with the database after analysis	31
Selected TDF's for real time RT-PCR confirmation	21
cDNA-AFLP results confirmation by real time RT-PCR / Biological replicate 1	17
cDNA-AFLP results confirmation by real time RT-PCR / Biological replicate 2	5

Annotation		Isolation stage	Regulation level	
			1hbi	13dpi
Protein Kinase			+ 2	+ 4
Dual specificity phosphatase	,	Signaling path	way	+ 4
Ubiquitin ligase		2		+ 3
Ubiquitin carboxyl-terminal h	nydrolase		1; +1	+2
Serine carboxypeptidase		130 li	1 2	± 3
Glicolipid-transfer protein	Leads to reversible proteins			
Glicolipid-transfer protein	priosprioryiai	ion/depriospriorylatio	11	
Cellulose synthase	•They are triggered by an array of stimuli and target a			
CAF1	broad range of downstream effectors			
Dopamine-β-hydroxylase	Regulating	g various processes		
Hypothetical protein Defense response: it is well know but very complex			complex	

Annotation		loNation stor	P gulation level		
		ISC MON Stay	hi	13dpi	
Protein Kin	nase		Protochyti	a nothway	+ 4
Dual speci	ficity phosphatase		Floteolyth	c pairiway	+ 4
Ubiquitin lig	gase		Thby		+ 3
Ubiquitin c	arboxyl-terminal hydrolase		13dpi	; +1	+2
Serine carb	boxypeptidase		13dpi 🗸	+2	+3
Glicolipid-1	To regulate the fate of pro	oteins			
Glicolipid-1	d-1 • Housekeeping role				
Cellulose	 Remove abnormal, non-functionnal or short-lived protein Release amine aside for recycling 				
• Play a role in the regulation of biological processes (affecting					
Dopamine transcription factors, signal transduction)					
Hypothetic Such those mediating response to pathogens					

Annotation	Isolation stago	Regulation level	
Annotation	Isolation stage	1hbi	13dpi
Protein Kinase	1hbi	+ 2	+ 4
Dual specificity phosphatase	Belong to the lipid-tra	nsfer protein	+ 4
Ubiquitin ligase	1hbi	- 2	+ 3
Ubiquitin carboxyl-terminal hydrolase	13dpi	-1; +1	+2
Serine carboxypeptidase		7+2	+3
Glicolipid-transfer protein	PR-1/	>	+ 3
Glicolipid-transfer protein			+ 3
Cellulose synthase		-2	-2
CAF1	i pi	-1; +1	+2
Dopamine-β-hydroxylase	hbi	+ 1	+ 4
Hypothetical protein	1hbi	- 4	- 4

Annotation	Isolation stage	Regulation level	
		1hbi	13dpi
Protein Kinase	1hbi	+ 2	+ 4
Dual specificity phosphatase	1hbi	- 4	+ 4
Ubiquitin ligase	1hbi	- 2	+ 3
Ubiquitin carboxyl-terminal hydrolase	13dpi	-1; +1	+2
Serine carboxypeptidase	13dpi	+2	+3
Glicolipid-transfer protein	1hbi	- 1	+ 3
Glicolipid-transfer protein	13dpi	- 1	+ 3
Cellulose synthase	13dpi	-2	-2
CAF1	13dpi	-1; +1	+2
Dopamine-β-hydroxylase	1hbi	+ 1	+ 4
Hypothetical protein	1hbi	- 4	- 4

Cellulose synthase

- Downregulated in less susceptible
 - Surprising result (cellulose are cell-wall component)
 - Activating of lignin synthesis?

Annotation	Isolation stage	Regulation level	
		1hbi	13dpi
Protein Kinase	1hbi	+ 2	+ 4
Dual specificity phosphatase	1hbi	- 4	+ 4
Ubiquitin ligase	1hbi	- 2	+ 3
Ubiquitin carboxyl-terminal hydrolase	13dpi	-1; +1	+2
Serine carboxypeptidase	13dpi	+2	+3
Glicolipid-transfer protein	1hbi	- 1	+ 3
Glicolipid-transfer protein	13dpi	- 1	+ 3
Cellulose synthase	13dpi	-2	-2
CAF1	13dpi	-1; +1	+2
Dopamine-β-hydroxylase	1hbi	+ 1	+ 4
Hypothetical protein	1hbi	- 4	- 4

CCR4-associated factor 1 (CAF1)

- In our study, CAF1 over-expression is related with a less susceptibility level
- Biochemical and physiological functions are not clearly established
- Implication in regulating plant growth and defence response was suggested
- The constitutely up-regulating of multiple PR genes (PR1, PR2, PR6, ...) are related to an over-expression of the CAF1 genes

Annotation	Isolation stage	Regulation level	
		1hbi	13dpi
Protein Kinase	1hbi	+ 2	+ 4
Dual specificity phosphatase	1hbi	- 4	+ 4
Ubiquitin ligase	1hbi	- 2	+ 3
Ubiquitin carboxyl-terminal hydrolase	13dpi	-1; +1	+2
Serine carboxypeptidase	13dpi	+2	+3
Glicolipid-transfer protein	1hbi	- 1	+ 3
Glicolipid-transfer protein	13dpi	- 1	+ 3
Cellulose synthase	13dpi	-2	-2
CAF1	13dpi	-1; +1	+2
Dopamine-β-hydroxylase	1hbi	+ 1	+ 4
Hypothetical protein	1hbi	- 4	- 4

Dopamine-β-hydroxylase

• Catecholamine synthesis pathway

A. Kulma, J. Szopa/Plant Science 172 (2007) 433-440

Dopamine-β-hydroxylase

- Catecholamines, derivatives and precursors
 - Functions very complex
 - Influence many aspects of plant physiology
 - Oxidative status
 - Regulation of plant growth and developement
 - Sugar metabolism regulation
 - Flowering
 - Active compound in plant response to stress

Dopamine-β-hydroxylase

- Catecholamine/plant response to stress
 Mechanisms?
- Catecholamine and banana resistance to stress
 - Dopamine and oxidation products have already frequently suggested to be implied in banana resistance mechanisms

Conclusions

Because plant defense responses are invariably multicomponent in nature, it is not easy to define which components are both necessary and sufficient to confer protection

Our results allow to suggest some hypothesis but further investigations are needed

Thank you for your attention

