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Note on topology optimization of continuum structures including
self-weight

Michael Bruyneel, Pierre Duysinx

Abstract This paper proposes to investigate topology
optimization with density dependent body forces and
especially self-weight loading. Surprisingly the solution
of such problems can not be based on a direct exten-
sion of the solution procedure used for minimum compli-
ance topology optimization with fixed external loads. At
first the particular difficulties arising in the considered
topology problems are pointed out: non-monotonous be-
haviour of the compliance, possible unconstrained char-
acter of the optimum and parasitic effect for low densi-
ties when using the power model (SIMP). To get of rid of
the last problem requires to modify the power law model
for low densities. The other problems require to revisit
the solution procedure and the selection of appropriate
structural approximations. Numerical applications com-
pare the efficiency of different approximation schemes
of the MMA family. It is shown that important improve-
ments are achieved when the solution is carried out when
using the Gradient Based Method of Moving Asymptotes
(GBMMA) approximations. Criteria for selecting the ap-
proximations are suggested. In addition, the applications
are also the opportunity to illustrate the strong influence
of the ratio between the applied loads and the structural
weight onto the optimal structural topology.
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1
Introduction

Since the work by Bendsøe and Kikuchi (1988), much
research in topology optimization has been devoted to
extend the basic minimum compliance design problem
for a given volume of material to various problems and
design criteria (for a review, see Bendsøe and Sigmund
(2003) and Eschenauer and Olhoff (2001)).

To solve such large scale problems the optimization
methods based on the sequential convex programming as
defined by Fleury (1993) proved to be a general and flexi-
ble, but also efficient tool (Duysinx (1997)). The approx-
imation concept consists in replacing the original opti-
mization problem:

min
X

g0(X)

s.t.: gj(X) ≤ gmax
j j = 1 . . .m

xi ≤ xi ≤ xi i = 1 . . . n

(1)

which is implicit in terms of the design variables X =
{xi, i = 1 . . . n}, by the solution of a sequence of explicit
and convex approximated sub-problems that are built
based on a variant of a Taylor series expansion g̃j(X) of
the involved design functions gj(X):

min
X

g̃
(k)
0 (X)

s.t.: g̃
(k)
j (X) ≤ gmax

j j = 1 . . .m

x
(k)
i ≤ xi ≤ x

(k)
i i = 1 . . . n

(2)

where k is the iteration index. The local approximation
techniques generally require to perform a structural and
a sensitivity analysis for the computation of the func-
tion values and their derivatives. Introducing such an
approximation techniques allows to decrease the number
of structural analyses required to reach the optimum of
the problem (1).

Several publications (see for examples Duysinx et al.
(1995), Duysinx and Bendsøe (1998), Pedersen (2000),
Sigmund (2001)) reported successful and efficient solu-
tion of topology problems while resorting to classical ap-
proximation schemes, such as CONLIN (the convex lin-
earization method by Fleury and Braibant (1986)) and
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MMA (the Method of Moving Asymptotes (MMA) de-
rived by Svanberg (1987)).

The problem of optimal design for self-weight was
first discussed by Rozvany (1977) for plastic design and
later extended for any body forces by the same author in
his book (Rozvany (1989)). Optimal design of with self-
weight loading has been treated successfully for beam,
arch and plate problems (e.g. Rozvany et al. (1980);
Wang and Rozvany (1983); Karihaloo and Kanagasun-
daram (1987); Rozvany et al. (1988)), composite struc-
tures (e.g. Kwak et al. (1997)) or shape optimisation (e.g.
Imam (1998)). Nevertheless surprisingly, there is a very
little amount of published work dealing with topology op-
timization using homogenization and density-dependent
body forces like self-weight, centrifugal loads, inertia loads,
etc. To the authors’ knowledge the only published results
in topology optimization are Turteltaub and Washabaugh
(1999) and Park et al. (2003). However taking into ac-
count density dependent loads is extremely important
for the preliminary design of many structures : the self-
weight of large civil engineering structures and the body
forces coming from the centrifugal acceleration in rotat-
ing machines are indeed dominant effects. Therefore it is
wondering that so little attention has been paid to this
kind of applications while efficient solution procedures
are now available for the standard problem of topology
optimization with external dead loads.

In a recent communication (Bruyneel and Duysinx
(2001)), the authors pointed out that the classical ap-
proach based on these procedures can be much less ef-
ficient and even fail when dealing with the compliance
minimization of structures subjected to their own weight.
The present paper investigates the nature of these prob-
lems and shows that the standard topology optimization
procedure diverges mainly when it is applied to problems
including density-dependent body forces.

The paper is organized as following. At first the for-
mulation of topology problems including density depen-
dent body-forces is stated (section 2) and the sensitivity
analysis is briefly reminded (section 3). The solution pro-
cedure based on different MMA approximations is sum-
marized in section 4.

In section 5, a case study shows the particular na-
ture of the topology optimization problem including self-
weight: non monotonous behavior of the compliance, pos-
sible unconstrained character of the optimum and par-
asitic effect due to the incorrect modeling of effective
mechanical and mass properties in the vicinity of zero-
density with the classical SIMP law.

Section 6 investigates the selection of appropriate ap-
proximation schemes for topology optimization if mono-
tonous or non monotonous responses are present. The
answer that is proposed here relies on an evolution of
the Gradient Based MMA (or GBMMA) approximation
procedure originally developed in the context of compos-
ite structure optimization (Bruyneel et al. (2002)). This
procedure is based on several approximation schemes of
the MMA family and an automatic strategy to select the

most suited scheme. This new procedure stabilizes the
optimization process and reduces the number of itera-
tions to come to a stationary solution. Numerical appli-
cations developed in the paper put also into the light
the influence of the topology upon the ratio between the
dead loads and the density dependent loads.

2
Formulation of a topology optimization problem with
density dependent body loads

The basic formulation of a topology optimization prob-
lem (Bendsøe and Sigmund (2003)) consists in minimiz-
ing the energy of the applied loads, called compliance,
for a given volume fraction of the material.

Here the local mechanical properties of the material
are parameterized with a power law model called SIMP
model (see for instance Bendsøe (1989) and Zhou and
Rozvany (1991)). The effective density ρ and the material
stiffness E are related to the base material properties ρo

and Eo for p > 1 according to:

ρ = µ ρo (3)
E = µp Eo (4)

The continuum mechanics problem is dicretized with
the Finite Element Method. In this approach, g and q
are respectively the vectors of node loads and node dis-
placements, related by the structural stiffness matrix K
through the equilibrium equation Kq = g. The density
field is also discretized using a usual element by element
constant density function. Thus a variable µi is attached
to each finite element ”i” of the model.

If one notes by µ = {µi, i = 1, ..., n} the vector of
continuous design variables and by Vi the volume of the
ith finite element, the formulation of the topology opti-
mization including self-weight (or more generally density
dependent body forces) can be stated as follows:

min
µ

C = gT q

s.t.: V ≤ ∑n
i=1 µi Vi ≤ V

µ
i
≤ µi ≤ µi i = 1 . . . n

(5)

It is important to remark that in (5), a maximum V
and a minimum V > 0 bound on the volume of material
are introduced. The minimum bound on the volume of
material 0 < V is necessary to reject the trivial solution
µi = 0, ∀ i, which is feasible when a pure self-weight
loading is considered, but which is non sense from an en-
gineering point of view. In other words, well -posed en-
gineering problems requires the presence of a non-design
dependent load or of a non-structural mass (which may
be due to the presence of a non zero minimum density).
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Classically, the stiffness matrix K and the displace-
ment vector q depend explicitly or implicitly on the den-
sity variables, while the load vector g, which are point
loads or surface tractions is a constant. The particular-
ity of the present paper is to consider also body forces
that depend on the density, that is here the structural
self-weight. In the numerical applications, we consider
4-nodes quadrangular finite elements and a gravity load
applied along the vertical Y direction so that one fourth
of the weight of each finite element ith is on each of its
4 nodes.

gi,X = 0 gi,Y = −µi ρo ag Vi/4 (6)

where ag is the absolute value of the gravitational ac-
celeration. The contributions of adjacent elements are
summed at common nodes.

Finally to avoid well known numerical instabilities,
i.e. mesh dependency and checkerboard patterns, that of-
ten happen in the solution of topology optimization prob-
lems, a filtering technique proposed by Sigmund (1997)
is used for solving (5).

3
Sensitivity analysis

By considering the derivative of the equilibrium equa-
tion, it is comes that the sensitivity of the compliance C
writes:

∂C

∂µi
= 2 qT ∂g

∂µi
− qT ∂K

∂µi
q (7)

When ∂g/∂µi vanishes, the derivative (7) is always
negative, and the structural behaviour of the compliance
is then monotonous. This fact was exploited to build ef-
ficient update strategies based on optimality conditions
in the first works devoted to topology optimization (see
for example Bendsøe and Sigmund (2003)).

When density dependent loads are considered, the
first term of (7) doesn’t vanish anymore and it can be
seen that the derivatives of the compliance (7) can be
either positive or negative and even change sign when
changing the value of the design variables. In this case,
the compliance C can experience a non-monotonous char-
acter with respect to the considered design variable µi.
As it will be shown later, this property raises big diffi-
culties in the standard solution procedure.

4
Approximations of the MMA family

Because of their general character, the approximations
based on the concept of moving asymptotes (Svanberg
(1987) and Bruyneel et al. (2002)) are considered here
to approximate the structural responses gj(µ) involved
in (5).

Fig. 1 Monotonous approximation around x(k)

Fig. 2 Non monotonous approximations around x(k)

4.1
Non monotonous approximations

In the Globally Convergent version of MMA proposed
by Svanberg (1995), each function gj(µ) is approximated
according to the following general expansion

g̃j(µ) = gj(µ(k)) +
n∑

i=1

p
(k)
ij (

1

U
(k)
i − µi

− 1

U
(k)
i − µ

(k)
i

)

+
n∑

i=1

q
(k)
ij (

1

µi − L
(k)
i

− 1

µ
(k)
i − L

(k)
i

) (8)

gj(µ(k)) is the function value at the current iteration k,
whereas the parameters p

(k)
ij and q

(k)
ij are computed based

on the first order derivatives, on the asymptotes L
(k)
i

and U
(k)
i , and on a non monotonic parameter ρ

(k)
j . At
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each iteration k, the asymptotes L
(k)
i and U

(k)
i are up-

dated according to a heuristic rule that is the same as for
the classical MMA, while the parameter ρ

(k)
j is updated

on the basis of a rule proposed by Svanberg to ensure
the globally convergent character of the approximation.
If the parameters p

(k)
ij and q

(k)
ij in (8) are positive, the

approximation is convex. Because of the presence of pa-
rameter ρ

(k)
j the approximation is non monotonous as

illustrated in Fig. 2.
As shown in Bruyneel et al. (2002), the original Svan-

berg’s GCMMA scheme can be much improved when ex-
ploiting the information at previous iteration points. In
the Gradient Based MMA approximation schemes (or
GBMMA), the gradients information from the previous
iteration k − 1 is used in place of ρ

(k)
j to build (8).

For GBMMA1, p
(k)
ij and q

(k)
ij in (8) are determined by

matching the first partial derivatives at the current and
previous design points. They are analytically computed
from the following set of equations:

∂gj(µ(k))
∂µi

=
p
(k)
ij

(U (k)
i − µ

(k)
i )2

− q
(k)
ij

(µ(k)
i − L

(k)
i )2

(9)

∂gj(µ(k−1))
∂µi

=
p
(k)
ij

(U (k)
i − µ

(k−1)
i )2

− q
(k)
ij

(µ(k−1)
i − L

(k)
i )2

In GBMMA2, the quality of the approximation (8)
is improved by using an estimation of the diagonal sec-
ond order derivatives (10) introduced for the first time in
Duysinx et al. (1995). Determining parameters p

(k)
ij and

q
(k)
ij of the scheme then relies on the first partial deriva-

tives at the current design points and on the estimated
second order diagonal derivatives (10).

∂2gj(µ(k))
∂µ2

i

�
∂gj(µ(k))

∂µi
− ∂gj(µ(k−1))

∂µi

µ
(k)
i − µ

(k−1)
i

(10)

It was observed on numerical tests that it is inter-
esting to use GBMMA2 when the current design point
is in the vicinity of the optimum, that is at the end of
the optimization process. Indeed, it makes sense that in
the final convergence stages, the use of second order in-
formation, even if estimated, improves the convergence
speed. Based on this observation, the contribution of a
given design variable µi in a given design function gj(µ)
can be approximated by GBMMA2 when the criterion
(11) is verified:

|µ(k)
i − µ

(k−1)
i |

µi − µ
i

≤ SWITCH (11)

Otherwise, GBMMA1 is used. This leads to consider
the mixed non monotonous GBMMA1-GBMMA2 appro-
ximation, for SWITCH ∈]0, 1[.

Fig. 3 Selection of the non monotonous approximation based
on GCMMA, GBMMA1 and GBMMA2

When p
(k)
ij and q

(k)
ij computed by GBMMA1 or GB-

MMA2 are not positive, the approximation procedure
switches automatically back to a classical GCMMA to
keep a convex approximation. The automatic selection
of the non monotonous convex approximation based on
(11) is summarized in Fig. 3.

4.2
Monotonous approximations

Monotonous approximations like MMA or CONLIN can
also been recovered as special cases of the more gen-
eral non monotonous approximation GCMMA. For these
approximations, only one asymptote is used at a time,
which means that depending on the sign of the first
derivatives, either p

(k)
ij or q

(k)
ij is set to zero.

The classic Method of Moving Asymptotes (Svanberg
(1987)), which is illustrated in Fig. 1, is given by

g̃j(µ) = gj(µ(k)) +
n∑

+,i

p
(k)
ij (

1

U
(k)
i − µi

− 1

U
(k)
i − µ

(k)
i

)

+
n∑
−,i

q
(k)
ij (

1

µi − L
(k)
i

− 1

µ
(k)
i − L

(k)
i

) (12)

In addition, a move-limits strategy proposed by Svanberg
(1987), is necessary to restrict the range of variation of
the design variables during the optimization process.

Furthermore, by forcing L
(k)
i = 0 and U

(k)
i → ∞,

MMA is reduced to Convex Linearization scheme CON-
LIN proposed by Fleury and Braibant (1986):

g̃j(µ) = gj(µ(k)) +
∑
+,i

∂gj(µ(k))
∂µi

(µi − µ
(k)
i )

−
∑
−,i

(µ(k)
i )

2 ∂gj(µ(k))
∂µi

(
1
µi

− 1

µ
(k)
i

) (13)

For CONLIN approximation, a move-limit strategy (14)
is also used:

µ
i
≤ µ

(k−1)
i − ∆µ ≤ µi ≤ µ

(k−1)
i + ∆µ ≤ µi (14)
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Fig. 4 Design domain and supports. Minimum density of 0.2

5

A case study including the self-weight

In order to distinguish more clearly the difficulties aris-
ing with topology optimization including self-weight, we
consider two versions of the same test case, in which the
different features are successively introduced.

In the first version, the minimum allowable pseudo-
density is arbitrarily set to 0.2 (reinforcement problem),
in order to prevent the appearance of problems related to
the non consistent behaviour of the power law model for
low density. This problem allows to point out the non
monotonous character of the compliance and to show
that this property is the origin of failure of optimization
procedures based on monotonous approximations.

Then in the second version, the minimum density is
set to the usual value of 0.01 to push forward the problem
related to the numerical ”artifact” of the SIMP modeling
of mechanical properties in the vicinity of zero-density.

The test case illustrated in Fig. 4 consists in design-
ing a structure that relies on two supports, while sup-
porting its own weight. Intuitively an arch type struc-
ture is expected. The reference length L is L = 1m.
Due to symmetry conditions, only one half of the de-
sign domain is studied and is discretized with 20 × 20
4-node quadrangular finite elements of 8 degrees of free-
dom. The mechanical properties of the base material to
be distributed in the domain are: Eo = 1N/m2, ν = 0.3
and ρo = 1kg/m3, while the gravitational acceleration
ag is 9.81kgm/s2. The exponent p in (4) is equal to 2.
The maximum available amount of material V at the so-

Fig. 5 Solutions obtained with CONLIN at iterations 199
and 200

lution is 80%, while the minimum amount of material V
is set to 1%.

The stopping criteria adopted is based on the max-
imum variation of the design variables over two design
steps where TOL = 0.0001:

max
i=1...n

|µ(k)
i − µ

(k−1)
i | ≤ TOL (15)

5.1
Non monotonous behaviour of the compliance

The particular behaviour of the compliance when self-
weight is considered is illustrated on the reinforcement
problem with a minimum density of (µ = 0.2).

At first CONLIN, a monotonous approximation is
used to solve the problem. The parameter ∆µ = 0.5 is
used in the move-limit strategy of (14). After a large
number of iterations (200), the optimization process is
still not convergent and the values of the compliance and
of the volume oscillate from one iteration to another (see
Fig. 6). As suggested by Fig. 5, which gives the material
distribution at iterations 199 and 200, the problem stems
from the oscillation of several density design variables. (A
grey scale is used for representing the emerging structure:
black is solid (µ = 1) and white is the void (µ = 0.)).

Although CONLIN and MMA have been used suc-
cessfully many times for the solution of topology prob-
lems (e.g. Duysinx and Bendsøe (1998); Pedersen (2000);
Sigmund (2001)), monotonous approximations are not
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Fig. 6 Iteration history with CONLIN limited to 200 itera-
tions

Fig. 7 Evolution of the compliance according to the design
variable 40. Monotonous approximation at iteration 199 and
bounds on the design variable

well suited to the problem considered here. The rea-
son is the non monotonous behaviour of the compli-
ance with respect to some design variables when den-
sity dependent loads are considered. In Fig. 7, for in-
stance one plots the behaviour of the compliance with
respect to design variable 40, which oscillates between
its lower and upper bounds. Its is clear that the com-
pliance is non monotonous with respect to this variable.
Using monotonous approximations, the minimum of the
subproblem with respect to this variable is only governed
by alternatively the upper and lower bounds limiting the
range of variation of the variable. Oscillations appear and
the optimization process does not converge.

This kind of trouble can be avoided with non mono-
tonous approximations like GCMMA (Svanberg (1995)).
Fig. 8 shows the solution of the problem under study
when using GCMMA. The convergence becomes smooth
and a nice optimum distribution is reached. However

Fig. 8 Solution obtained with GCMMA

the solution might be very slow. It will be shown later
that convergence speed can be improved by using Gra-
dient Based MMA approximations, that are also non
monotonous.

5.2
Remark on the volume restriction

It is also interesting to remark that optimal solutions
of problems with design dependent loads can be uncons-
trained. Here, the volume fraction of material used in the
optimal solution remains stuck at 32.5% of the available
design domain even if it is allowed to take a larger value,
e.g. 80% as illustrated in Fig. 9. This is another par-
ticularity of the topology optimization including density
dependent loads already observed in optimal topology
problems of rotating bodies by Turteltaub and Washabaugh
(1999). This property is possible because of the non monotonous
character of the compliance.

5.3
Modeling of material properties for low densities

The problem related to the solution of non monotonous
problems being fixed by resorting to GCMMA or any
non monotonous approximation, one can detect another
difficulty of self-weight topology problems. It is related
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Fig. 9 Evolution of the volume fraction at the solution

Fig. 10 Design domain, supports and non structural mass
at the top. Minimum density of 0.01

to the material model based on a power law when den-
sities are close to zero. This is illustrated on the second
version of the test-case in which the lower bound of de-
sign variables is very small (µ = 0.01). The test case is
no longer a reinforcement one, so a non structural mass,
which is placed at the top of the structure is necessary
to ensure that the problem is well-posed (Fig. 10).

Although GCMMA is used, it is seen in Fig. 11 that
an undesirable effect appears in the solution of the prob-
lem: erratic intermediate density patterns alter the final
topology. The explanation is the following. The ratio be-

Fig. 11 Solution obtained with GCMMA for a minimum
density of 0.01

tween the weight g÷µ and the stiffness K÷µp becomes
infinite when the effective pseudo-density tends to zero,
which means that the displacements and the compliance
become unbounded in low density regions. The algorithm
tries to fix the problem by letting some material to re-
duce the uncontrolled node displacements. This is total
artificial from an engineering point of view.

Following the work done by Pedersen (2000, 2001)
for eigenvalues and prestressed problems, the parame-
terization (4) can easily be modified to avoid this unde-
sirable effect. A linear profile is selected under a given
pseudo-density µC , as illustrated in Fig. 12. A thresh-
old of µC = 0.25 proved to be efficient in our numerical
applications. The modified model then takes the form
(16).

ρi = µi ρ0 0 < µ
i
≤ µi ≤ 1

Ei =
{

µp
i E0

µi (µp−1
C E0)

µC < µi ≤ 1
0 < µ

i
≤ µi ≤ µC

(16)

The modified interpolation law limits the ratio be-
tween the weight load and the stiffness to a given finite
value for low densities, and stabilizes the optimization
process.

One may be worried about the fact that the rela-
tionship (16) is now non-differentiable whereas our so-
lution algorithm is gradient based. However while the-
oretically this is a problem, practically we experienced
non problem during numerical applications. Indeed, the
non-smooth point is not a solution point, and there is
no change of sign of the derivative, so the algorithm just
goes through the non-smooth points. A more elegant so-
lution could be found by adopting the alternative inter-
polation model proposed by Stolpe and Svanberg (2001),
which is smooth everywhere and which has always a
positive (non zero) slope at zero density. The particu-
lar choice of the interpolation law has no influence upon
the conclusions of this paper. The chosen modification of
the SIMP model (16) has just the advantage to keep on
working with the power law that is very popular.

The solution of the arch problem with the modified
SIMP law (16) and GCMMA is proposed in Fig. 13.
When compared to the material distribution of Fig. 11,
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Fig. 12 Penalizations of the intermediate densities. µC = 0.25 for the modified material parameterization

Fig. 13 Optimal topology for the arch problem when using
GCMMA and the modified SIMP law

the optimal material distribution is free of parasitic ap-
pendices in the low density regions.

Finally it is interesting to verify with Fig. 14 and 15
that the optimization process still diverges with CON-
LIN even if the modified SIMP law is used. Oscilla-
tions of the design variables appear during the optimiza-
tion process: some of them take their values successively
at the upper bound and at the lower bound defined in
(13), where ∆µ = 0.3. Obviously the modified SIMP law
doesn’t remove the solution problem discussed previously
and the solution still requires the use of non monotonous
approximations. Thence the two difficulties pointed out
here are definitively two independent problems and must
be treated separately.

6
Improving solution performances with GBMMA

We now show that there is great interest in using the
recent Gradient Based MMA approximations to solve
delicate topology optimization problems like self-weight
loaded problems. Three numerical applications are pro-
posed and solved with different approximation schemes
from the MMA family. The performances of the differ-
ent approximations are compared on three applications:

Fig. 14 Topology obtained by CONLIN at iteration 199
(modified SIMP law)

Fig. 15 Topology obtained by CONLIN at iteration 200
(modified SIMP law)

the arch problem already explored previously, the beam
structure (that is a variant of the so called MBB beam)
and a bridge design problem. The main comparison cri-
terion here is the number of iterations since all the op-
timization techniques under study require the some the
same number of F.E. and sensitivity analyses at each
iteration. In the following applications, the stopping cri-
teria is satisfied when the maximum variation of the
design variables is lower than a user defined precision
TOL in (15). This parameter will be varied between 0.01
and 0.0001. For all applications, the gravity acts from
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Table 1 Number of iterations needed for solving the arch
problem for different values of TOL in (15). GBMMA1-
GBMMA2 is related to Fig. 3 (SWITCH = 0.2)

Approximations 0.01 0.001 0.0001

MMA 130 402 438
GCMMA 80 200 253
GBMMA1 51 98 130
GBMMA2 73 109 139

GBMMA1-GBMMA2 54 91 112

top to bottom and the gravitational acceleration ag is
9.81kgm/s2.

6.1
Arch structure

The problem of Fig. 10 is considered, where a non struc-
tural mass is placed at the top to load the structure.
The data of the problem are the same as in the previous
sections. L = 1m is a reference length. The mechanical
properties of the base material to be distributed in the
domain are: Eo = 1N/m2, ν = 0.3 and ρo = 1kg/m3

while an an exponent p = 2 is selected in the SIMP law.
At first we remind the reader that when CONLIN is

used, no optimal topology can be obtained. The topology
changes from one iteration to an other (Figs. 14 and 15)
and there are oscillations of the design variables during
the optimization process. Such a monotonous approxi-
mation is definitively not efficient for solving this non
monotonous problem.

For the other approximations described in this paper:
MMA, GCMMA, GBMMA1, GBMMA2 and GBMMA1-
GBMMA2, a solution can always be reached (similar to
Fig. 13). Although MMA gives rise to monotonous ap-
proximations of the design functions, it is able to come
to an optimal topology, thanks to a robust move-limits
strategy suggested by Svanberg (1987). However, as re-
ported in Table 1 for different values of the precision
TOL in (15), MMA requires a lot of iterations: twice
more than GCMMA and nearly four times more than
the best GBMMA. For self-weight problems, the non
monotonous approximations are obviously much more ef-
ficient, especially when gradients from the previous iter-
ation are used as in GBMMA approximations. According
to the results of Table 1, GBMMA is always faster than
GCMMA. The best results are obtained with the au-
tomatic strategy combining GBMMA1 and GBMMA2.
In this case, the mixed GBMMA1-GBMMA2 scheme is
nearly twice faster than GCMMA.

6.2
Beam structure

The second application given in Fig. 16 is a variant of
the classic MBB beam. Due to symmetry conditions, one

Fig. 16 MBB beam: design domain, supports and applied
load

half of the design domain is discretized with 40×20 quad-
rangular finite elements of 8 degrees of freedom. The me-
chanical properties of the base material to be distributed
in the domain is characterized by a Young modulus of
Eo = 100N/m2, ν = 0.3 and ρo = 1kg/m3. A penaliza-
tion p = 3 is chosen in the SIMP model. The obtained
volume fraction of material at the optimal solution is
24% for the problem including only self-weight. For an
objective comparison, this value is taken as the bound V
for the volume constraint (5) assigned to the problems
including external loads.

When self-weight is not taken into account, the am-
plitude of the load P has no influence on the resulting
optimal topology, shown in Fig. 17. In this case, 103 it-
erations are needed to reach the solution with the mono-
tonous MMA approximation, while 229 design steps are
required for GCMMA (with TOL = 0.01). This can be
attributed to the too conservative character of the non
monotonous GCMMA in solving such a classical topo-
logy optimization problem without self-weight loads. In
the case of fixed loads (i.e. non design dependent), we
recover the usual conclusion that MMA works very well.

Conversely when only self-weight is considered in the
design problem, MMA, GCMMA, GBMMA1 and GB-
MMA2 take respectively 121, 112, 76 and 55 iterations
to find the optimal topology (with TOL = 0.01) and it
is clear that there is a strong advantage in using non
monotonous schemes.

Let’s now investigate situations in which the self-
weight and the applied load P are considered simulta-
neously in the design problem. As illustrated in Fig. 17
a first conclusion is that the resulting topology depends
on the ratio between the applied load and the structural
weight at the solution. It is seen that when the struc-
tural weight becomes preponderant in comparison to the
applied load, the stiffeners under the load disappear and
the shape of the structure tends to be an arch, which
makes sense from an engineering point of view.
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Fig. 17 Optimal topologies for different ratios between the
applied load and the self-weight

It is then interesting to look at the solution effort
required by the different algorithms. The number of it-
erations needed to reach the solutions is given in Table 2
in function of the ratio between the fixed load P and the
self-weight of the structure (50% means that the applied
load is 50% of the total structural weight at the solution).
Although GCMMA gives rise to non monotonous ap-
proximations of the structural functions, it is sometimes

Table 2 Beam problem: Number of iterations required to
solve the problem with TOL = 0.01 in (15). GBMMA1-
GBMMA2 with SWITCH = 0.2

Load/weight MMA GCMMA GBMMA1-GBMMA2

200% 90 176 101
100% 171 109 80
50% 123 273 106
25% 182 357 117
10% 176 180 120

not able to reach the optimum within a small number of
iterations. This behaviour can be related to a sometimes
too conservative character of the GCMMA approxima-
tion as admitted by its author (Svanberg (1995)). This
behaviour can not be predicted: it depends on the ’good’
choice of initial values of internal parameters of the al-
gorithms in regards to the problem characteristics. This
is a disadvantage of this scheme.

In every situation, the number of structural analy-
ses required to get the optimum is reduced when resort-
ing to GBMMA approximations and using the informa-
tion from the previous iteration. The performances of
the mixed GBMMA1-GBMMA2 approximation proce-
dure (with the parameter SWITCH = 0.2) is outstand-
ing for all problems. Furthermore the number of itera-
tions remains stable independently of problem charac-
teristics, which is even better from a practical point of
view for industrial applications.

6.3

Bridge structure

The definition of last application concerning the design
of a bridge structure is given in Fig. 18. A non structural
mass is placed at the top to load the structure to take
into account the weight of the road surface. Because of
symmetry, only one half of the design domain is studied
and discretized with 20×20 quadrangular finite elements
of 8 degrees of freedom. The mechanical properties of
the base material to be distributed in the domain are:
Eo = 1N/m2, ν = 0.3 and ρo = 1kg/m3. The optimal
topology is presented in Fig. 19. It is composed of an
arch reinforced by additional vertical pillars.

A comparison of the performances of the different ap-
proximation schemes MMA, GCMMA and GBMMA1-
GBMMA2 is reported in Table 3. In these numerical ap-
plications, the performances of GBMMA1-GBMMA2 are
still extremely good, even if the superiority of GBMMA
compared to MMA and GCMMA is not as large as in
the other applications. Nonetheless, the most important
thing is that GBMMA always provides one of the best
solutions, which demonstrates the reliable character of
this solution procedure.
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Fig. 18 Bridge structure: design domain, supports and non
structural mass at the top

Fig. 19 Optimal topology for the bridge problem

Table 3 Bridge problem: number of iterations required to
solve the problem. GBMMA1-GBMMA2 with SWITCH =
0.2

TOL MMA GCMMA GBMMA1-GBMMA2

0.01 71 67 58
0.001 87 83 65
0.0001 109 97 101

7
Conclusions

The solution of topology optimization including the self-
weight, and more generally of density dependent body
loads, is not a direct extension of the classical design
problems. The particularities of topology optimization
including the self-weight and the difficulties in the so-
lution of the related compliance minimization problem
were presented: possible unconstrained character of the
optimum, parasitic effect for low densities and non mono-
tonous behaviour of the compliance. As the power law
model is not appropriate for self-weight loading and den-
sity dependent body forces, a modification of the SIMP
model in low density part was proposed and validated
on numerical applications. But the major contribution
of this work concernes some proposals for an efficient so-
lution procedure. A comparison of different approxima-
tion schemes of the MMA family has been performed.

When the self-weight of the structure is predominant in
the problem, CONLIN and MMA approximations can di-
verge or converge very slowly, and a non monotonous ap-
proximation like GCMMA is advised. For classical topol-
ogy optimization (with fixed external loads), monotonous
approximations (e.g. MMA) remain reliable and gener-
ally faster for solving the design problem. However, in all
cases, the recent GBMMA schemes using the gradient
information at previous iteration points has been con-
stantly superior to both MMA and GCMMA in terms of
number of iterations and reliability. This scheme should
therefore be preferred to the other ones. Finally, nu-
merical applications has shown that considering the self-
weight in the optimization process can strongly influence
the optimal topologies.

Acknowledgements Professor Claude Fleury (University of
Liège) is gratefully acknowledged for making the optimizer
CONLIN available
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