Interférométrie destructive: du sol à l'espace

Olivier Absil IAGL, Université de Liège Séminaire GRIL, 22 mars 2005

Plan de l'exposé

Nulling au sol: GENIE

- Objectifs
- Principe et difficultés du nulling au sol
- Design préliminaire
- Performances attendues (GENIEsim)
- Applications scientifiques
- Perspectives antarctiques...
- > Nulling dans l'espace: Pégase
 - Objectifs de la mission
 - Design préliminaire et performances attendues
 - Applications scientifiques

Darwin TRP: it's a long way...

- > En cours ou déjà terminé
 - Interferometer Constellation Control (Astrium, F) (Alcatel, Cannes, F)
 - Interferometer Constellation Deployment (Astrium, UK)
 - Formation Flying RF S/S (Alcatel, F)
 - High Precision Optical Metrology (Astrium, F)
 - Fringe Sensor (Kayser-Threde, D)
 - FIR Linear Detector Array (Acreo, S)
 - Achromatic Phase Shifter (IAS, F)
 - Optical Delay Line (TNO-TPD, NL) (Contraves, CH)
 - Single Mode Fibers (Astrium, D) (TNO-TPD, NL)
 - FEEP and ion engines (various)
 - Sorption Cooler (University of Twente, NL)
 - Reconstruction of Exosolar System Properties from Nulling Interferometer Data for Darwin (Alcatel, F)
 - Te glass development (TNO, NL)
 - FINCH integration (Astrium, D)

Études prévues

- Fibre Optics Wavefront Filtering (multi-axial beam combination).
- High Stability Optical Bench (mechanical stability).
- Formation Flying Ground Testbed (on-ground verification of formation flying).

Préparation de Darwin: manips astro

Technologie

- > Validation technique nulling \rightarrow nuller sol + labo
- > Vol en formation \rightarrow mission spatiale + labo
- ▶ Fibres, beam-combiners, contrôle, ... → labo
- Programme scientifique
 - Caractérisation préliminaire des cibles
 - > Disques exozodiacaux \rightarrow nuller sol (et/ou espace?)
 - ► Identification préliminaire d'exo-Terres → ?
- Exploitation scientifique
 - ► Traitement données → devra être testé...
 - Besoin d'impliquer la communauté → nuller sol

I. Le nulling au sol

22 mars 2005

GENIE: un projet ESA-ESO

- « Letter of Agreement » ESA-ESO (2001)
 - Volonté (politique) des deux institutions de collaborer
- Pré-étude au sein de l'ESA/ESTEC
 - Définition des objectifs
 - Design, construction et opération d'un nuller sol
 - Développement et test de la technologie Darwin
 - Caractérisation des exozodis autour cibles Darwin
 - Instrument scientifiquement utile, ouvert à la communauté
 - Étude préliminaire du design et des performances
 - Invitation to Tender (2003)
- > 2 phases A concurrentielles (2004)
- Évaluation en cours à l'ESA et l'ESO

Objectif ESA: disques exozodiacaux

- Émission intégrée: ~300x le signal d'une Terre
- Contexte Darwin:
 - Source de bruit marginalement dominante
 - Techniques de modulation n'éliminent pas la partie asymétrique
 - Pourraient empêcher la détection des Terres

DARWIN: Détection d'une Terre à 10 pc

-		
Densité	Détection	O ₃ spectro
1 zodi	6.5 heures	3.9 jours
10 zodi	14.4 heures	8.3 jours
100 zodi	93 heures	52 jours

22 mars 2005

Exozodi: le « design driver »

- Disques optiquement fins
- Objectif: sensibilité de 20 zodis jusque 20pc
- > Contraste:
 - 10⁴ en bande L'
 - 10³ en bande N
- Bande L' sélectionnée par les deux consortia à cause du fond thermique
- Résolution nécessaire:
 < 1AU à 20pc
 > < 50 mas
 - \rightarrow base > 16 m

Nulling de Bracewell: principe

- Interféromètre caractérisé par sa carte de transmission
- Recombinaison en plan pupille → pas d'image
- Intégration du flux transmis sur tout le champ de l'interféromètre
- Méthodes de calibration nécessaires pour distinguer les différentes contributions

Taux de réjection stellaire

Taux de réjection stellaire:

$$\rho = \frac{4}{\pi^2} \left(\frac{\lambda / B}{\theta_*} \right)^2$$

> Soleil à 20 pc ($\theta_* = 0.23$ mas): > UTs: B = 47 m $\Rightarrow \rho = 2116$ > ATs: B = 16 m $\Rightarrow \rho = 17836$

Fuites stellaires « géométriques »

22 mars 2005

Principales difficultés

Turbulence atmosphérique:

- Piston
- Dispersion
- Erreurs de front d'onde
- Scintillation
- > ...
- Fond thermique IR
- Effets instrumentaux:
 - Polarisation

> ...

Sources de fuites stellaires « instrumentales »

Instantaneous stellar transmission @ 3.8 μ m

Atmosphère: effet piston

- Fluctuations de l'indice de réfraction de l'air
- ➢ Piston = composante achromatique, produite par l'air sec (~20µm RMS → 6 franges!)
- Besoin d'un suiveur de franges
 - FINITO: 3T, bande H
 - PRIMA: 2T, bandes H/K
 - Perfo: ~150 nm RMS
 → nulling ~ 10⁻²
 - Besoin d'un suiveur de frange dédié

Atmosphère: dispersion longitudinale

- Fluctuations de la densité de colonne de vapeur d'eau
- Indice de réfraction dépend de la longueur d'onde
- > Ajoute une composante chromatique au piston
- ➢ Dispersion pas corrigée en bande L' → △OPD ≈ 2 µm RMS → nulling ~ 1
- Besoin d'un correcteur dédié

22 mars 2005

Atmosphère: erreurs de front d'onde

- Projection du champ électromagnétique sur le mode fondamental de la fibre
- ➢ Erreurs de phase → erreurs d'intensité
- Front d'onde en entrée caractérisé par rapport de Strehl et erreurs de tip-tilt
- ➢ Approximation: énergie couplée dans la fibre ≈ rapport de Strehl (valide pour Strehl > 0.3)

Atmosphère: fluctuations d'intensité

- Correction préalable du front d'onde:
 - MACAO sur UTs
 - STRAP sur ATs
- Influence faible de la scintillation
- ➢ Fluctuations résiduelles ~10% → nulling ~ 10⁻³
- Besoin d'une correction supplémentaire

	Moyenne	RMS
Tip-tilt	Tip-tilt 0 mas	
Strehl L'	0.80	0.05
Couplage	0.58	0.044

Atmosphère: fond thermique

Rayonnement de fond

- 10⁴ exozodi en bande L'
- 10⁷ exozodi en bande N
- Soustraction cruciale
- Fluctuations à toutes les fréquences
 - Échantillonnage rapide du fond thermique
- Résidu < 10⁻⁸ semble très critique en bande N
- GENIE: choix bande L'
- Soustraction du background reste critique

	Ľ,	Ν
Total stellar signal [Jy]	3.1	0.51
Total exozodi signal [Jy]	3.0×10^{-4}	5.1×10^{-4}
Sky brightness [Jy/as ²]	5.0	690
VLTI brightness [Jy/as ²]	115	21300
GENIE brightness [Jy/as ²]	29	5320
Total bckg signal [Jy]	1.8	2550
Final stellar leakage [el/s]	1.0×10^{4}	1.5×10^{3}
Final exozodi signal [el/s]	3.6×10^{2}	4.1×10^{3}
Final bckg signal [el/s]	4.8×10^{6}	2.7×10^{10}
Shot Noise [el/s ^{1/2}]	2.2×10^{3}	1.7×10^{5}
Time for $SNR = 5$ [sec]	950	40000

Polarisation: l'inconnue...

VLTI: 21 miroirs

- Coatings non identiques (âges, matériaux)
- Réflexions à différentes inclinaisons (+ courbures)
- Polarisations linéaires ressortent elliptiques...
- ► Effet très mal connu aujourd'hui → tests prévus

Effet sur GENIE

- ► Effet supposé stable dans le temps → calibration
- Sinon, travailler sur seulement 1 polarisation...

Design conceptuel (!pas réel!)

Contrôle du cophasage

- Senseurs de franges en bande H/K
- Mesure « lente » de dispersion (L')
- Ligne à retard courte et rapide
- Correcteur de dispersion (prismes)

Contrôle de l'intensité

- > Voies photométriques
- Détecteurs mono-pixel
- Correcteur d'intensité (couteaux) avant
 l'injection

Estimation des perfo: GENIEsim

Objectifs de GENIEsim

- Définir les fonctions, les modes opératoires et les calibrations nécessaires pour GENIE
- Définir les specs de haut niveau
- Quantifier l'impact de l'atmosphère
- Comparaison de différents concepts / designs
- Estimation des performances de GENIE
- Simuler des scénarios d'observation
- Tester la réduction et l'analyse des données
- Communiquer les connaissances de l'ESA vers les partenaires (scientifiques et industriels)

Principe de GENIEsim

Intégrale dans le plan du ciel

- Former une image de la scène (étoile, exozodi, planète, …)
- Calculer la carte de transmission instantanée (avec toutes erreurs)
- Flux en sortie = série temporelle
 - Fuites stellaires: intégrale 2D analytique
 - Transmission exozodi: intégrale 2D numérique (pixels)
 - Planète = source ponctuelle
 - Fond thermiqe ajouté comme une source incohérente
- Pas de ray-tracing!!!
- Fonctionnement par blocks

Simulation des sous-systèmes (VLTI)

- Simulations dans le domaine fréquentiel (Densités Spectrales de Puissance – PSD, fonctions de transfert)
- MACAO: système d'AO pour le VLTI (UTs)
 - Corrige les 60 premiers Zernike à 350 Hz
 - Le miroir bimorphe introduit du piston à haute fréquence
 - Strehl bande K: ~50% avec fluctuations ~10% RMS
 - Tip-tilt résiduel ~ 15 mas RMS
- STRAP: correcteur de tip-tilt pour les ATs
 - Performance typique: ~60 mas RMS ? (pas encore validé)
- FINITO / PRIMA-FSU
 - Senseurs de franges pour 2 ou 3 télescopes
 - Bandes H et/ou K
 - Correction effectuée par les lignes à retard du VLTI ("lentes")
 - Performance pour V < 9: ~150 nm RMS d'OPD résiduel</p>

Simulation des sous-systèmes (GENIE)

Suiveur de franges

- Corrige les fluctuations rapides d'OPD restantes (en H et K, ~20 kHz)
- Ligne à retard rapide dédiée: actuateurs piezo
- Performance typique: ~10 nm RMS sur étoile de magnitude K=5
- Correcteur de dispersion
 - Senseur de frange supplémentaire en bande L'
 - Correction dispersion inter-bande: ligne à retard (~100 Hz)
 - Correction dispersion intra-bande: prismes diélectriques mobiles (~100Hz)
 - Performance: ~10 nm RMS en bande L' pour K=5

Correcteur des intensités

- Fibres dédiées pour mesurer le flux couplé (~1 kHz)
- Actuateurs = iris variables avec l'injection
- Performance: ~1.5% en bande L'

	worst case	best case
Piston	16 nm @ 20 kHz	5 nm @ 15 kHz
Inter-band	14 nm @ 250 Hz	9.3 nm @ 125 Hz
Intra-band	3.3 nm @ 250 Hz	2.3 nm @ 125 Hz
Intensity	1.4% @ 1 kHz	1.4% @ 1 kHz
Mean total nulling	8.0×10^{-4}	5.7×10^{-4}
Mean instr. nulling	3.3×10^{-4}	9.0×10^{-5}
RMS instr. nulling	4.5×10^{-4}	1.2×10^{-4}

22 mars 2005

Sources de bruit: résumé

Bruit de photon

- Principalement dû au background
- Bruit de détecteur
 - Lectures multiples non destructives pour réduire RON
- Fuites stellaires géométriques
 - Introduisent un biais qu'il faut calibrer
- Fuites stellaires instrumentales
 - Introduisent également un biais
 - Boucles temps réel pas assez performantes (~10⁻⁴)
 - Calibration supplémentaire nécessaire
 - Bruit de variabilité: s'améliore avec le temps
- Soustraction du fond thermique
 - On suppose mesure simultanée du background
 - Multi-champs
 - Modulation de phase

Calibrations: fuites géométriques

- Fuites géométriques: ~10⁻³
- Calibration à ~1% requise
- > Contribution déterministe: N = $\pi^2/4 (B\theta_*/\lambda)^2$
- Demande connaissance du diamètre à 0.5%
 - Interférométrie:
 - Étoiles à peine résolues (diamètre < 1 mas)
 - AMBER (résolution 1 mas) → précision OK jusque ~10 pc
 - Modèle assombrissement centre-bord J → L'
 - GENIE mode constructif: résolution pas suffisante
 - Brillance de surface: ~1%

Fig. 1. Linear fit of the surface brightness relation log ZMLD_B(B - L) (*upper part*), and the corresponding residuals (*lower part*). The intrinsic dispersion in the relation is ±0.004 on log ZMLD, equivalent to a systematic error of less than 1% in the predicted angular diameters. The open circles designate GJ 699 and *Proxima*, which were excluded from the fitting procedure.

Calibrations: fuites instrumentales

- Fuites stellaires instrumentales: ~10⁻⁴
- Calibration à ~10% requise
- Méthode classique: étoiles de calibration
- Choix du calibrateur:
 - ▶ Fuites géométriques négligeables \rightarrow non résolu
 - Même performances \rightarrow même flux et même couleur (H \rightarrow L')
 - Incompatible!
 - Calibrateur = copie conforme de la cible, sans disque
- > Précision de calibration limitée par la connaissance du diamètre

> En pratique:

$$Z(\lambda) = S_{t}(\lambda) - \frac{\pi^{2}B^{2}\theta_{t}^{2}}{4\lambda^{2}}F_{t}(\lambda) - \left(S_{c}(\lambda) - \frac{\pi^{2}B^{2}\theta_{c}^{2}}{4\lambda^{2}}F_{c}(\lambda)\right)$$

Avec S_t (target) et S_c (calibrator) déjà soustraits du background

22 mars 2005

Détection d'exozodis: performances

- Soleil à 20pc, intégration sur toute la bande L'
- Sensibilité en nombre de zodis avec et sans calibration
- > Sensibilité ultime limitée par connaissance diamètre!
- > 50 zodi → pertinent pour Darwin
- Configuration à plus de 2 télescopes (nulling en θ⁴) serait intéressante (mais bcp plus compliquée)

	worst case	best case
20-zodi signal [e-]	1.3×10^{6}	1.3×10^{6}
Photon noise [e-]	1.9×10^{5}	1.9×10^{5}
Detector noise [e-]	4.9×10^{3}	4.9×10^{3}
Variablility noise [e-]	1.5×10^{4}	7.2×10^{3}
Calibrated geom. leakage [e-]	4.4×10^{5}	2.2×10^{5}
Raw instr. leakage [e-]	1.6×10^{7}	4.5×10^{6}
Calibrated instr. leakage [e-]	4.8×10^{5}	2.9×10^{5}
Zodis for SNR=5 (raw)	1200	350
Zodis for SNR=5 (calibrated)	53	31

Nulling vs. V²?

- Une mesure donne dans les deux cas un point de visibilité (ou « point de nulling »)
- Nulling de 10⁴ équivalent à mesure de visibilité à 10⁻⁴ (même specs sur le contrôle)
- > Différence: atténuation étoile
 - V²: fit de la courbe de visibilité « en aveugle » → demande diamètre connu à ~10⁻⁴ !!
 - Nulling: relaxe connaissance requise de l'étoile-cible non résolue (en plus de réduire son bruit de photon)
 - Nulling: reste à connaître diamètre à ~1%

Applications scientifiques

- Disques de débris
- Disques autour d'objets jeunes
- > Binaires haut contraste, naines brunes, EGPs
- > Mesures de « visibilités » à très haute précision
- Étoiles non résolues
- AGNs brillants

Exemple 1: disques de débris

Zeta Leporis: > 10 observations avec 10 bases AT-AT « bien réparties »

- > au passage au méridien, lors de 10 nuits successives
- > 20 min d'intégration en bande L'

Ligne: rapport de nulling théorique. Données: observations simulées. Trois paramètres du disques ont été ajustés aux observations:

- Rapport de luminosité L_d/L_s
- Exposant de loi de densité α
- Rayon interne du disque r_{in}

	Modèle	Ajusté	Erreur (1σ)
L _d /L _s	1.7e-4	1.694e-4	0.003e-4
α	0.60	0.593	0.004
r _{in} [AU]	0.5	0.4988	0.0006

Exemple 2: Jupiters chauds

> Solutions envisagées: modulation d'OPD / calibration spectrale

22 mars 2005

Exemple 3: étoiles non résolues

Fuites stellaires très sensibles au diamètre

- > Exemple:
 - Soleil à 100pc (0.09mas), base de 200m: fuites géométriques ~ 3e-4 → mesurable!
 - Pas d'accès à l'assombrissement centre-bord
- > Applications possibles:
 - Mesure de pulsations
 - Céphéides jusque qq kpc
 - delta Scuti jusque qq 100pc
 - ...
 - Binaires très serrées

Perspectives Antarctiques

- Conditions atmosphériques exceptionnelles
- Principaux avantages pour GENIE:
 - Turbulence très lente
 - Améliore les performances de contrôle
 - Rend les systèmes de contrôle « faisables »
 - Fond de ciel peu brillant
 - Pas besoin de télescopes de 8m
 - Possibilité d'un interféromètre
 « dédié »
 - Choix d'une base optimisée (réduire fuites géométriques)
 - Aspects polarisation (réduire nombre de réflexions, ...)

Long terme: exoterres KEOPS

	Dome C	Paranal
Fringe sensor freq [Hz]	1900	20000
RMS OPD [m]	4,86E-09	1,58E-08
Disp. sensor freq [Hz]	2	500
RMS inter-band [nm]	1,38E-09	8,39E-09
RMS intra-band [nm]	1,84E-09	1,99E-09
Intensity sensor freq [Hz]		1000
RMS intensity mism.	1,30E-02	1,41E-02
Mean total nulling (mes)	1,08E-03	2,12E-03
Mean instr. nulling (mes)	3,51E-05	2,30E-04
Null stability (10 sec)	3,96E-05	3,12E-04
# of zodis (SNR=5)	61	337

II. Le nulling dans l'espace

Pégase: le contexte

> CNES:

- Mission démonstration vol formation (→ technologie)
- Appel à idées à la communauté pour une charge utile scientifique sur la mission
- Basé sur des technologies mini/micro-satellites
- 2 à 3 satellites « free flying »
- Date de lancement espérée: 2010-12
- Enveloppe: 150 200 M€

Buts CNES:

- Préparation des futures grandes missions de vol en formation (LISA, Darwin, XEUS, …)
- Objectifs militaires (observation de la Terre)

Pégase: les partenaires

> Un consortium de labos français et européens

- IAS Orsay A. Léger (PI), M. Ollivier...
- LESIA Observatoire de Paris D. Rouan, A. Boccaletti, V. Coudé du Foresto...
- LUTH Observatoire de Paris J. Schneider, D. Pelat...
- GEMINI Observatoire de la Côte d'Azur
 - D. Mourard, J. Gay, Y. Rabbia...
- **ONERA**
 - G. Rousset, F. Cassaing...
- Université de Liège J. Surdej, O. Absil, P. Riaud...

- Alcatel Space Cannes X. Leyre, E. Thomas...
- CRAL ENS Lyon *F. Allard, I. Baraffe...*
- LAOG Observatoire de Grenoble

F. Malbet, C. Dougados, E. Herwats, ...

- Observatoire de Genève
 S. Udry
- Instituto des Astrofisica de Canarias

M. Edouardo

+ collaborations possibles avec ESA (SMART 3) / JPL (StarLight) ???

Objectif principal: Pégasides

- On connaît actuellement:
 - M sin *i*
 - Demi grand axe + excentricité
 - Période + éphémérides
- On aimerait connaître:
 - Paramètres physiques (structure)
 - Masse (sin i) et rayon
 - Atmosphère ?
 - Composition
 - Irradiation, mécanismes chauffage
 - Thermalisation
 - Nuages, dynamique

Besoins

- Spectroscopie
 - 1.5µm à 5µm (H₂O, CO, CH₄)
- Haute résolution
 - 1 mas → 300m @ 3 µm
- Haute dynamique
 - $10^3 \text{ à } 10^5 \rightarrow \text{nulling}$

22 mars 2005

Autres objectifs

Naines brunes

- Processus de formation et structure interne?
- Étude de système liés pour avoir accès à la masse
- Évolution avec l'âge
- Spectro IR \rightarrow T_{eff} et rayon
- Physique atmosphérique
- 5 cibles déjà identifiées
- Disques circumstellaires
 - Zone interne
 - Interactions disque étoile
 - Gaps (cf. Emilie)

Configuration de vol

22 mars 2005

Bus PROTEUS

- Suiveur de franges: ~2.5 nm
- Tip-tilt: ~40 mas RMS
- Temp. optiques: ~100 ± 1 K

- Voie infrarouge nulling + V²
- Possibilité de voie visible (couplée au fringe tracker?)

Procédure d'observation

- Observation à élongation max
 - Réduire la taille de la base
 - Minimiser fuites stellaires
 - ~10h d'observations
 - Détection des phases
 - Minimiser manœuvres
- 1 (ou 2) bases
- 3 orientations
- Pas de calibration sur étoile de référence
 - Demande grande stabilité instrumentale

22 mars 2005

Perfos: détection de Pégasides

- Simu rayonnement thermique et réfléchi (albédo 0.1)
- Spectre de corps noir (énergie IR totale OK)
- Exemple: HD209458b en 10h de pose
- ➢ SNR > 10 pour R=60 sur la bande 2.5 − 4.9 µm
- Calibration optimiste (0.3% sur diamètre)

22 mars 2005

Conclusions et perspectives

- > 1ère étape: nulling sol
 - Démonstration technique et technologique
 - Difficultés assez similaires à celles de Darwin:
 - Fond thermique
 - Contrôle OPD, tip-tilt (dispersion, intensité)
 - Réduction données, ...
 - Survey des exozodi autour des cibles Darwin
 - General user instrument »
- > 2ème étape: nulling espace
 - Vol en formation et opération simultanée d'un nuller
 - Acquisition des franges
 - Lignes à retard spatiales, ...
 - Détection et spectro de Jupiters chauds
 - Naines brunes, disques, …

> 3ème étape: DARWIN (Cosmic Vision 2020)