Dynamics of a bouncing droplet onto a vertically vibrated interface
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Low viscosity (<100 ¢St) silicon oil droplets are placed on a high viscosity (1000 cSt) oil bath
that vibrates vertically. The viscosity difference ensures that the droplet is more deformed than
the bath interface. Droplets bounce periodically on the bath when the acceleration of its sinusoidal
motion is larger than a threshold value. The threshold is minimum for a particular frequency of
excitation : droplet and bath motions are in resonance. The bouncing droplet has been modelled by
considering the deformation of the droplet and the lubrication force exerted by the air layer between
the droplet and the bath. Threshold values are predicted and found to be in good agreement with

our measurements.
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The manipulation of individual droplets becomes pro-
gressively more important in microfluidics, as it is a
promising alternative to fluid displacement in micro-
channels [1, 2]. A droplet may be considered as a micro-
scale chemical reactor with a high efficiency [3] or as a
variable focus optical lens [4]. When a droplet is laid on
a liquid bath, its coalescence with the bath often takes
a short time since the air layer separating the droplet
from the bath has to be drained out. This drainage
may be delayed by vertically vibrating the bath [5]: the
droplet bounces periodically without coalescing. With
this experiment, a droplet may be manipulated without
any contact with a solid element, which minimizes the
chemical contamination. The manipulation of bouncing
droplets is straightforward : droplets move spontaneously
by interacting with the wave they produce on the bath
at each impact [6]. By using this wave, they probe the
surroundings and detect the presence of other droplets or
solid obstacles, they may be guided [7]. Several droplets
on the same bath interact together and experience or-
bital motions [6], or form 2D crystalline lattices [8]. Fi-
nally, partial coalescence allows low viscosity droplets to
be emptied step-by-step. This emptying cascade stops
when droplets are able to bounce periodically [9].

Couder et al.[5] investigated the bouncing of an homo-
geneous system : the droplet and the bath are made with
the same viscous oil (500 cSt). The vertical position of
the vibrated bath is given by A cos(27 ft), where A and
f are the forcing amplitude and frequency respectively.
The reduced acceleration I is defined as I' = 472 Af2/g.
Periodic bouncing is observed when I' is higher than a
critical value I'c, the threshold for bouncing. Couder et
al. observed that I'c — 1 ~ f2, and explained this scal-
ing by balancing the gravity, the inertial forces and the
lubrication force exerted on the droplet by the squeezed
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air layer. Deformations of both the droplet and the bath
were not considered.

Bouncing mechanisms of liquid objects have been stud-
ied in a wide range of configurations : a droplet bouncing
on a hydrophobic solid surface [10] or on an horizontal
wall immersed into an immiscible liquid [11], a bubble
bouncing on a water/air interface [12]... As in elastic
solids, the deformation of those liquid objects is often
the key ingredient that ensures the bouncing property,
due to surface tension. Deformations may be signifi-
cantly damped by viscous effects when the Ohnesorge
number Oh = vy/p/oR is larger than unity, where R is
the droplet radius and p, v and o are the density, the vis-
cosity and the surface tension of the liquid respectively.
In the experiment of Couder, Oh ~ 4, which means that
deformations may be neglected.

In this letter, we investigate the bouncing of low vis-
cosity droplets, for which the deformation is important
(Oh < 1). The scaling law proposed by Couder [5] for
the threshold acceleration is not valid anymore : values
of I'c below unity have been observed [7, 9]. In order to
focus on the droplet deformation, we analyze the bounc-
ing of low viscosity droplets (1.5 to 100 c¢St) on a high
viscosity bath (1000 cSt) : the system is inhomogeneous
and the deformation of the bath surface is much smaller
than the droplet deformation. First, we measure I'c for
various v and f with R fixed. Then, a model that incor-
porates both the droplet deformation and the lubrication
force is developed.

A container filled with 1000 cSt silicon oil is fixed on
a vertically vibrating electromagnetic shaker. By using a
syringe, droplets of radius R =0.765 mm with viscosities
of 1.5, 10, 50 and 100 cSt are placed on the bath. Mea-
sured threshold accelerations I'c are shown in Fig.1. The
threshold is determined by using two different protocols.
First, the droplet is created when the acceleration is suffi-
ciently high for bouncing to occur. The forcing amplitude
is then slowly decreased (f fixed) until the droplet stops
bouncing and coalesces with the bath (e in Fig.1). Then,
starting from zero, I' is increased. After each increment,



a droplet is laid on the surface of the bath. When this
droplet bounces, the threshold is reached (A in Fig.1).
An hysteresis, i.e. a difference in I'c deduced by both
methods, is observed for v = 1.5 ¢St (Fig.1(a)). For high
viscosity droplets (Fig.1(d)), I'c > 1, and OT'¢/0f > 0 as
predicted in [5]. For lower droplet viscosities, the thresh-
old may be lower than 1, and there is a minimum in
the T'c(f) curve. At high frequency, this curve strongly
increases with f.

The following model is proposed in order to describe
the I'c dependance on the forcing frequency f and the
droplet viscosity v. The flow is assumed to be axisym-
metric and the motion of the droplet mass center (mass
M) confined to a vertical axis. The droplet bouncing
is modelled with two scalar ordinary differential equa-
tions describing the vertical position z. of the mass cen-
ter and the vertical deformation 7 of the droplet (Fig. 2)
respectively. The bath deformation is neglected. Dur-
ing its flight, the droplet experiences an apparent gravity
Mg(Tcos2nmft — 1) in a frame moving with the bath.
Moreover, the droplet is stressed by the surrounding air,
resulting in a vertical force F'. The influence of air is
negligible on the droplet movement, except when there is
a thin air layer between the droplet and the bath surface.
Then, F' can be estimated by lubrication theory [13], and
depends on the thickness / of the film and its rate of de-
crease h. Movements inside the droplet also have a signif-
icant influence on the air film drainage. This latter can
be modelled to leading order by a Poiseuille flow between
two parallel planar interfaces. The bottom interface is at
rest (the bath is static), while the upper moves with a
vertical velocity equal to h and an horizontal velocity
proportional to nr/R, where r is the radial cylindrical
coordinate, and R the radius of the unstrained droplet.
Therefore

n h

where ¢1, co are positive constants, and p, is the dynamic
viscosity of the air. According to the lubrication theory,
¢y = 3mw/2. The parameter ¢y represents the influence
of the flow inside the droplet on the flow in the air film.
It cannot be estimated by simple arguments. Newton’s
second law applied to the droplet is written as

Pz,
dt?

M =Mg(Tcos2nft—1)+ F (2)
For practical purposes, we use h = . — R — n instead of
.. The evolution of 7 is prescribed by an energy balance
in the frame of the mass center of the droplet:

d(K + E)

- PP 3
= a— Pr (3)

where K is the kinetic energy of the motion inside the
droplet, F is the interfacial energy and Py is the viscous
dissipative power inside the droplet. The power devel-
oped by F', called Py, is supposed to be equal to cgnF.
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FIG. 1: Acceleration threshold I'c for various viscosities of
the droplet: (a) v = 1.5¢St, (b) v = 10cSt, (¢) v = 50cSt
and (d) v = 100cSt. For v = 1.5 cSt, thresholds are differ-
ent according to whether the acceleration is increased (A) or
decreased (o). The solid line corresponds to the model predic-
tion (Eq.9), with coefficients given in Table I. The dash-dot
line is a fit by the scaling of Couder (I'c — 1 ~ f?). The
vertical dashed line enhances the resonance frequency wyes
described in the model. Error bars correspond to the size of
symbols.
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FIG. 2: Geometrical variables needed to model a bouncing
droplet of undeformed radius R: z. is the distance between
the droplet center of mass and the bath, h is the minimum air
film thickness and 7 is the vertical droplet deformation about
the axis of symmetry.

Law Mode 2 Mode 3 Fit
K=c3Mn?/2 || ec3=3/10| c3 =1/7 |e3=0.1
E:C40'172/2 ¢y = 167/5|cs = 407 /7| ca = 10

Pd:C5VM172/R2 0523 Cs =4 Cs =3.3

TABLE I: Constitutive laws for the energy balance of the
droplet deformation. Second and third columns are theoret-
ical coeflicients ¢; for modes 2 (spheroid) and 3, while the
fourth column corresponds to the best fit of Eq.(9) on exper-
imental data.

A convenient way to estimate K, F and Py as a function
of n refers to the potential flow related to infinitesimal
capillary waves at the surface of a droplet [14] (see Table
I). The deformation 7 measured experimentally is less
than 10% of the initial radius, which validates the lin-
ear approach [15]. We suppose that only the mode 2 is
excited by the bouncing since higher modes have much
higher resonance frequencies. The whole system is writ-
ten in dimensionless form by using R as a length scale and
the capillary time 7, = /M /o as a time scale. More-
over, Eq.(3) is replaced by cg times Eq.(2) plus 1/ times
Eq.(3), in order to remove the lubrication term.

h+ij = Bo(T'coswt — 1) + ¢, 43:;,)0}1(02% - h—@)
(¢34 ¢6)T) + c5Ohn + cqn = ¢gBo(T coswt — 1) — ceh
(4)
where Bo = % is the Bond number and w = 27 f7, is
the reduced frequency.

Terwagne et al. [16] observed the dynamics of the air
film located between the droplet and the bath using a
monochromatic light: concentric fringes of interference
appear when the air film is squeezed. When the droplet
bounces, the motion of the fringes is perfectly periodic:
no attenuation or phase drift take place and the bouncing
is stationary. On the other hand, the number of fringes
decreases when the droplet does not bounce: the film
thins. The periodicity of the fringes motion suggests pe-
riodic solutions from Eq.(4). Conditions for such solu-
tions are obtained by integrating Eq.(4) over a period

T = 27 /w. Under the assumption of periodicity, many
terms vanish, giving

— fOT ndt = £BoT
Tidt_ 4w vp BoT (5)
0 h2 ~ 3cic2 pg Oh

Terms on the right-hand side are always strictly positive.
According to the first relation, a mechanism of potential
energy storage (here, the droplet deformation) should be
taken into account (n # 0). The droplet has to spend
more time in an oblate state (n < 0) than in a prolate
state (7 > 0). According to the second equation, internal
movements in the liquid phase, related to the deforma-
tion rate, must have a significant influence on the film
drainage and the resulting lubrication force. Moreover, a
significant phase shift between the minimum film thick-
ness and the maximum compression must be observed.
Indeed, fOT ndt = 0, while 1/h? is strictly positive and
vanishes when the film thickens. To have a positive left
hand side in the second equation, we expect the film to
be the thinnest when the droplet begins to recover its
spherical shape (1 > 0). All these required conditions
show us that this model is minimal: if the model does
not take into account all above listed conditions, its pre-
diction fails and no periodic bouncing solutions can be
found.

The acceleration threshold I'c required for periodic
bouncing may be estimated starting from Eq.(4). When
I' < T'¢, the droplet does not bounce, the air film remains
thin and h <« Bo. The second equation in Eq.(4) does not
depend on h anymore. The droplet behaves as a simple
forced oscillator, i.e. n = cgBoB(w)I cos(wt + ¢) — %,
where B(w) and ¢ are trivially obtained. The resonance
frequency related to this oscillator is given by:

2 Cy4 1 Cq Oh2
c3 + cg c3+cg 2

(6)

res —

To find h with the first equation of Eq.(4), it is convenient
to define the amplitude H(¢) of the thickness variation
as h(t) = H(t)ec2esBoB(W)l cos(wt+e) - Calculations yield

st e — | 1 (4 - ca)costt + )

(7)
—c;Ohwsin(wt + ¢) | — 1} e2e2¢ceBoBI cos(wi+¢)

By integrating this equation over n periods (T = 27/w),
we obtain:

o {HQ 81 prBo
nT =

~1/2
————(CnT
0 3clua0hcn } (8)

where

C= (C4 — 03w2)BF11 (QCQCGBOBF) — Io(QCQCGBOBF)
Ii(x) = £ [ et cos(kt)dt
(9)
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When C < 0, the averaged film thickness H decreases
with time and the droplet finally coalesces. Conversely,
when C' > 0, H diverges and the solution is not longer
valid. The droplet takes off, h cannot be neglected any-
more in Eq.(4) and bouncing occurs. The threshold ac-
celeration for bouncing I'c can thus be defined as the
value of I" such that C' = 0. This equation has one pos-
itive solution when ¢4 — c3w? > 0, and no solution in
the other case. There is a cut-off frequency w? = o
above which the model cannot predict bouncing (C' is
always negative). This frequency corresponds to the nat-
ural resonance of mode 2, when the droplet is directly
excited (i.e. not through the air film dynamics). Tt is
always higher than w,..,, related to the forcing through
the air film dynamics. Such a frequency was already ob-
served in [9]. The curve I'c(w) tends asymptotically to
a constant value > 1 when w — 0. Moreover, when Oh
is sufficiently small, a minimum in I'c is observed for a
finite value of w, lower than w;.s since (BT'¢)/0w > 0
when w < w.. Therefore, no minimum is observed when
Wres is complex, i.e. when Oh? > 2(cs + ¢g)/ca.

In order to compare the model predictions to the ex-
perimental data shown in Fig.1(a) to 1(d), a single fit
has been made on coefficients ¢, c3, ¢5 and ¢g (1 is not
present in Eq.(9) and ¢4 is fixed to 10). Obtained value
(ca,c3,05,¢6) ~ (25,0.1,3.3,1) are similar to the values
estimated theoretically (Table I). The comparison with
experiments is acceptable, both qualitatively and quan-
titatively. In particular, the minima for low viscosities
and the divergence for high frequencies are reproduced.

Quantitative discrepancies may be due to the fact that
only mode 2 is considered in the modelling. The reso-
nance occurs for a reduced frequency w,.s < 3 as long
as Oh < 0.47. The cut-off reduced frequency for the
mode 2 is w, =~ 10. For an oil droplet with R =0.765 mm
bouncing in mode 2, resonance is observed at a maximum
frequency of 51 Hz when the viscosity is less than 32 cSt,
and the cut-off frequency of this mode is about 165 Hz.
This is consistent with our experimental observations.

In conclusion, we have measured acceleration thresh-
olds for bouncing droplets on a vertically vibrated high
viscosity bath. The forcing frequency and the droplet
viscosity were varied. There is a cut-off frequency above
which the droplet cannot use a mode 2 deformation to
bounce. For low viscosity droplets, a minimum in the
Lo (f) curve is observed, which corresponds to the reso-
nance of the mode 2. In order to explain these features,
a theoretical model was developed, that includes both
the deformation of the droplet and its influence on the
film drainage. These effects are necessary in order to ob-
tain periodic bouncing solutions such as those observed
experimentally: the model is thus minimal. By varying
four of the six constitutive coefficients of the model, it is
possible to fit the experimental data.
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