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  ABSTRACT 

  The aim of this study was to estimate the genetic 
parameters of the mid-infrared (MIR) milk spectrum 
represented by 1,060 data points per sample. The di-
mensionality of traits was reduced by principal com-
ponents analysis. Therefore, 46 principal components 
describing 99.03% of the phenotypic variability were 
used to create 46 new traits. Variance components were 
estimated using canonical transformation. Heritability 
ranged from 0 to 0.35. Twenty-five out of 46 studied 
traits showed a permanent environment variance greater 
than genetic variance. Eight traits showed heritability 
greater than 0.10. Variances of original spectral traits 
were obtained by back transformation. Heritabilities for 
each spectral data points ranged from 0.003 to 0.42. In 
particular, 3 MIR regions showing moderate to high 
heritability estimates were of potential genetic interest. 
Heritabilities for specific wave numbers, linked with 
common milk traits (e.g., lipids, lactose), were similar to 
those estimated for these traits. This research confirms 
the genetic variability of the MIR milk spectrum and, 
therefore, the genetic variation of milk components. 
The objective of this study was to better understand 
the genetics of milk composition and, maybe in the 
future, to select animals to improve milk quality. 
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  INTRODUCTION 

  Milk produced by dairy cows is a complex combi-
nation of at least 10,000 different biomolecules (Jelen, 
2007). However, only a few nonspecific milk compo-
nents (e.g., fat, protein, and lactose) are included in 
the current animal selection programs. Therefore, the 
genetic variability of a large part of the detailed milk 
composition is unknown, especially because the chemi-

cal reference analysis used to measure these specific 
components is expensive. 

  Mid-infrared (MIR) spectrometry is a powerful 
method routinely used through the world to evaluate 
milk composition and different food products such as 
milk (e.g., Sivakesava and Irudayaraj, 2002; Soyeurt et 
al., 2006) and cheese (e.g., Karoui et al., 2006). Being 
quick and inexpensive, MIR spectrometry is used in 
daily milk recording to predict the contents of major 
components used in current selection programs, such as 
the percentages of fat and protein. These traits are pre-
dicted from different calibration equations applied to 
the spectral data generated by the MIR spectrometer 
during the infrared analysis of milk. This spectral data 
results from the interaction of the milk molecules with 
the MIR laser (William and Norris, 2001). Consequent-
ly, the MIR spectrum reflects the global composition 
of milk, but this information is currently underused. 
Theoretically, the MIR data should reflect the genetic 
variation in milk components, so it could be interest-
ing to study directly the spectral information as a way 
to study the expression of genes linked to the detailed 
milk composition of dairy cows. 

  The MIR spectrum of cow milk provided by the 
MilkoScan FT6000 spectrometer (Foss, Hillerød, Den-
mark) contains 1,060 data points, also named pin num-
bers, and is expressed in transmittance. The number of 
estimated parameters grows as a quadratic function of 
the number of traits considered. Therefore, the estima-
tion of variance components for more than 1,000 traits 
using the current methods used in quantitative genet-
ics, such as REML (Searle et al., 1992), is a challenge. 
Misztal (2008) mentioned that the limits of REML 
methodologies could be around 200,000 animals, 2 mil-
lion equations, and 5 traits. Even if progress in comput-
ers is becoming steadily available, the computational 
resources for the simultaneous estimation of variance 
components for each spectral trait using multitrait 
REML is not possible without reducing the dimension-
ality of traits. Current methods used in quantitative 
genetics to resume the information use data transfor-
mation techniques, rendering the multitrait systems to 
multiple single-trait analysis (Misztal et al., 1995). 

J. Dairy Sci.  93 :1722–1728
doi:  10.3168/jds.2009-2614  
© American Dairy Science Association®,  2010 .

1722

 Received August 3, 2009.
 Accepted November 23, 2009.
  1  Corresponding author:  hsoyeurt@ulg.ac.be 



The objective of this study was to analyze MIR milk 
spectral data and to estimate genetic parameters using 
trait reduction techniques and multitrait REML.

MATERIALS AND METHODS

Spectral Data and Animal Population

During the routine milk recording in the Walloon 
part of Belgium (managed by the Walloon Breeding 
Association, Ciney, Belgium), a total of 7,621 milk 
samples were collected from 1,594 first-parity Holstein 
cows (>84% of Holstein gene) from April 2005 to De-
cember 2007 in 92 herds. It represents 4.78 records per 
cow, with a minimum value equal to 1 and a maximum 
value equal to 12. All samples were collected between 
5 and 365 DIM. Milk Committee (Battice, Belgium) 
analyzed the samples using a Milkoscan FT6000 MIR 
spectrometer (Foss). Major milk components such as 
fat and protein were quantified by the application of 
specific calibration equations on generated MIR spec-
tral data. Traditionally, these spectral data are directly 
erased after analysis. The new approach of this study 
was to record the MIR spectra represented by 1,060 
data points before the deletion. The complete pedigree 
of the cows with records was extracted and included 
7,326 animals.

Trait Reduction

Principal component analysis (PCA) was applied to 
the collected spectral data to decrease the number of 
traits analyzed simultaneously. The purpose of PCA is 
to derive the smallest number of linear combinations 
(principal components; PC) from a set of new traits 
that retain the largest amount of information contained 
in the original traits (Palm, 1998).

If V represents the phenotypic (co)variances matrix 
for the 1,060 initial spectral traits for daily test records, 
the transformation from the eigenvalue decomposition 
can be derived as V = UDU′, where U corresponds to 
the eigenvectors matrix and D is the diagonal matrix 
of eigenvalues. Using PROC PRINCOMP in SAS (SAS 
Institute, 1994), PCA was applied to the spectral data. 
The PC were chosen based on the importance of infor-
mation given by these parameters.

New traits were defined as functions of the eigenvec-
tors associated with the largest eigenvalues. The new 
traits were obtained as

 y I U yU n R= ⊗( )' ,  

where UR is the reduced matrix containing the chosen 
eigenvectors, In is an identity matrix of dimension n 

equal to the number of records, and y is the vector in-
cluding the 1,060 original traits, sorted within records.

Model and Estimation of (Co)variances

New traits defined from PCA were analyzed using 
multiple diagonalization (Misztal et al., 1995). This 
strategy allows the recovery of genetic and nongenetic 
(co)variances among PCA traits using a transformation 
matrix T. The final transformation can be written as

 y I T y I TU y I Q y* ' ,= ⊗( ) = ⊗( ) = ⊗( )n U n R n  

where y* is the vector including the new traits de-
rived from PCA, and Q = TUR′ represents the final 
transformation matrix. The transformed traits are lin-
ear combinations of the initial traits with uncorrelated 
genetic, permanent environment, and residual (co)vari-
ance matrices.

The multitrait mixed model used to estimate the (co)
variance components can be written as

 I Q y y X Zu Zp en ⊗( ) = =* * * * *,β  + + +  

where y* is the vector of transformed test-day spec-
tral traits; β* is the vector of fixed effects (herd × 
test date, stage of lactation defined as 20 equilibrated 
classes covering an average of 15 DIM); p* is the vec-
tor of permanent environmental random effects; u* is 
the vector of additive genetic animal effects; X and Z 
are incidence matrices; and e* is the vector of random 
residual effects.

The variance components were estimated using the 
MD-EM-REML program developed by Misztal (1994). 
The distribution of random effects was assumed to be 
normal. Estimated (co)variances on the transformed 
scales were back transformed toward the original 1,060 
spectral traits using a 2-step approach: 1) back trans-
forming to PCA traits, and 2) back transforming to 
original spectral traits.

Standard Error of Estimates

Standard errors of the estimated variance compo-
nents and heritability values can be derived from the 
inverse of the negative average information matrix, 
which is an approximation of the asymptotic dispersion 
matrix. The EM-REML algorithm does not provide 
this matrix (Misztal, 2008). The following strategy was 
implemented to obtain an approximation of standard 
errors: the transformation matrix generated by this 
algorithm was used to transform the dependant traits 
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into independent traits. The same procedure was done 
to convert the variances obtained by MD-EM-REML. 
The AI-REML algorithm permits the calculation of the 
approximate SE (Misztal, 2008). Therefore, additional 
AI-REML rounds were performed on every single inde-
pendent transformed trait, and the standard errors for 
the PCA traits were approximated by a back transfor-
mation.

RESULTS

PCA Applied to 1,060 Data Points

The phenotypic variability was first studied from the 
coefficients of variation. Figure 1 illustrates these coef-
ficient values, defined as the ratio of standard deviation 
to the mean multiplied by 100 and calculated for each 
spectral data point. Two MIR regions showed coeffi-
cients of variation of more than 30%. These regions 
were located between 1,628 cm−1 and 1,658 cm−1 and 
between 3,105 cm−1 and 3,444 cm−1 and represented a 
total of 98 spectral data points.

Table 1 presents the percentages described by the first 
46 PC, the estimates, and the standard error of vari-
ances ratios (in function of the phenotypic variance) es-
timated for the genetic, permanent environmental, and 
residual effects. The PCA traits were sorted according 
to their relative eigenvalues. The part of the spectral 
information explained by each PC decreased rapidly. 
Therefore, 46 PC that described 99.03% of spectral 
variability were chosen in this study. The limitation 

at 99% was chosen arbitrarily and was assumed to be 
sufficient in the first part of this study to estimate the 
heritability of milk MIR spectral data. A part of the 
spectral variability is not related to the milk (see more 
details in the Discussion section). Therefore, a second 
selection of PC is presented in the second part of this 
study.

Forty-six new traits were created from these 46 se-
lected eigenvectors and transformed into uncorrelated 
traits. Heritability values for these new traits ranged 
between 0.00 and 0.35. Eight out of 46 studied traits 
showed heritability superior to 0.10 (Table 1). Vari-
ances ratio for the permanent environment ranged 
from 0.00 to 0.20. Variance ratio for the permanent 
environment of 25 out of 46 studied traits was greater 
than the heritability estimated for these same traits. 
Residual variance ratio ranged from 0.46 to 0.98. For 
all traits, the approximate standard errors were small 
in all studied variance ratios. However, these values 
could be underestimated by the methodology used.

The rankings of PC as a function of phenotypic or 
genetic effect were different (Table 1). For instance, the 
second PC was not the second PC showing the highest 
heritability value. The same observation can be made 
for the 2 other random effects.

The ratio of the sum of the genetic and permanent 
environmental variances to the total variance was cal-
culated to present the repeatability of the MIR milk 
spectrum. The repeatability as well as heritabilities for 
the 1,060 spectral data points were estimated after the 
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Figure 1. Coefficients of variation calculated for the 1,060 spectral data points.



inverse transformation. Figure 2 illustrates the repeat-
ability and the heritability values across the MIR milk 
spectrum. In the same figure, the spectrum has also 
been represented to show the MIR milk spectrum re-
gions with the highest heritability, or repeatability, or 
both. The ratio of the sum of the genetic and permanent 
environmental variances to the total variance ranged 
from 0.01 to 0.64. The range of heritability values was 
more limited. Heritability for the spectral data points 
ranged from 0.00 to 0.42. The trends observed in Figure 

2 for the repeatability and heritability estimates had 
the same pattern. Figure 2 clearly shows 3 regions with 
moderate to high genetic variability. By choosing arbi-
trarily a threshold of heritability value equal to 0.10, 
3 regions can be isolated and are located between 926 
and 1,612 cm−1, 1,682 and 3,062 cm−1, and 3,672 and 
5,010 cm−1. These MIR regions with moderate to high 
heritability estimates included only 886 spectral data 
points instead of the 1,060 spectral points (85% of the 
total spectral points).
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Table 1. Estimates and SE of variance ratios for genetic, permanent environmental, and residual random effects calculated for the 46 traits 
estimated from the 46 principal components (PC) 

PC Relative eigenvalue

Heritability Permanent environment Residual Total variance1

Estimate SE Estimate SE Estimate SE Estimate SE

1 39.37 0.223 0.026  0.18 0.023  0.60 0.007 250.72 13.993
2 25.69 0.201 0.022  0.19 0.020  0.61 0.007 74.04 3.613
3 12.71 0.346 0.017  0.20 0.015  0.46 0.005 85.70 3.236
4 4.44 0.009 0.002  0.02 0.002  0.97 0.011 31.78 0.468
5 2.91 0.199 0.018  0.19 0.017  0.61 0.007 18.25 0.781
6 2.26 0.027 0.001  0.03 0.001  0.95 0.011 19.14 0.256
7 1.60 0.281 0.019  0.17 0.016  0.55 0.007 6.38 0.271
8 1.21 0.025 0.002  0.02 0.002  0.96 0.011 9.73 0.138
9 1.06 0.011 0.000  0.01 0.001  0.98 0.011 8.15 0.101
10 0.61 0.012 0.000  0.01 0.000  0.98 0.011 5.56 0.066
11 0.56 0.050 0.002  0.02 0.001  0.93 0.011 4.53 0.062
12 0.46 0.117 0.005  0.05 0.004  0.83 0.010 3.43 0.062
13 0.39 0.166 0.009  0.08 0.008  0.75 0.009 2.96 0.077
14 0.33 0.031 0.002  0.02 0.001  0.95 0.011 2.59 0.036
15 0.32 0.109 0.006  0.08 0.006  0.81 0.010 2.40 0.051
16 0.30 0.045 0.002  0.04 0.002  0.92 0.011 2.30 0.034
17 0.28 0.035 0.001  0.03 0.001  0.93 0.011 2.25 0.029
18 0.28 0.042 0.002  0.04 0.002  0.92 0.011 2.34 0.033
19 0.27 0.039 0.002  0.04 0.003  0.92 0.011 2.15 0.033
20 0.25 0.008 0.0004  0.02 0.001  0.98 0.011 2.07 0.025
21 0.25 0.021 0.0004  0.03 0.001  0.95 0.011 2.08 0.025
22 0.25 0.018 0.002  0.03 0.002  0.96 0.011 2.03 0.031
23 0.24 0.003 0.0005  0.01 0.001  0.98 0.011 2.14 0.027
24 0.22 0.031 0.001  0.03 0.001  0.94 0.011 1.81 0.023
25 0.22 0.009 0.0002  0.02 0.001  0.97 0.011 1.83 0.022
26 0.22 0.010 0.0003  0.02 0.001  0.97 0.011 1.80 0.022
27 0.20 0.008 0.0003  0.02 0.001  0.98 0.011 1.65 0.020
28 0.19 0.055 0.003  0.06 0.003  0.88 0.010 1.55 0.025
29 0.18 0.008 0.0004  0.01 0.001  0.98 0.011 1.56 0.019
30 0.17 0.063 0.003  0.06 0.003  0.88 0.010 1.33 0.021
31 0.16 0.007 0.001  0.02 0.001  0.97 0.011 1.43 0.019
32 0.15 0.007 0.0002  0.02 0.000  0.98 0.011 1.41 0.017
33 0.14 0.009 0.001  0.02 0.002  0.97 0.011 1.31 0.019
34 0.13 0.016 0.001  0.02 0.002  0.96 0.011 1.17 0.017
35 0.12 0.011 0.0004  0.02 0.001  0.97 0.011 0.99 0.012
36 0.12 0.008 0.0004  0.01 0.001  0.98 0.011 1.03 0.013
37 0.11 0.004 0.0001  0.02 0.001  0.97 0.011 0.90 0.011
38 0.10 0.012 0.0004  0.01 0.001  0.97 0.011 0.92 0.011
39 0.09 0.010 0.0004  0.01 0.000  0.98 0.011 0.79 0.010
40 0.08 0.004 0.001  0.01 0.001  0.98 0.011 0.71 0.009
41 0.08 0.006 0.001  0.02 0.001  0.97 0.011 0.69 0.009
42 0.07 0.008 0.0001  0.01 0.000  0.98 0.011 0.60 0.007
43 0.07 0.075 0.002  0.04 0.002  0.89 0.010 0.52 0.007
44 0.06 0.018 0.001  0.01 0.001  0.97 0.011 0.56 0.007
45 0.06 0.028 0.001  0.01 0.001  0.96 0.011 0.50 0.006
46 0.06 0.011 0.0003  0.03 0.001  0.96 0.011 0.47 0.006

1The total variance is expressed in transmittance squared; the transmittance is the unit of the spectral data.



PCA Applied to 886 Data Points

These results suggest that some PC did not show a 
genetic interest. For the example, it was decided arbi-
trarily to operate a second selection based on the MIR 
regions with heritability values superior to 0.10. Afore-
mentioned, these regions represented 898 spectral data 
points. The methodology followed was the same as the 
one presented in the first part of this study. Eight new 
variables were defined because the first 8 PC described 
99.18% of the initial spectral information. Because 
the number of studied traits was not too large, the SE 

and variances were estimated directly by AI-REML. 
Heritability values for the 8 studied new traits ranged 
between 0.10 and 0.35 (Table 2). Variance ratios for the 
permanent environment ranged from 0.13 to 0.26. The 
first 2 PC with the highest eigenvalues were not those 
PC with the highest heritabilities.

DISCUSSION

The rapid decrease of spectral variability described 
by PC (Figure 1) could be explained by the strong link 
existing among several spectral data points. Correla-
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Figure 2. Repeatability estimated from the ratio of the sum of the genetic and permanent environmental variances to the total variance and 
heritability calculated for 1,060 spectral data points expressed in wavenumber (cm−1) and illustration of mid-infrared milk spectrum.

Table 2. Estimates and SE of variance ratios for genetic, permanent environmental, and residual random effects calculated for the 8 traits 
estimated from the 8 principal components (PC) 

PC Relative eigenvalue

Heritability Permanent environment Residual Total variance1

Estimate SE Estimate SE Estimate SE Estimate SE

1 46.89 0.10 0.014  0.21 0.016  0.70 0.010 212.93 8.521
2 30.55 0.11 0.020  0.24 0.021  0.65 0.008 65.01 3.225
3 15.16 0.25 0.033  0.26 0.031  0.50 0.006 77.86 5.410
4 3.39 0.21 0.029  0.21 0.027  0.57 0.008 17.13 1.104
5 1.81 0.34 0.026  0.18 0.021  0.48 0.006 5.54 0.292
6 0.66 0.16 0.014  0.13 0.016  0.70 0.009 2.81 0.109
7 0.42 0.35 0.034  0.16 0.027  0.48 0.007 2.55 0.173
8 0.30 0.17 0.025  0.17 0.023  0.66 0.009 1.26 0.072

1The total variance is expressed in transmittance squared; the transmittance is the unit of the spectral data.



tions estimated for few adjacent spectral points showed 
high values (data not shown).

The moderate heritability values observed for 8 stud-
ied traits (Table 1) confirmed the genetic variability of 
the milk MIR spectrum. However, not all MIR regions 
showed sufficient genetic variance and repeatability to 
involve a real interest for animal selection. The evolu-
tion across MIR spectral data of the ratio of the sum 
of the genetic and environmental variances to the total 
variance showed the same pattern as the one observed 
for the heritability values.

The very low heritabilities of 2 specific regions lo-
cated between 1,616 and 1,678 cm−1 and between 3,066 
and 3,668 cm−1 (Figure 2) could reflect the laboratory 
environment, or the internal parameters of the MIR 
spectrometer, or both. A contribution of water around 
3,420 cm−1 was observed by Karoui et al. (2006). This 
difference in heritability estimates could be previously 
deduced from the values of the variation coefficient 
presented in Figure 1. The coefficients of variation were 
high for the specific regions with low heritability esti-
mates. Therefore, these 2 regions showed a phenotypic 
variation largely superior to the rest of the spectrum. 
The high residual variances ratios for the traits with low 
heritability (Table 1) confirmed that some MIR regions 
were less important for milk composition. Moreover, 
the first 2 PC estimated from the second selection of 
MIR spectral data and showing the highest eigenvalues 
(Table 2) did not present the highest values of herita-
bility. It suggests that most variability of the spectral 
information is not caused by genetics. However, the 
advantage of a genetic selection is its additive aspect.

The interpretation of individual variability, or ge-
netic variability, or both, of MIR spectrum is difficult 
because milk represents a combination of a large num-
ber of different molecules. However, the heritability for 
some wave numbers can be interpreted. The high values 
of heritability observed were consistent with previous 
knowledge, especially for the MIR region located be-
tween 926 and 1,616 cm−1 (Figure 2). This region is 
called the fingerprint region, referring to C-O and C-C 
stretching modes (1,153–900 cm−1; Karoui et al., 2006). 
In fact, these chemical bonds are common in the chemi-
cal structure of the major components of milk such as, 
for example, sugars, fats, and protein. Therefore, these 
spectral data provide a direct indication of the quantity 
of major components contained in the analyzed milk 
sample. In other words, it is the identity card of the 
milk sample. The high heritability estimates observed 
between 2,800 and 3,000 cm−1 could be related to the 
content of lipids in cow milk (Figure 2). In fact, the vi-
brations of ester linkage and C-H stretch groups related 
to fatty acids are assumed to occur in this region (Si-

vakesava and Irudayaraj, 2002). This one is dominated 
by 2 strong bands at 2,846 and 2,915 cm−1 (Dufour et 
al., 2000). The average of heritability for the data points 
located between 2,800 and 3,000 cm−1 was 0.31. This 
value was close to the heritability for the percentage 
of fat in milk. Welper and Freeman (1992) found 0.41 
as heritability for fat percentage. Ikonen et al. (1999) 
estimated the heritability of fat percentage equal to 
0.43. More recently, Miglior et al. (2007) found larger 
heritability value (0.55) for first-parity Canadian Hol-
stein cows. Sivakesava and Irudayaraj (2002) mentioned 
that the region located between 1,700 and 1,500 cm−1 is 
related to protein bands. The range 1,450 to 1,200 cm−1 
is assumed to denote carboxylic groups of protein. This 
last region showed heritability equal to 0.34. Picque et 
al. (1993) found that the MIR region located around 
1,100 cm−1 corresponded to the lactose content. The 
wave number equal to 1,099 cm−1 had heritability equal 
to 0.40, suggesting an approximation of the heritability 
of lactose content. Welper and Freeman (1992) esti-
mated heritability for the percentage of lactose equal to 
0.48. Heritability of lactose content observed by Miglior 
et al. (2007) was 0.48 for animals in first parity. Other 
milk components not studied yet in current quantita-
tive genetic research could be analyzed. For example, 
a study on estimation of heritability for lactate could 
be explored. Picque et al. (1993) mentioned that the 
response to lactate content was localized between 1,515 
and 1,593 cm−1. The average heritability obtained for 
the wave numbers located in this region was 0.22.

Besides the study of new individual milk components 
that are potentially interesting for breeding, the spec-
tral data could be used directly for different purposes 
such as management help. As mentioned in the Intro-
duction, the spectral data represent the entire milk 
composition. Moreover, the obtained results show that 
spectral variability is influenced by the environment. 
It is also known that milk composition changes when 
a cow has metabolic disorders such as acidosis and 
ketosis, or mastitis. We can, therefore, imagine using 
the procedure developed in this paper to study directly 
the changes in spectral data and therefore detect some 
metabolic disorders. As proposed by Mayeres et al. 
(2004), the information resulted from test-day model 
evaluations can serve to help farmers in management. 
Based on the difference between the expected and ob-
served values for the spectral traits, some disorders, 
currently undiscovered because of the limited number 
of studied milk components, could be detected. In the 
current study, even if other, possibly finer, methods 
could be used for the selection of MIR regions, the pos-
sibility to strongly decrease the dimensionality of spec-
tral traits was shown. When 8 traits are considered, use 
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of common programs employed in quantitative genetics 
for estimating variance components or breeding values 
is possible.

Furthermore, the study of spectrum has a lot of 
potential, especially because all milk components are 
studied simultaneously, not just 1 or 2 specific milk 
components (e.g., fat and protein) without considering 
the other changes in milk composition. Even if more 
research will have to be done on the detailed meaning 
of spectrum, the spectral data could be used globally in 
the future to improve the quality of milk.

Finally, the low values observed for the permanent 
environmental variances ratio for the majority of traits 
showed that these traits reflected largely the genetic 
effect. Consequently, the spectral data could probably 
be used to reflect the effects of gene expression.

CONCLUSIONS

Considering the use of PCA to decrease the dimen-
sionality of milk spectral traits was an interesting ap-
proach because of the high correlations existing among 
spectral data. The application of PCA on all spectral 
data showed that, based on the estimation of heritabil-
ity values, not all MIR regions are of genetic interest. 
This observation suggests the possibility to decrease 
the size of spectral data analyzed for future breeding 
applications such as the global improvement of milk 
nutritional quality and the development of manage-
ment tools. The MIR regions selected in the example 
presented in the current study suggest the possibility 
to consider only 8 traits. This strong decrease in the 
number of considered traits permits future studies 
related to, for instance, the detection of metabolic 
disorders. However, more research is required to study 
the observed spectral genetic variation and to find the 
best way to choose spectral regions and the number of 
considered PC for potential application.
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