Sixth International Symposium on Mixing in Industrial Process Industries – ISMIP VI Niagara on the Lake, Niagara Falls, Ontario, Canada August 17-21, 2008

A study of mixing by PIV and PLIF in bioreactor of animal cell culture

M-L Collignon¹, M.Crine¹, J-F Chaubard², L.Peeters², S.Dessoy², D.Toye¹

¹Laboratory of Chemical Engineering, Liege University, Belgium ²GlaxoSmithKline Biologicals, Rixensart, Belgium

Background of the research

Collaboration between:

- the Laboratory of Chemical Engineering of Liege University
- the Company GlaxoSmithKline Biologicals

Process development of a animal cell culture on microcarrier in a stirred tank used for vaccine production

Introduction

Positive effect of mixing :

Keeping in complete suspension the microcarriers (N>Njs) Homogenization of the culture medium

Negative effect of mixing:

Creation of mechanical constraints

micro-shearing

small concentration gradient

small mechanical constraints

Characterisation of local cell environment by P.I.V. and P.L.I.F. apparatus (Dantec Dynamics S.A., Denmark)

P.I.V. tracer: polyamide particles, (20 µm, 1.03g/cm³) P.L.I.F. tracer: 5ml of 8 mg/L fluorescent Rhodamine 6G Injection position: Along the wall tank and same height than the impeller

Camera Hi/Sense P.I.V/P.L.I.F: sensors CCD, 1280x1024 pixels Lens AF Micro Nikkor 60 mm F2.8D (Nikon)

Processor Correlator 2500 (Dantec Dynamics) Software FlowManager 4.71 (Dantec Dynamics)

Exploitation of P.I.V. measurements:

impeller A315 150 at 38 rpm

Time average velocity field (m.s¹) for a half tank

Time average macro-shearing field (s⁻¹) computed by

$$\left|\frac{\partial U_x}{\partial z}\right| + \left|\frac{\partial U_z}{\partial x}\right|$$

Exploitation of P.I.V. measurements: Kolmogorov scale field

Fluctuation velocity field : u' = u - ULocal rate of energy dissipation :

Kolmogorov scale field :

$$\lambda = \left(\frac{\upsilon^3}{\varepsilon}\right)^{\frac{1}{4}}$$

Exploitation of P.L.I.F. measurements:

a global mixing time of 95% homogeneity by log variance method (Brown & al. 2004, Handbook of Industrial mixing, Science and Practice, 145-256, John Wiley&Sons Inc.)

Interest?

1st agitation goal : keeping microcarriers in complete suspension

Impellers comparison at the same conditions regarding to microcarrier suspension

Results:		N _{js} (rpm)			<i>M</i>	
	A315 150	38				
	TTP 150	40			122	×Ψ×
	A310 156	49			(TA	\square
	TTP 125	50				
	3SB 160	53	3SD	A310	TTP	A315
	A315 125	54				

0.14

0.12

0.1

0.08

0.06

0.04

0.02

۱n

Time average velocity field :

	N _{js} (rpm)	V _{average} (m.s ⁻¹)	V _{90%} (m.s ⁻¹)
A315 150	38	0.029	0.055
TTP 150	40	0.030	0.055
A310 156	49	0.031	0.06
TTP 125	50	0.027	0.050
3SB 160	53	0.032	0.065
A315 125	54	0.030	0.06

Same hydrodynamic pattern

average and maximum velocity values very close to each other

Macro-shearing distributions

Calculated by:

$$\frac{\partial U_x}{\partial z} + \frac{\partial U_z}{\partial x}$$

A310 156

1.387

3.4

<

Comparison criterion

Similar approaches available in the literature (Croughan & al, 1987; Hu,1983; Sinskey & al, 1981)

TTP 125

1.299

3

<

cis_{average} (s⁻¹)

cis_{90%} (s⁻¹)

TTP 125 creates the smallest macro-shearing

Rate of energy dissipation and Kolmogorov scale :

Gradients situated outside the measurement plane estimated by supposing an isotropic turbulence

$$\varepsilon_{\min} = \upsilon \cdot \left\{ 2 \cdot \overline{\left(\frac{\partial u_r}{\partial r}\right)^2} + 2 \cdot \overline{\left(\frac{\partial u_z}{\partial z}\right)^2} + 3 \cdot \overline{\left(\frac{\partial u_r}{\partial z}\right)^2} + 3 \cdot \overline{\left(\frac{\partial u_z}{\partial r}\right)^2} + 2 \cdot \overline{\frac{\partial u_r}{\partial z} \cdot \frac{\partial u_z}{\partial r}} \right\}$$

But under-estimation of local rate of energy dissipation if

PIV resolution > kolmorogov scale

(Baldi & al, 2002, On the measurement of turbulence energy dissipation in stirred vessels with PIV techniques, Proceedings of the 11th International Symposium on Applied Laser Techniques in Fluid Mechanic, Lisbon, Portugal, July 8-11).

Over-estimation of kolmogorov scale

$$\lambda_{k-\max} = \left(\frac{\upsilon^3}{\varepsilon_{\min}}\right)^{\frac{1}{4}}$$

Kolmogorov scale distribution :

Characterization of the constraints created by collisions:

Based on Cherry et Papoutsakis model (1989):

Turbulent Collision Severity

TTP 125 creates the smallest mechanical constraints due to collisions

Mixing time:

Obtained from P.L.I.F measurements :

TTP 125 creates the highest mixing time

But small in comparison to the response time of cell metabolism to a perturbation of their environment ~ 1 hour

Conclusion on the impeller comparison at Njs

Choice of the impeller TTP 125 in view of its characteristics :

- the smallest macro-shearing;
- the smallest area where micro-shearing could be high;
- the smallest mechanical constraints due to collisions;
- the highest mixing time but small in comparison to the response time of cell metabolism.

Interest?

Formation of 3 beads agglomerate on average during the cell culture

(Cherry & Papoutsakis, 1988)

*

Aeration not taken into account

Interest of knowing the quantity variations with the rotating speed

Macro-shearing distribution (s⁻¹) :

TTP 125

Micro-shearing :

Smallest increase of the area where the micro-shearing could be high associated to the impeller TTP 125

Mechanical constraints due to collisions :

Smallest increase of mechanical constraints associated to the impeller TTP 125

Mixing time:

Highest decrease associated at the impeller TTP 125

Conclusions on that part of the results

Favourable evolution of hydrodynamic quantities of the

impeller TTP 125 :

- Smallest increase of macro-shearing
- Smallest increase of micro-shearing
- Smallest increase of mechanical constraints due to collisions
- Highest decrease of mixing time

Conclusions

In summary:

Goals : 1) Study the influence of agitation conditions on cell local environment

2) Determine the optimal agitation conditions

Tools Use of P.I.V. and P.L.I.F. techniques to compare 6 impellers

Results 1) Impellers comparison at Njs

Choice of the impeller TTP 125: smallest mechanical constraints mixing time < metabolism response time

 2) Impellers comparison when the rotating speed increases
Choice of the impeller TTP 125: smallest increase of mechanical constraints highest decrease of mixing time Goals achieved regarding to impeller selection not achieved regarding to rotating speed choice

Futures:

Improvement of the knowledge on animal cell behaviour

- 1. Determination of the animal cell resistance to hydrodynamic constraints
- 2. Experiment these agitation conditions on animal cell cultures

Improvement of measurement techniques

- 1. Use of 3-D PIV to obtain the 3rd velocity component
- 2. Refining the Kolmogorov scale measurements

Acknowledgements

I'm grateful to FNRS (National Fund for Scientific Research, Belgium) for a grant of Research Fellow

I thank the society GlaxoSmithKline Biologicals for the fruitful collaboration

Thank you for your attention