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The paper presents some applications of a local second gradient theory used to describe the me-
chanical behavior of a continua. This theory has been developed in order to avoid some well
known drawbacks of classical theories, when softening and/or localization occur in a computa-
tion. This theory is extended and then applied in a hydromechanical coupled problem, in the case
of fully saturated geomaterials. The corresponding finite element method taking into account the
geometrical non linearities is detailed. Preliminary results using the finite element code developed
in this context are then discussed and allow to study post localization behavior.

1 INTRODUCTION
This paper is devoted to some preliminary results concerning the use of a local second gradient
model in initial boundary value problems in the context of hydromechanical coupled applications.
This is mainly a work in progress. We focus on the equations solved and the finite element method
used to tackle properly the problem.

Soils and rocks are mainly porous materials filled by a fluid. It is very important then to study
numerically hydromechanical problems. This has been extensively done in the past and this paper
is not intended neither to give new results within this field nor to discuss general equations (general
means here taking into account unsaturated conditions). The reader interested by numerical com-
putations of multiphasic materials can read for instance the book of Lewis and Schrefler (Lewis
and Schrefler 2000). An other important reference dealing with hyper elasto plastic modelling is
the paper written by Borja and Alarcon (Borja and Alarcon 1995).

When submitted to large strains, geomaterials exhibit clear localized ruptures, this phenomenon
has been extensively studied, especially when the geomaterial is assumed to be a monophasic
material. In this case, it is well known that it is necessary to use an enhanced model, in order to
properly compute post localized paths. Many enhancements have been proposed and studied in the
past. It is not the aim of this paper to compare the advantages and the shortcomings of every class
of enhanced models. Readers interested by such a topic can have a look to the references of our
paper coauthored with D. Caillerie and C. Tamagnini (Chambon, Caillerie, and Tamagnini 2004).

The present paper paper is restricted to the use of a local second gradient model in hydrome-
chanical coupled problems. To our knowledge very few works have been done using an enhanced
model in such problems. It is our opinion that the more important works done in this topic has
been performed by Ehlers and coworkers. Since years they use Cosserat continuum in coupled
problems within a large strain elasto plastic framework (Ehlers and Volk 1998) (Ehlers, Ellsiepen,
and Ammann 2001). More recently some work has been carried out by Zhang and Shrefler (Zhang
and Schrefler 2004) using a non local elasto plastic second gradient model.

Let us first give the main assumptions of this work. We are dealing with quasi static problems
(which means that all inertia terms are neglected). The porous skeleton is assumed to be filled
of fluid. The geometrical effects are taken into account (which means that for the skeleton the
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current configuration is different from the reference one). We are working within an elasto plastic
framework, but the constitutive equation of the skeleton is an hypo elasto plastic model. It is
not a hyper elasto plastic model belonging to the framework defined in (Chambon, Caillerie, and
Tamagnini 2004).

The sequence of presentation is as follows. After a section giving the main notations, the third
part is devoted to a presentation of the coupled classical (i.e. without second gradient effects) equa-
tions. Then a section deals with the enhancements induced by the use of a local second gradient
model for the mechanical behavior of the skeleton. The fifth part is devoted to the finite element
treatment of the problem. In the sixth section, examples of computations are detailed.

2 NOTATIONS
The main notations used in this paper are given here, some others are defined when they are used
the first time. A component is denoted by the name of the tensor (or vector) accompanied with
tensorial indices. All tensorial indices are in lower position as there is no need in the following
of a distinction between covariant and contravariant components. The summation convention with
respect to repeated tensorial indices is adopted throughout.

The time t plays an important role in the following it is always indicated as an index in the upper
position. Derivation with respect to time is denoted by a dot. These time derivative are material
time derivatives, this means that they are computed for the same material (skeleton) mass.

All the equations are written in the current (or spatial) configuration of the skeleton at a given
time t. All the functions defined in the following can be seen as functions of the reference position
of the skeleton denoted x0

i . Since the current configuration is known, the mappings xt
i(x

0
i ) and

x0
i (x

t
i) between this configuration and the reference one are known. Finally all the functions can

be seen as function of x0
i or xt

i. In order to simplify the notations we use the same notation for the
functions and theirs values. So we can write for a given value a: a(x0

i ) = a(x0
i (x

t
i)) = a(xt

i).
Stresses are defined following the classical continuum mechanics conventions. Consequently

positive pressures are in fact negative isotropic stresses.

• σt
ij is the Cauchy stress of the mixture at the current time t,

• u�
i is the kinematically admissible virtual displacement field,

• ε�
ij = 1

2( ∂ui

∂xt
j
+ ∂uj

∂xt
i
) is the kinematically admissible virtual displacement field,

• φt is the porosity defined as φt = Ωw,t

Ωt where Ωt is the current volume of a given mass of
skeleton and Ωw,t the corresponding volume of water,

• �s is the solid grain density,

• �w,t is the fluid density,

• gi is the gravity acceleration,

• g is the norm of gi,

• nt
j is the normal to the boundary of the current configuration,

• pt is the pore pressure,

• kw is the fluid compressibility,

• V
W/S,t
i is the true fluid velocity with respect to the solid phase,

• σ′t
ij is the effective stress tensor as defined by Terzaghi : σt

ij = σ′t
ij − ptδij ,

• σ′t
m is the mean effective stress σ′t

m = σ′t
ii
3 ,

• e is the mean strain,

• ωij is the spin tensor.
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3 CLASSICAL COUPLED PROBLEMS
The details of the following developments can be found in (Collin 2003). It is assumed that there is
two immiscible phases: the porous skeleton and the fluid (water in the usual case). Phase changes
like dissolution are not considered. Moreover solid grains are assumed to be incompressible.

3.1 Balance equations
The balance equations can be written separately for both phases or alternatively for the whole
mixture and one of the two phases. Mass balance equations and momentum balance ones are
written in the current solid configuration denoted Ωt.

3.1.1 Balance of momentum
These balance equations are established for the mixture and for the fluid phase. In the mixture
momentum balance equation, there is then no interaction force between fluid phase and grain
skeleton.

Balance of momentum for the mixture In a weak form (virtual work principle), we have:

∫
Ωt

σt
ijε

�
ijdΩt =

∫
Ωt

(�s(1− φt) + �w,tφt)giu
�
i dΩt +

∫
Γt

σ

t
t
iu

�
i dΓt. (1)

Γt
σ is the part of the boundary where traction t

t
i are known. It is then necessary to prescribe the

following boundary conditions for any point belonging to Γt
σ:

σt
ijn

t
j = t

t
i. (2)

Balance of momentum for the fluid phase Fluid phase equation is written for a unit current
volume of the mixture:

∂pt

∂xt
i

+ F
S/W,t
i + �w,tgi = 0, (3)

where φt has been cancelled. φtF
S/W,t
i is in fact the true drag force applied on to the fluid.

3.1.2 Mass balance equations
Mass balance equations are written on one hand for the fluid and on the other hand for the solid
phase.

Mass balance equation for the solid phase Since the current configuration used is the current
configuration of the skeleton, the mass balance equation of the solid grains is necessarily met. For
a given mixture volume Ωt, mass equation reads:

∂(ρs(1− φt)Ωt)
∂t

= 0. (4)

Mass balance equation for the fluid In a weak form, this equation reads:

∫
Ωt

(Ṁ tp� −mt
i

∂p�

∂xt
i

)dΩt =
∫
Ωt

Qtp�dΩt −
∫
Γt

q

qtp�dΓt. (5)

Qt is a sink term and Γt
q is the part of the boundary where the input fluid mass per unit area qt is

prescribed:

qt = mt
in

t
i. (6)
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The mass flow mt
i is defined as follows:

mt
i = �w,tφtV

W/S,t
i . (7)

V
W/S,t
i is the true fluid velocity in the current configuration. The so called Darcy velocity is given

by φtV
W/S,t
i .

For the volume Ωt, the fluid mass is equal to:

M t = �w,tφtΩt. (8)

3.2 Constitutive equations
Except for the non linear behavior of the skeleton, the constitutive equations are detailed in this
section.

3.2.1 Fluid behavior
A compressible fluid is considered and the bulk modulus kw of the fluid is introduced. Variation
of fluid density related to pressure changes is given by the following relationship:

�̇w,t =
�w,t

kw
ṗt. (9)

3.2.2 Viscous drag forces
Viscous drag forces between the skeleton and the fluid are related to the Darcy velocity:

F
S/W,t
i =

�w,tφtg

K
V

W/S,t
i . (10)

F
S/W,t
i is the true drag force applied on the fluid by the skeleton for a current unit volume of the

mixture divided by the porosity. K is the Darcy permeability (m/s).

3.2.3 Mixture behavior
As we assume that the porous medium remains saturated and that the grains are incompressible,
the Terzaghi’s definition of effective stress holds:

σt
ij = σ′t

ij − ptδij . (11)

3.3 Governing equations
Finally governing equations are the balance equations (1) and (5) written in the current configura-
tion, they hold for any time t :∫

Ωt
σt

ijε
�
ijdΩt =

∫
Ωt

(�s(1− φt) + �w,tφt)giu
�
i dΩt +

∫
Γt

σ

t
t
iu

�
i dΓt, (12)

∫
Ωt

(Ṁ tp� −mt
i

∂p�

∂xt
i

)dΩt =
∫
Ωt

Qtp�dΩt −
∫
Γt

q

qtp�dΓt. (13)

In equation (12), the total stress tensor σt
ij is computed using equation (11) and the constitutive

equation of the skeleton.
In the fluid mass balance equation, mass flow is given by equation (7). Substituting F

S/W,t
i

given by equation (10) in equation (3) yields φtV
W/S,t
i . Then the fluid mass flow is rewritten as

follows:

mt
i = −K

g
(
∂pt

∂xt
i

+ �w,tgi) = −�w,t κ

µ
(
∂pt

∂xt
i

+ �w,tgi), (14)

where κ is the intrinsic permeability and µ is the fluid viscosity.
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The fluid mass M t is defined in equation (8). The time derivative of this quantity is obtained
directly by using equations (9) and (4) this yields:

Ṁ t = �w,t[
ṗt

kw
φt +

Ω̇t

Ωt
]Ωt (15)

3.4 Linearized equations
Similarly to the work of Borja (Borja and Alarcon 1995), we chose in this paper to get the lin-
earized equation for the continuum problem instead of for the discretized one as it is more usually
done. More details on the computation can be seen in a forthcoming paper (Collin, Chambon
and Charlier 2004). We use as usual a step by step procedure to solve the initial boundary value
problems.

Using a full Newton Raphson method for a given step yields the following linearized equations.
A first guess of the solutions gives the so called out of balance forces F HE

i and F HE
p :

∫
Ωτ1

στ1
ij

∂u�
i

∂xτ1
j

dΩτ1 −
∫
Ωτ1

(�s,τ1(1− φτ1) + �w,τ1φτ1)giu
�
i dΩτ1

−
∫
Γτ1

σ

t
τ1
i u�

i dΓτ1 =
∫
Ωτ1

F HE
i u�

i dΓτ1, (16)

and ∫
Ωτ1

( ˙M τ1p� −mτ1
i

∂p�

∂xτ1
i

)dΩτ1 −
∫
Ωτ1

Qτ1p�dΩτ1

+
∫
Γτ1

q

qτ1p�dΓτ1 =
∫
Ωτ1

F HE
p p�dΓτ1. (17)

The aim is now to find the displacement field dui and dp to be added to their respective current
values to define a new current configuration Ωt well balanced. If we assume that the skeleton
behavior is governed by the Terzaghi effective stresses, we get for the balance of momentum
linearized equations:

∫
Ωt

∂u�
i

∂xt
k

(dσ
′t
ik − σt

ij

∂duk

∂xt
j

+ σt
ik

∂dul

∂xt
l

)dΩt −
∫
Ωt

[�s,t(1− φt)
∂dul

∂xt
l

−�s,t(1− φt)
dΩt

Ωt
+ �w,t(1− φt)

dΩt

Ωt
+ �w,tφt ∂dul

∂xt
l

]giu
�
i dΩt

+
∫
Ωt

∂u�
i

∂xt
k

(−dptδik)dΩt −
∫
Ωt

(�w,t dpt

kw
φt)giu

�
i dΩt =

∫
Ωt

F HE
i u�

i dΓt (18)

The left hand side of equation (18) has two main contributions : the first one (corresponding
to the first two terms) is related to classical expression taking into account geometrical non linear
effects. The second contribution (last two terms) is related to the couplings between pore pressure
and the balance of momentum equation.

For the fluid the mass conservation equation, the following linearized expression is obtained:

∫
Ωt

(�w,t dpt

kw

φt

kw
ṗt + �w,t φt

kw

dpt

dt
+ �w,t dpt

kw

Ω̇t

Ωt
)p�dΩt −

∫
Ωt

(−�w,t dpt

kw

κ

µ
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(
∂pt

∂xt
k

+ �w,tgk)− �w,t κ

µ
(
∂dpt

∂xt
k

+ �w,t dpt

kw
gk))

∂p�

∂xt
k

dΩt+

∫
Ωt

(�w,t 1
kw

(1− φt)
dΩt

Ωt
ṗt + �w,t(

dΩt

Ωtdt
− Ω̇t

Ωt

dΩt

Ωt
)

+�w,t(
φt

kw
ṗt +

Ω̇t

Ωt
)
∂dui

∂xt
i

)p�dΩt −
∫
Ωt

(�w,t κ

µ

∂dui

∂xt
k

∂pt

∂xt
i

−�w,t κ

µ
(
∂pt

∂xt
i

+ �w,tgi)
∂duk

∂xt
i

− �w,t κ

µ
(
∂pt

∂xt
k

+ �w,tgk)
∂dui

∂xt
i

)
∂p�

∂xt
k

dΩt

=
∫
Ωt

F HE
p p�dΓt. (19)

In equation (19), the first two terms are related to the classical expression for a flow problem.
The last terms are related to the influence of the mechanical model on the mass balance equation
(including geometrical non linear effects).

4 LOCAL SECOND GRADIENT COUPLED MODEL
The proposed coupled model is an extension of local second gradient model developed by one of
the authors (Chambon, Caillerie, and Matsushima 2001). This kind of models can be traced back to
the pioneering work of Cosserat brothers (Cosserat and Cosserat 1909), Mindlind (Mindlin 1965)
and Germain (Germain 1973). One of the advantages of local second gradient approach is the
fact that constitutive equations are local and therefore it is straightforward to formulate a second
gradient extension of any classical models.

4.1 Monophasic medium
In the framework of microstructure continuum theory, a micro kinematic gradient field vij is in-
troduced to describe strain and rotation at the level of the grains. Compare to classical continuum
mechanics, additional terms are then added in the internal virtual work for a given body (Germain
1973):

W ∗
i =

∫
Ωt

(
σijε

∗
ij + τij(v∗ij − F ∗

ij) + Σijkh
∗
ijk

)
dΩt, (20)

where F ∗
ij is the virtual macro displacement gradient, v∗ij is the virtual micro kinematic gradient,

τij called microstress is an additive stress associated to the microstructure, h∗
ijk is the virtual micro

second gradient and Σijk is the double stress dual of h∗
ijk.

In the model developed in the following, an assumption is added: the micro kinematic gradient
is equal to the macro displacement gradient (and so v∗ij = F ∗

ij). Consequently, the principle of
virtual work can be rewritten as follows:∫

Ωt

(
σijε

∗
ij + Σijk

∂2u∗
i

∂xj∂xk

)
dΩt = W ∗

e (21)

The previous virtual work equation of second gradient models can of course be used in a finite
element code. However, this equation needs the use of C1 functions for the displacement field as
second derivatives of the displacement are involved. In order to avoid such functions, the equality
of v∗ij and F ∗

ij is introduced through a field of Lagrange multipliers λij related to a weak form of
the constraint (Chambon, Caillerie, and ElHassan 1998):

∫
Ωt

(
σij

∂u∗
i

∂xj
+ Σijk

∂v∗ij
∂xk

)
dΩt −

∫
Ωt

λij

(
∂u∗

i

∂xj
− v∗ij

)
dΩt −W ∗

e = 0 (22)
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∫
Ωt

λ∗
ij

(
∂ui

∂xj
− vij

)
dΩt = 0, (23)

where W ∗
e is the external virtual work defined as follows:

W ∗
e =

∫
Ωt

ρgiu
∗
i dΩt +

∫
Γt

(
tiu

∗
i + T iv

∗
iknk

)
dΓt (24)

4.2 Extension to biphasic medium
Starting from equations (12) and (13) of the coupled problem in classical mechanics, one has now
to introduce the microstructure effects. The main assumption is the following: pore fluid has no
influence at the level of the microstructure. The governing equations of the local second gradient
coupled problem are then the following:

∫
Ωt

(
σij

∂u∗
i

∂xj
+ Σijk

∂v∗ij
∂xk

)
dΩt −

∫
Ωt

λij

(
∂u∗

i

∂xj
− v∗ij

)
dΩt =

∫
Ωt

(�s(1− φ) + �wφ)giu
∗
i dΩt +

∫
Γt

(
tiu

∗
i + T iv

∗
iknk

)
dΓt (25)

∫
Ωt

λ∗
ij

(
∂ui

∂xj
− vij

)
dΩt = 0 (26)

∫
Ωt

(Ṁ tp� −mt
i

∂p�

∂xt
i

)dΩt =
∫
Ωt

Qtp�dΩt −
∫
Γt

q

qtp�dΓt, (27)

Equation (25) is the balance of momentum of a biphasic medium with microstructure. The
stress tensor σij is a total stress defined according to Terzaghi’s postulate, on the contrary the
double stress Σijk does not depend on pore pressure.

5 COUPLED FINITE ELEMENT FORMULATION
Similarly to equations (12) and equation (13), equations (25), (26) and (27) are linearized which
allow us to define fields of out of balance forces. Details will be found in (Collin, Chambon and
Charlier 2004). Then the resulting equations are spatially discretized using isoparametric finite
elements with eight nodes for ui and p, four nodes for vij and one node for λij (Figure 1). The
usual quadratic serendipity shape function are used for ui and p. The linear shape function are
used for vij , and λij is assumed to be constant.

Figure 1: Quadrilateral element and parent element: (a) quadrilateral element; and (b) parent ele-
ment
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As compare to monophasic local second gradient element, the definition of the elementary out
of balance forces [f t

HE ] and of the element stiffness matrix
[
kt
]

are the same (see (Matsushima,
Chambon, and Caillerie 2002)):

[U∗
node]

[
f t

HE

]
≡ W t

e
∗ − [U∗

node]
T

1∫
−1

1∫
−1

[B]T
[
T t
]T [

σt
]
.detJ tdξdη (28)

[U∗
node]

T
[
kt
] [

dU t
node

]
=

[U∗
node]

T

1∫
−1

1∫
−1

[B]T
[
T t
]T [

Et
]T [

T t
]
[B] detJ tdξdη

[
dU t

node

]
(29)

But the transformation matrices [B],
[
T t
]
, the stress vector

[
σt
]

and the matrix
[
Et
]

have to
be modified in order to introduce the terms relative to mass balance equation. For example, the
definition of the matrix

[
Et
]

becomes:

[
Et
]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E1t
(4×4) KWM(4×1)

0(4×8) 0(4×4) −I(4×4)

KMW(1×4)
KWW(1×1)

0(1×8) 0(1×4) 0(1×4)

E2t
(8×4) 0(8×1) Dt

(8×8) 0(8×4) 0(8×4)

E3t
(4×4) 0(4×1) 0(4×8) 0(4×4) I(4×4)

E4t
(4×4) 0(4×1) 0(4×8) −I(4×4) 0(4×4)

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

Matrices KWW , KWM and KMW can be computed thanks to linearized equations (18) and
(19). The full stiffness matrix is computed at each iteration of the Newtown-Raphson procedure.

6 NUMERICAL APPLICATION OF LOCAL SECOND GRADIENT COUPLED MODEL
Bi-axial experiments are known to exhibit clearly strain localization either in soil or rock samples
(see for instance (Desrues 1984)). We have done a modelling of such a plane strain compression
test in order to study the regularization of the problem in a bi-phasic medium. In this first approach,
a very simple constitutive equation has been chosen. A classical model based on the Prandtl-Reuss
elasto-plastic model gives the stress tensor σij as follows:

σ̇′
m = 3Kė (31)

˜̂σij =

⎧⎨
⎩

2G1
˙̂εij (‖ε̂‖ < elim)

2G1(˙̂εij − G1−G2
G1

σ̂kl
˙̂εkl

‖σ̂‖2 σ̂ij) (‖ε̂‖ > elim)
(32)

K is the bulk modulus, G1 and G2 are the shear moduli before and after the peak respectively, σ̇m

is the mean stress rate, ė is the mean strain rate, ˜̂σij is the Jaumann rate of the deviatoric Cauchy
stress tensor and ˙̂εij are the deviatoric strain rates. ‖ε̂‖ and ‖σ̂‖ are the second invariant of the
deviatoric strain and stress respectively and elim is a model parameter.

An exponential function is assumed for the shear modulus G2 after the yield point, so that the
material could reach its residual state smoothly:

G2 = Ḡ2exp

(
Ḡ2

G1elim − σ̂res
(‖ε̂‖ − elim)

)
(33)

Ḡ2 is the value of the shear modulus just after the peak and σ̂res is the residual value of the second
invariant of deviatoric stress tensor.
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For the second gradient part of the model, a simple isotropic linear relationship deduces from
Mindling (Mindlin 1965) is used. It depends only on one parameter denoted D:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̃111

Σ̃112

Σ̃121

Σ̃122

Σ̃211

Σ̃212

Σ̃221

Σ̃222

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0 0 0 0 D
2

D
2 0

0 D
2

D
2 0 −D

2 0 0 D
2

0 D
2

D
2 0 −D

2 0 0 D
2

0 0 0 D 0 −D
2 −D

2 0
0 −D

2 −D
2 0 D 0 0 0

D
2 0 0 −D

2 0 D
2

D
2 0

D
2 0 0 −D

2 0 D
2

D
2 0

0 D
2

D
2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v̇11
∂x1
∂v̇11
∂x2
∂v̇12
∂x1
∂v̇12
∂x2
∂v̇21
∂x1
∂v̇21
∂x2
∂v̇22
∂x1
∂v̇22
∂x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

v̇ij is the material time derivative of vij , Σ̃ijk is the Jaumann double stress rate defined by the
following equation:

Σ̃ijk = Σ̇ijk + Σljkωli + Σimkωmj + Σijpωpk, (35)

where ωli is the spin tensor.
A drained strain-controlled bi-axial test has been modelled. The loading strain rate is 0.18 % per

hour. The bottom plate is smooth, rigid and remains horizontal. The central point of this plate is
horizontally fixed in order to avoid rigid body displacement. The top plate is also smooth and rigid,
and a prescribed vertical displacement is then applied to every node of the mesh. No confining
pressure is prescribed. The external additional double forces per unit area Pi are assumed to by
equal to zero all along the boundaries. The initial pore pressure is equal to zero. Pore pressures are
fixed to their initial value at the top and bottom edges, in order to model the drainage system.

The parameters used for the simulations are listed in the Table 1. Two values of intrinsic per-
meability are given and allow to show the influence of that property on the localization pattern.

Table 1: Parameters of the models
First Gradient model Second Gradient model Flow model
K 97.3856 MPa D 500 N κ 10−19/10−12 m2

G1 50 MPa ρw 1000 kg/m3

Ḡ2 -2 MPa φ 0.15 -
elim 0.01 - kw 510−10 Pa−1

σ̂res 0.2 σpeak MPa µw 0.001 Pa.s

In order to exhibit strain localization, a imperfection is introduced in the bottom left finite
element. In this element, the parameter elim is 10 % lower than the one used for the others.

For the first simulation, the intrinsic permeability is equal to 10−12 m2. For such values of
loading rate and permeability, overpressures in the sample are very low and the corresponding
loading curve is equivalent to the curve obtained with a monophasic local second gradient model
(Figure 3). Figure 2 shows us the localization pattern clearly initiated by the material default and
the water flows related to the drainage of the sample.

Other simulations of biaxial experiment have been performed with a permeability value of
10−19 m2. In fact, for such a value, the loading rate is so fast that the drainage is not possi-
ble and the curve corresponds to an undrained biaxial test. Different mesh sizes have been used
and Figure 3 shows us that the corresponding load-displacement curves are more or less merged.
Equivalent strains are plotted on Figure 4 for 20 × 10, 30 × 15, 40 × 20 elements meshes. One
sees clearly the zone where strains are localized. Before the localization process, the strain in the
sample is homogeneous. Just after localization, the geomaterial inside the shear band is plastic, but
it remains elastic outside. This is quite clear in Figure 5: a square is plotted for each plastic Gauss
point. This allows us to accurately measure the thickness of the shear band in our computations.

These preliminary computations show that the permeability has an influence on the loading
curve (Figure 3) but not on the shear band thickness. This observation is of course only valid for
the model we use in the modelling.
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Figure 2: Localization mode and Water flow after 2.5 % axial strain (κ = 10−12 m2)

Figure 3: Axial strain vs Global reaction for 5 biaxial tests

7 CONCLUSIONS
Enhanced models are necessary to obtain regularized solutions for localized plastic strain fields
computed with a finite element method. Many enhancements have been developed in the past,
especially in the case of monophasic materials. However, geomaterials are mainly porous media
filled by one or several fluids and it is thus interesting to study the influence of the fluid on the
localization problem.

In this paper, our analysis is restricted to saturated soils or rocks filled by one compressible
pore fluid. A coupled second gradient formulation has been proposed for this analysis. A finite
element code using this local second gradient model has been presented and biaxial tests have
been modelled.

Numerical results show clearly the regularization of the localization pattern. This study is only
a preliminary one and some further investigations are necessary in order to have more clear con-
clusion.
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Figure 4: Deviatoric deformation after 2.5 % axial strain (κ = 10−19 m2)

Figure 5: Plastic zones after 2.5 % axial strain (κ = 10−19 m2)
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