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PIERRE BÉSUELLE, RENÉ CHAMBON AND FRÉDÉRIC COLLIN

Localization in a quasibrittle material is studied using a local second-gradient model. Since localization
takes place in a medium assumed to be initially homogeneous, nonuniqueness of the solutions of an
initial boundary value problem is then also studied. Using enhanced models generalizes the classical
localization analysis. In particular, it is necessary to study solutions more continuous (that is, continuous
up to the degree one) than the ones used in analysis involving classical constitutive equations. Within the
assumptions done, it appears that localization is possible in the second-gradient model if it is possible
in the underlying classical model. Then the study of nonuniqueness is conducted for the numerical
problem, using different first guesses in the full Newton–Raphson procedure solving the incremental
nonlinear equations. Thanks to this method, we are able to simulate qualitatively the nonreproducibility
of usual experiment in the postpeak regime.

1. Introduction

Modeling the degradation of materials is a very challenging task. If the degradation is sufficiently high —
if the material exhibits some softening (here in a vague sense) — it is now well known that some unpleas-
ant features appear both in experiments and in computations.

From the experimental point of view, as soon as the softening is reached, it seems that the behavior is
poorly reproducible or nonreproducible. The first reason is that in main cases strain localization occurs
which means that contrary to current assumptions, laboratory samples are not strained homogeneously
up to the failure. Moreover localization patterns themselves are not easily reproduced. Let us first quote
Desrues and Viggiani [2004], who performed some biaxial tests twice:

[E]very test is somewhat unique as for the patterns of strain localization (location of the shear
band, appearance of nonpersistent and/or multiple bands).

Quite clearly such behavior is related to the loss of uniqueness of the problem (that is, in the reported case
the biaxial test) which allows shear bands to emerge. But, what is clear in [Desrues and Viggiani 2004] is
that there is a large variability in the observed patterns. This means that there is not only one alternative
solution involving a unique localized band. If it is quite clear that if orientation and width of the bands
are easily reproduced, on the contrary the number of bands and their position as well as their persistence
cannot be predicted in advance. This has some consequences for the load versus displacement curves
which can exhibit very different results in their postpeak parts (that is, when some localization can be

Keywords: continuum with microstructure, second gradient, finite element, bifurcation, strain localization, mode switching,
reproducibility.

P.B. gratefully acknowledges financial support for a two-month stay for at the University of Liège through a Research Fellowship
of the Fonds National de la Recherche Scientifique (FNRS) of Belgium.

1115



1116 PIERRE BÉSUELLE, RENÉ CHAMBON AND FRÉDÉRIC COLLIN

expected). This is clearly illustrated in [Desrues and Hammad 1985] or in [Desrues 1984] where the two
curves of duplicate tests are in many cases rather different as soon as the peak value is attained. Other
similar observations about tests performed twice can be found in [Viggiani et al. 2001]. These results are
often interpreted as the consequence of some (unfortunately unknown) initial imperfection in the studied
samples, and based on the deterministic principle, it is argued that if the initial state is completely known
the problem should disappear.

Following the previous ideas, numerical modeling of such postpeak phenomena is usually achieved
by introducing some (deterministic) initial imperfection into the computation, and it is believed that
uniqueness of the solution is restored. Consequently changing the imperfection can change the final
solution of the computation since it is assumed that there is a correspondence between a given imperfec-
tion and the resulting solution. Unfortunately we demonstrated recently that this way of thinking may
be erroneous; see [Chambon and Moullet 2004]. For the same imperfection several (properly converged)
solutions can be found provided an appropriate searching algorithm is used. Recently, introducing an
initial fluctuation of the mechanical properties has been used to deal with this problem, for instance in
[Nübel and Huang 2004]. In the quoted paper the introduction of this initial fluctuation is achieved by
initializing randomly the density for a model sensitive with respect to this parameter. The computations
performed seem very similar to what is usually observed. However, even in this case, it seems that the
author assumes implicitly that uniqueness is restored. Alternative solutions should be searched in order
to clarify this point.

Another way is followed in the numerical experiments detailed in the present paper. We choose to
solve the “perfect” (which means without any intentional imperfection) problem, and we try to exhibit
several solutions for this problem. Usually the method used to find alternative solutions is related to a
spectral analysis of the linearized velocity problem. Numerically this is achieved by searching when the
least eigenvalue of the tangent stiffness matrix related to the velocity discretized problem goes to zero;
see for instance [de Borst 1986] or [Ikeda and Murota 2002]. This method is based on a linearization of
the problem which is completely sound if the nonlinear problem is incrementally linear. Since we use
an elastoplastic model, elastic up to a given threshold and exhibiting a sudden softening as soon as this
threshold is reached, there are many possible linearizations depending on the choice of the unloading
area within the computed domain. Then the drawback of such a method is that the mode corresponding to
the null eigenvalue which allows theoretically to follow the bifurcated solution can correspond for some
point of the studied structure to a constitutive branch (loading or unloading) different to the one used to
compute the linearized stiffness matrix. In this paper we prefer to follow the ideas initially applied in
[Chambon et al. 2001b] where the solution for a time step is searched with a Newton–Raphson method
with different first estimations which can (if the problem has more than one solution) yield different
properly converged solutions.

On the other hand, it is now well known that localizations cannot be properly modeled with classical
media since this implies rupture without energy consumption as proved by Pijaudier-Cabot and Bažant
[1987]. Enhanced models are necessary. However, contrary to what is often believed, the use of an
enhanced model does not guarantee uniqueness of the solution of the corresponding boundary value
problems; this has been demonstrated in [Chambon et al. 1998; Chambon and Moullet 2004], the latter
employing the same model used in this paper. But it seems that the result is more general. Challamel
and Hijaj [2005] also found solutions for the same problem, but using a nonlocal, enhanced model.
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In this paper a second-gradient theory is used in conjunction with the method to search alternative
solutions recalled above. The first section of this paper is devoted to a brief recall of the model used and
of the principle of its numerical implementation.

In order to be able to perform easily different computations, the element has been first implemented in
the general purpose finite element code Lagamine developed at University of Liège [Charlier 1987], and
we checked the accuracy of this implementation using extended tests. This is described in the second
section of this paper.

Then a localization analysis is performed in the third section of the paper. Such an analysis is necessar-
ily different from the original ones of [Rudnicki and Rice 1975] since the type of discontinuity assumed
in the aforementioned reference cannot be used due to the second-order terms.

After briefly recalling the method, the fourth section deals with the numerical experiments of non-
uniqueness and describes computations exhibiting switching modes. Such mode switching has already
been studied by Ikeda et al. [1997] in a different context. It has been made mainly for the incremen-
tally linear comparison solid, which on the one hand allows a sound mathematic treatment, but on the
other discards modes involving a change in the loading branches of the constitutive equations. Here, as
explained above, no assumption is done concerning the behavior but only a numerical treatment of the
problem is made.

As for our notations, a component of a tensor (or vector) is denoted by the name of the tensor (or
vector) accompanied by the indices. All tensorial indices are in lower position, since there is no need
to distinguish between covariant and contravariant components. Upper indices have specific meanings
defined in the text. The summation convention with respect to repeated tensorial indices is used.

2. Local second-gradient models

2.1. A microstructured continuum with kinematic constrains. Models with microstructure descend
from the pioneer works of the Cosserat brothers [Cosserat and Cosserat 1909], via [Toupin 1962],
[Mindlin 1964] and [Germain 1973]. They use an enriched kinematic description of the continuum,
with respect to classical continua, recalled hereafter. In addition to the displacement field, ui , a second-
order tensor, the microkinematic gradient vi j , is introduced. Particular subclasses of enriched models
introduce a constraint on the microkinematic field. For example, Cosserat models can be viewed as a
microstructured model for which the microstrain is vanishing, that is, the symmetric part of the tensor vi j

is zero. In the same spirit, (local) second-gradient models assume that the microkinetic gradient is equal
to the displacement gradient vi j = ∂ui/∂x j , where x j is the spatial coordinate. Recently, such models
have been developed for geomaterials [Chambon et al. 2001a; Matsushima et al. 2002; Chambon and
Moullet 2004] and for metals [Fleck and Hutchinson 1997].

For local second-gradient models, the virtual work principle can be summarized as follows. For every
kinematically admissible virtual displacement fields u?

i ,∫
�

(
σi jε

?
i j + 6i jk

∂2u?
i

∂x j ∂xk

)
dv =

∫
�

Gi u?
i dv +

∫
∂�

(
ti u?

i + Ti j
∂u?

i

∂x j

)
ds, (1)

where σi j is the Cauchy stress, ε?
i j is the virtual macrostrain, 6i jk is the dual static variable associated to

the second gradient of the virtual displacement, the so-called double stress; see [Germain 1973]. Further,
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Gi is the body force per unit volume, ti is the traction force per unit surface and Ti j is the double
force per unit surface. However ti and Ti j cannot be taken independently, since u?

i and ∂u?
i /∂x j are not

independent. More conveniently, the virtual work of external forces can be rewritten using the normal
derivative Dui = nk ∂ui/∂xk on the boundary. Here and in the following nk is the normal to the boundary
(assumed to be regular).∫

�

(
σi jε

?
i j + 6i jk

∂2u?
i

∂x j ∂xk

)
dv =

∫
�

Gi u?
i dv +

∫
∂�

(
pi u?

i + Pi Du?
i
)

ds, (2)

where pi and Pi are two independent variables which can be prescribed on the boundary.
For such a class of models, the balance equations and boundary conditions yield

∂σi j

∂x j
−

∂26i jk

∂x j ∂xk
+ Gi = 0, (3)

σi j n j −nkn j D6i jk −
D6i jk

Dxk
n j −

D6i jk

Dx j
nk +

Dnl

Dxl
6i jkn j nk −

Dn j

Dxk
6i jk = pi , (4)

6i jkn j nk = Pi , (5)

where Dq/Dx j denotes the tangential derivatives of any quantity q:

Dq
Dx j

=
∂q
∂x j

− n j Dq. (6)

2.2. Numerical implementation in a finite element code. A direct application of virtual work principle
(2) to solve equations of a boundary value problem needs to use C1 elements. To avoid this constraint, a
weak form of equation (2) can be introduced with help of a Lagrange multipliers field λi j , which yields,
for any time t and any kinematically admissible virtual fields u?

i and v?
i j ,∫

�t

(
σ t

i j
∂u?

i

∂x t
j
+ 6t

i jk

∂v?
i j

∂x t
k

+ λt
i j

(
∂u?

i

∂x t
j
− v?

i j

))
dv =

∫
�t

G t
i u

?
i dv +

∫
∂�t

(
pt

i u
?
i + Pi Du?

i
)

ds, (7)

and for any virtual field λ?
i j , ∫

�t
λ?

i j

(
∂ut

i

∂x t
i
− vt

i j

)
dv = 0. (8)

A complete description of the numerical treatment can be found in [Chambon and Moullet 2004].
The problem is discretized in time and for each finite step a full Newton–Raphson is applied to solve the
resulting nonlinear problem. In order to get the equations suitable for Newton–Raphson technique, the
unbalanced quantities are computed after the n-th iteration of the current time step. The same equations
are applied for the n +1-th iteration, assuming these equations are well balanced. Then, by differentiation,
one gets a proper linearization of the set of equations for the Newton–Raphson method. Equations are
written in the actual configuration and the small strain assumption is not made, which introduces some
geometrical terms in the linearized equations.

The finite element is organized with 8 nodes for the displacement field ui , 4 nodes for the displacement
gradient field vi j , and a single node for the Lagrange multipliers field λi j . The element was introduced
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Figure 1. Nodal variables used in the finite element introduced in Lagamine.

in the finite element code Lagamine, initially developed at Liège University in Belgium [Charlier 1987].
The element used in Lagamine to implement our second-gradient model contains in fact 9 nodes each
with 6 possible degrees of freedom. For the present application, some of these are not used (see Figure 1):
only 36 degrees of freedom are activated by element [Bésuelle 2005].

The following algorithm is adopted for computing one time step from t−1t to t .

(1) Initial configuration: stress σ t−1t , double stress 6t−1t , coordinates x t−1t .

(2) Assumption on the final configuration for the first iteration n = 1:
• initialization of the increment of nodal values [1U t,n

node],
• update coordinates: x t,n .

(3) Beginning of the iteration n.

(4) For each element:
• for each integration point:

– compute the strain rate, the rotation rate and the second-gradient rate,
– compute 1σ t,n and 16t,n using the constitutive equations,
– update the stress and the double stress σ t,n

= σ t−1t
+ 1σ t,n , 6t,n

= 6t−1t
+ 16t,n ,

– compute the consistent tangent stiffness matrices of constitutive laws.
• compute the element stiffness matrix.
• compute the element out of balance forces.

(5) Compute the global stiffness matrix.

(6) Compute the global out of balance forces.

(7) Compute the corrections [δU t,n
node] of the increment of nodal values by solving the Newton–Raphson

linearized system.

(8) Check the accuracy of the computed solution:
• if convergence: go to 9,
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• if no convergence: update the new assumed final configuration, n = n + 1 and go to 3.

(9) End of the step.

3. Validation

3.1. Constitutive model: a quasibrittle material. The constitutive model used in this paper is the same
as in [Matsushima et al. 2002] and [Chambon and Moullet 2004], and it can be decoupled into two
independent relations. The first is classical, and links the stress to the displacement gradient; it is a Von
Mises elastoplastic law based on the Prandt–Reuss model, with a strain softening regime. The second
relation gives the double stress as a function of the gradient of the field vi j (that is, the second gradient of
the displacement); it is a linear elastic law. Concerning the constitutive equation used here, we emphasize
that the classical part of the model involves no hardening but only sudden softening as soon as a threshold
is attained. Moreover this part is not a hyperelastoplastic model, contrary to the ones used for bifurcation
analyses in [Steinmann et al. 1997; Borja 2002; Ikeda et al. 2003]. From a thermodynamical point of view
it would presumably be better to use the hyperelastoplastic model, but in the second-gradient context it
is then necessary to build up a new theory. This has already been done in [Tamagnini et al. 2001b] and
[Chambon et al. 2004], but the implementation of such a model in a finite element code has not yet been
made.

The classical relation is

σ̇ = 3 K ė,

∇si j =


2 G1 ε̇i j for ‖ε‖ ≤ elim,

2 G1

(
ε̇i j −

G1 − G2

G1

skl ε̇kl

‖s‖2 si j

)
for ‖ε‖ > elim,

(9)

where ∇si j is the Jaumann rate of the deviatoric Cauchy stress tensor, ε̇i j is the deviatoric strain rates, σ̇ is
the mean stress rate and ė is the mean strain rate. K , G1 and G2 are the bulk modulus, the shear moduli
before peak and after peak, respectively. ‖ε‖ is the second invariant of the Green–Lagrange deformation
tensor, elim is a deformation parameter of the model which corresponds to the deviatoric stress peak.

The bulk modulus K is assumed to be constant. The elastic shear modulus available for unloading is
assumed to be constant, while an exponential function is assumed as follows for the shear modulus after
the yield point so that the material could reach its residual state smoothly:

G2 = Ḡ2 exp
(

Ḡ2

G1elim − σres
(‖ε‖ − elim)

)
, (10)

where Ḡ2 is the value of the shear modulus just after yielding and σres is the residual deviatoric stress.
The second-gradient law has been chosen as simple as possible. It is a particular case of the more

general isotropic linear relation derived in [Mindlin 1964], involving six parameters corresponding to
five independent coefficients. The following relation is slightly different from the one in [Matsushima
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Figure 2. Constitutive relations in the one-dimensional case: (left) first grade term;
(right) second grade term.

et al. 2002] and [Chambon and Moullet 2004], in that some inaccuracies have been corrected:

∇

6111
∇

6112
∇

6121
∇

6122
∇

6211
∇

6212
∇

6221
∇

6222


=



D 0 0 0 0 D/2 D/2 0

0 D/2 D/2 0 −D/2 0 0 D/2

0 D/2 D/2 0 −D/2 0 0 D/2

0 0 0 D 0 −D/2 −D/2 0

0 −D/2 −D/2 0 D 0 0 0

D/2 0 0 −D/2 0 D/2 D/2 0

D/2 0 0 −D/2 0 D/2 D/2 0

0 D/2 D/2 0 0 0 0 D





∂v̇11/∂x1

∂v̇11/∂x2

∂v̇12/∂x1

∂v̇12/∂x2

∂v̇21/∂x1

∂v̇21/∂x2

∂v̇22/∂x1

∂v̇22/∂x2


, (11)

where v̇i j is the material time derivative of vi j , and
∇

6i jk is the Jaumann double stress derivative, defined
by

∇

6i jk = 6̇i jk + 6l jkωli + 6imkωmj + 6i j pωpk , where ωli is the spin tensor.

3.2. One-dimensional simulation. In order to validate the implementation of the element in Lagamine,
first a one-dimensional compression is computed. This problem has analytic solutions under the assump-
tion of small strain; see [Chambon et al. 1998]. The bar is 1 meter long. The degrees of freedom u1,
v11, v12 and v21 are blocked at each node, the direction 2 being the direction of compression. In order to
study the symmetrical localized solution composed of a central patch in the softening loading part and
two end patches in the elastic unloading part, two elements at the middle of the bar have a elim-value
reduced by 2%. The constitutive parameters are the same as those used in [Matsushima et al. 2002]:

G1 = 16.875 MPa, Ḡ2 = 0 MPa, elim = 0.082,

K = −7.5 MPa, D = 0.08 MN. (12)
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Figure 3. Comparison of three mesh refinements in one-dimensional simulations: (left)
evolution of the resulting force versus the axial shortening, and (right) displacement
gradient along the bar.

The two constitutive relations are plotted in Figure 2. To observe the influence of the mesh on the
numerical solutions, three mesh refinements are used, with 11, 20 and 50 elements, respectively. The
three solutions are very close (Figure 3), in terms of force versus bar shortening and deformation profile.

3.3. Two-dimensional simulation. A biaxial test is computed in this section as an example of a two-
dimensional problem. Figure 4 shows the initial configuration of the specimen. It is 0.5 m wide and
1 m high (and 1 m thick). The (classical) surface tractions per unit area at both sides of the specimen
are set equal to zero. The external additional double forces per unit area Pi are assumed to be zero all
along the boundaries. At the top there is a smooth rigid plate remaining horizontal. Through this plate
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Figure 4. Initial configuration and boundary condition for biaxial test.
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Figure 5. Classical part of the constitutive relation.

a compressive force Fa is applied. The vertical displacement of this top plate is denoted by ua . At the
bottom, there is another rigid and smooth plate, which remains horizontal too. The central point of the
bottom plate is fixed to avoid rigid body displacement. The classical part of the constitutive relation is
plotted in Figure 5. The parameters are chosen as follows:

G1 = 50 MPa, Ḡ2 = −2 MPa, elim = 0.01,

K = 97.3856 MPa, σres = 0.2 MPa, D = 0.2 kN. (13)

Several meshes are compared: structured meshes with 10 × 20, 15 × 30, 20 × 40 and 40 × 80 elements,
and an unstructured mesh with 300 elements. The left bottom element of the mesh has a elim-value
reduced of 10% in order to force a localization band in this area. Here, we try to find similar solutions;
that is, we don’t try to find more than one alternative solution contrary to what is done in the following
sections.

The implementation of our element in a general purpose code allows us to go further in the validation
procedure. For example, we can work with unstructured meshes, an impossibility until now. Moreover,
the use of a general code makes it possible to compare more precisely the similarities (and likely the
differences) between different computations. It is often especially difficult to compare solutions of the
same problem obtained with different meshes. In the following computations, in order to determine
the width of the shear band, instead of comparing contours of some variable (often obtained by some
interpolation procedure), we have chosen to look directly at the part of the computed body which loads
plastically (inside the localized band). For this purpose, we have marked by a small open square the
(plastically) loading Gauss points. In the area where there are no such marks the material unloads
elastically.

The localization patterns of solutions (Figure 6) are very close, and the band thickness depends very
little on the mesh size. We want here to emphasize a new result: an unstructured mesh changes neither
the orientation nor the width of the band even if its position seems to be a little shifted. However, we
have to keep in mind that, since we use an imperfection related to an element, the problems solved in
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Figure 6. Comparison of the localization patterns for the four meshes 10 × 20, 20 × 40,
40 × 80 and an unstructured mesh with 300 elements, respectively. The imperfection
is located in the left bottom element. The squares correspond to the integration points
which are in the softening loading part; the other integration points are in the elastic
regime.

the four cases are not exactly the same. The curves of the loading force versus the specimen shortening
(Figure 7) are also very close. The step of band propagation from the imperfection concerns the force
peak zone, and as soon as the band is completely propagated through the specimen, the force decreases.
When the number of elements is sufficiently high (about 300 elements), or, more objectively, when there
are at least about three elements in the band thickness, the curves are perfectly superimposed.
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Figure 7. Comparison of the resulting force versus axial shortening curves for the same meshes.
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4. Nonuniqueness of solutions

The aim of this section is to show that as soon as strain localization is possible, there can exist several
solutions to a boundary value problem, despite of the use of a second-gradient model. Moreover, consis-
tent with experimental observations, it is possible that the computed solutions switch from one pattern
to another.

Generalizing Hill’s uniqueness theorem [Hill 1958], Chambon and Moullet [2004] demonstrated that,
under certain assumptions on the model, local second-gradient models (in the small strain framework)
enjoy a uniqueness property. These results, applied to the biaxial problem, allow us to prove that unique-
ness of solution is preserved in the elastic regime. In the biaxial problem described above, this unique
solution is the homogeneous elastic response for which the response of the second-gradient model is
similar to the response of a classical law. When the state of stress reaches the peak of the law, the
uniqueness theorem cannot be applied, and, consistent with the numerical results in [Chambon et al.
1998] and in [Chambon and Moullet 2004], more than one solution is possible. It is then interesting to
try to generalize the shear band analysis in the spirit of [Rudnicki and Rice 1975].

We present here a bifurcation analysis to search the condition for existence of a localized band. Applied
to the second-gradient model used here, such an analysis is a generalization of the pioneering work of
Rice [1976] and Rudnicki and Rice [1975]. We will show that for second-gradient models, at least when
classical and second-gradient parts are decoupled, the bifurcation analysis is reduced to a bifurcation
analysis on the classical part of the constitutive relation. However, the result is weaker in the sense that
as soon as the criterion is met, localized solutions are possible, but not in all cases. Let us emphasize
this point. This means that the second-gradient model and the underlying classical model have the same
prebifurcation curve since second-gradient effects are only active for inhomogeneous fields. But the
bifurcation point of the second-gradient model is located beyond the bifurcation point of the classical
model, with the difference depending on the size of the modeled sample. It is likely that from the limit
case of an infinite sample, both models have the same bifurcation point. Clearly the postbifurcation
behavior is different for the two models.

The classical part of the rate law is assumed to be bilinear, and the second gradient law linear. We
restrict this analysis by assuming that the so-called small strain assumption holds. So we use the ordinary
material stress rates instead of some objective ones like the Jaumann stress rates:

σ̇i j = K e
i jkl

∂ u̇k

∂xl
or σ̇i j = K ep

i jkl
∂ u̇k

∂xl
depending on

∂ u̇k

∂xl
,

6̇i jk = Ai jklmn
∂2u̇l

∂xm ∂xn
.

The nonhomogeneous solution is assumed to have the form of a planar band with unit normal ni .
Inside and outside the band, the velocity gradient depends only on the position across the band. The
velocity gradient inside and outside the band must have the form

∂ u̇ζ
i

∂x j
=

∂U̇i

∂x j
+ gζ

i n j ,
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where ζ = 1 inside the band, and ζ = 0 outside. The displacement gradient ∂U̇i/∂x j is assumed homo-
geneous, and gζ

i = gζ
i (α) are arbitrary vectors depending on the position α = xk nk across the band. g1

i
characterizes the strain field inside the band and g0

i corresponds to the near field on each side of the band.
To insure the strain continuity, we assume that

g1
i = g0

i (14)

at the boundaries of the band. This point deserves a discussion. This is a salient difference with the
localization analysis for classical materials. To some extent, we use a second-gradient theory in order
to have more regular solutions. From the theoretical point of view, solutions have to be C1 continuous.
Moreover, contrary to what happens for a classical model, a discontinuity of the strain rate could imply
that some forces are infinite. Consequently a classical shear band analysis cannot apply a priori to the
models used here.

The C1 continuity requirement is not imposed in the localization analysis developed in [Huang et al.
2005; Iordache and Willam 1998]. In this case, a discontinuity of the Cosserat rotation rate is assumed,
which should imply an infinite curvature. However, these studies used pure Cosserat models, which
means that there is no link between microrotation and macrorotation (see for instance [Chambon et al.
2001a] for a study of the difference between the pure Cosserat model and second-gradient Cosserat
model). An analysis allowing discontinuities might be interesting, but an analysis with C1 continuous
fields should be made as well, as we suggested in [Chambon et al. 2001a]. Our opinion is corroborated
by the results of Iordache and Willam [1998]. These authors found that the analysis with discontinuities
gives results corresponding to compaction or extension bands—for the case for which Cosserat effects
are vanishing, which means finally for a classical model.

For simplicity’s sake, we assume that the direction of gζ
i over the band is constant and then

gζ
i (α) = gζ (α) mζ

i ,

where gζ (α) are scalar functions and mζ
i are constant unit vectors. To simplify the notation, we consider

that the solutions on each side of the band are the same (symmetry with respect to the band) and we do
not make any difference between the solution on one side and that on the other.

In each point of the body, the stress and double stress fields satisfy conditions of equilibrium in (3).
Because the prebifurcation field is presumed uniform, the stress rate and double stress rate at the onset
of localization satisfy

∂σ̇
ζ
i j

∂x j
−

∂26̇
ζ
i jk

∂x j ∂xk
= 0. (15)

Moreover, at the boundaries of the band, conditions (4) and (5) must be satisfied (the tangential
derivative on the boundaries of the band are zero because the displacement gradient depends only on
α):

σ̇ 0
i j n j −

∂6̇0
i jk

∂x p
n pn j nk = σ̇ 1

i j n j −
∂6̇1

i jk

∂x p
n pn j nk, (16)

6̇0
i jkn j nk = 6̇1

i jkn j nk, (17)

where (·)0 and (·)1 denote quantities outside and inside the band, respectively.
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The equilibrium condition inside and outside the band can be written

K ζ
i jkl n j nl (gζ

k )′ − Ai jklmn n j nknmnn (gζ
l )′′′ = 0, (18)

where (gζ
k )′ is the derivative of gζ

k (α) in the direction orthogonal to the band. It seems reasonable to
assume that K 1

i jkl = K ep
i jkl and K 0

i jkl = K e
i jkl .

The limit conditions at the two boundaries of the band depend on the constitutive relation which is
considered on each side of the interface. For classical constitutive laws, it can be shown that the softer
response (that is, the one corresponding to the tensor Kep) can be considered on each side of the interface
to track the first bifurcation condition (see [Bésuelle and Rudnicki 2004] for a review).

Here, Equation (17) becomes:

Ai jklmn n j nknmnn
(
(g0

l )′ − (g1
l )′
)
= 0. (19)

Since function gi (α) is continuous at the boundaries of the band (see Equation (14)) and since the material
is loading inside the band and unloading outside, this means that it undergoes a neutral loading:

K ep
i jkl

∂ u̇0
k

∂xl

∣∣∣∣∣
α=αa or αb

= K e
i jkl

∂ u̇0
k

∂xl

∣∣∣∣∣
α=αa or αb

. (20)

Then the limit condition (16) can be written

K ep
i jkl n j nl

(
g0

k − g1
k
)
− Ai jklmn n j nknmnn

(
(g0

l )′′ − (g1
l )′′
)
= 0. (21)

Finally the problem can be summarized as follows:

• outside the band, the following condition, which comes from Equation (15), must be satisfied:

Ke
i j (g0

j )
′
− Ai j (g0

j )
′′′

= 0; (22)

• inside the band, once more coming from Equation (15), we observe that

K
ep
i j (g1

j )
′
− Ai j (g1

j )
′′′

= 0; (23)

• there must exist two values αa and αb for which the following conditions are satisfied:

Ai j
(
(g0

j )
′
− (g1

j )
′
)
= 0, (24)

which comes from Equation (19), and

Ai j
(
(g0

j )
′′
− (g1

j )
′′
)
= 0, (25)

which comes from Equation (21),

where K
ep
ik = K ep

i jkl n j nl , Ke
ik = K e

i jkl n j nl and Ail = Ai jklmn n j nknmnn . Note that |αa
−αb

| corresponds
to the band thickness.

Since Equations (22)–(23) are ordinary linear differential equations, one can search solutions of the
form gζ

i (α) = γζ exp(λζα) mζ
i , where γζ are nonzero constants (if γζ = 0, there is no localization) and

λζ are the two unknowns of the problem. Then one has to solve

(K
ep
i j − (λ1)

2Ai j ) m1
j = 0 (26)
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and
(Ke

i j − (λ0)
2Ai j ) m0

j = 0. (27)

There is then a solution corresponding to a nonuniform field if

det(Kep
i j − 31 Ai j ) = 0, (28)

and
det(Ke

i j − 30 Ai j ) = 0, (29)

where 3ζ = (λζ )
2.

A localized solution corresponds to a strain field involving an extremum. Then this implies 31 < 0 for
an harmonic form for g1(α) inside the band (while one expects 30 > 0 outside the band for a hyperbolic
form). In fact, we are also guided in this reasoning by the one dimensional analytical solutions obtained by
Chambon et al. [1998] and by El Hassan [1997], who demonstrated that the hyperbolic form corresponds
to a kind of boundary layer.

Equation (28) is an algebraic equation of degree 3. The third-order term reads det(A) whereas the
zero-order terms reads det(Kep). If 3a , 3b, 3c are the solutions of this equation, then consequently

det(A)3a 3b 3c = det(Kep). (30)

As a consequence of the choice of an isotropic tensor for the second-order part of the model, we have
A = D I, where I is the identity tensor. This can be easily checked for the particular value of Ai jklmn

detailed in Equation (11). So, det(A) = D3.
Before the onset of localization, the roots are expected to be positive (no localized solutions). So

without any additional assumption, the bifurcation condition as in classical (bilinear) constitutive equation
[Chambon et al. 2000] is

det(Kep) ≤ 0. (31)

If we assumed the incremental continuity of the classical part of the law, then a necessary and sufficient
condition for the sign of one root to change (that is, to have a vanishing root) is

det(Kep) = 0, (32)

which corresponds to the classical bifurcation condition for a classical bilinear law. In this case the result
can be found directly by inspecting the annulment of the zero-order term of Equation (28). Moreover,
det(Ke) > 0, and so the solution g0

i outside the band is hyperbolic.
As far as the band thickness is concerned, it is given by finding αa and αb that satisfy the double

condition (24)–(25), which can be reduced here to(
(g1)′ − (g0)′

)∣∣
α=αa or αb

= 0 and
(
(g1)′′ − (g0)′′

)∣∣
α=αa or αb

= 0.

Note that we assume in the particular form (11) that the parameter D is constant and positive. With
other models such as the ones detailed in [Chambon et al. 2001a], plasticity can also occur in the second-
gradient part of the model and in this case, D can evolves during the loading. Since the order of magnitude
of the thickness of the band is given by the inverse of λζ , the evolution of the thickness of the band is
related to the variations of D and of det(Kep) according to Equation (30).
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Coming back to the model defined by Equation (11), where D is assumed to be constant, the thickness
of the emerging band corresponding to condition (32) is infinite and decreases when det(Kep) decreases.
Since an infinite thickness for a finite size boundary value problem is not realistic, the onset of localization
can be somewhat delayed when second-gradient models are used. Consequently this criterion is not
completely similar to the one of classical media. It is a necessary condition of localization, however
since second-gradient models implicitly include an internal length, it is possible that this criterion could
be met but without loss of uniqueness for some ”small” (with respect to the internal length) problems.

For the particular law adopted in Equations (9)–(11), the bifurcation criterion is satisfied after the
deviatoric stress peak.

5. Switching mode of deformation

5.1. Algorithm for nonuniqueness search. When several solutions for a given boundary value problem
exist, it can be difficult to know that they exist and to find the other (or some of the other) solutions,
especially when the boundary value problem is nonlinear.

As we recall from Section 1, it is not satisfactory to search the null space of one eigenvalue of the
tangent stiffness matrix related to the linearized discretized velocity problem. This way is useful for
incrementally linear problems such as the ones induced by using a large strain elastic theory, but is only
a guess for incrementally nonlinear problems arising when a constitutive equation incorporates some
unloading branches.

For numerical computations involving classical constitutive equations, we have developed an algo-
rithm to search several (eventual) solutions to a problem. It takes advantage of the fact that at the
beginning of a time step, for the first iteration, the nodal quantities denoted [1U tn

node] in the algorithm
presented in Section 2.2 can be freely chosen. The standard choice is to use nodal values related to the
ones obtained at the end of the previous time step. Such a choice applied to an initially homogeneous
problem generally (though not in all cases) leads to the homogeneous solution. If a random initialization
is adopted for [1U tn

node], then it is possible to find nonhomogeneous solutions. In fact, for classical
continua, our experience (see [Chambon et al. 2001b]) is that as soon as uniqueness is lost, the duplication
of numerical experiments can yield different solutions, changing only some numerical parameters such
as the time step size or the first guess of a given time step. Since all of them are properly converged,
this means that they are all different solutions of the same initial boundary value problem defined by the
same history of boundary conditions.

Recently, this algorithm has been adapted to second-gradient models [Chambon and Moullet 2004].
It has also been implemented in Lagamine, leading to the following numerical results.

5.2. Numerical loss of uniqueness. We present in Figure 8 several localized solutions (well converged)
found after a few random initializations. The random initialization algorithm has been activated after a
specimen shortening of 0.012 m while the stress peak corresponds to a shortening of 0.01 m. In order to
clearly visualize the localized zones, the (plastically) loading Gauss points are marked with small open
squares. As in experiments, the width of the bands is completely reproducible. On the contrary, the
position, the number, and, more generally, the patterning between several bands are quite different from
one numerical experiment to another.
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Figure 8. Example of localized solutions obtained after a random initialization, showing
solutions with 1, 2 or 3 bands. The squares correspond to the integration points which
are in the softening loading part; the other integration points are in the elastic part.

Figure 9 presents the global curves of the resulting force versus the axial shortening; they are clearly
organized in several packages, each package being characterized by the number of deformation bands.
This observation is similar to what has been seen in the one-dimensional case in [Chambon et al. 1998].
It is clear that the more numerous the bands are, the larger are the areas where plastic loading takes place,
and, consequently, the closer the global curves are to the homogeneous case. We can observe that there
is no difference between the case with bands crossing the specimen directly from a lateral surface to the
opposite one and with band reflection, either on the top or on the bottom rigid plate.
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Figure 9. Comparison of the force versus axial shortening evolution of 10 simulations
after a random initialization at a shortening of 0.012 m. Curves show that the responses
depend on the number of bands. The higher the number of bands, the closer to the
homogeneous response the curve is.
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Figure 10. Comparison of the force versus axial shortening evolution in the postpeak
regime of (converged) solutions with 1 active band, 2 active bands; and solution after
the deactivation of one band. Step A corresponds to the random initialization, and step
B corresponds to an ad hoc initialization in order to deactivate one band.

So, clearly these results show the nonuniqueness of solutions after the stress peak. The position and
the number of bands are not prescribed by this boundary value problem, and we retrieve a variability of
the responses similar to what is observed in experiments.

5.3. Numerical mode switching. From the initial homogeneous problem, after the onset of localization,
several patterns of localization are possible for the numerical problem. The question addressed in this
section is: is a given pattern stable, once activated? In fact, we will show that the pattern can evolve
during the loading. If a solution has several bands which are active during the loading process, a solution
for the next increment of loading is to keep all the bands active, but other solutions with fewer active
bands are also possible. Since the areas outside the bands unload elastically, new bands cannot in fact
appear, but it is possible that at a given time, some existing bands start to unload and become inactive.

To check this possibility, we use a method similar to the random initialization algorithm. The first
guess used to start the Newton–Raphson iterative procedure is an ad hoc set of nodal values [1U tn

node]

corresponding to a deactivation of some bands. An example of such a computation is shown for a two-
band solution in Figure 10. A random initialization has been made for a specimen shortening of 0.012 m
(step A), giving a two band solution, and the ad hoc initialization (step B) has been performed at a
shortening of 0.025 m, to deactivate one of the bands. Then, the curve evolves from the two active band
solutions to the one active band solution. The deformed meshes and the loading zones are shown in
Figure 11 for an axial specimen shortening of 0.04 m. Figure 11, left, shows the result corresponding to
a pattern of two active bands. The right hand side of the figure corresponds to a pattern where a band
(the upper one) has been deactivated at step B. This figure shows clearly that the area corresponding to
the deactivated band is still plastically deformed although it exhibits elastic unloading.
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Figure 11. Pattern of active localization bands after the random initialization and (left)
without deactivation of band, (right) after deactivation of the upper band. Deformed
meshes correspond to the true deformation after a specimen shortening of 0.04 m, with-
out displacement amplification.

6. Conclusion

To properly model localization patterns, the validation of the local second gradient theory has been
extended. Localization analysis for this kind of model has been established. This theory is now mature
and can be used in computation with some confidence. Similarly, the way of (partially) solving the
bifurcation problem by means of different initializations of the Newton–Raphson iteration for a given
time step has been extended to multiple bifurcations.

From a qualitative point of view, we are able to retrieve numerically the main features of observations
made on experimental data. Especially, the great variability of the postpeak behavior of a sample is
modeled realistically. These results have some consequences. First, the postpeak part of the curve
cannot be interpreted as the result of a homogeneous response. Consequently, modeling the degradations
of material needs enhanced models; moreover, the postpeak part of the curve can be used to get some
material parameters only if the complete velocity field is known.

Clearly the results presented here have to be developed. Geomaterials are mainly polyphasic media,
which implies the extension of the present model and methods to poromechanics. This has already been
done; see [Collin et al. 2006] for details. Similarly, it is interesting to apply the methods presented to a
classical constitutive equation less simple (elastic and sudden softening) than the one used here. This is
work in progress [Bésuelle and Chambon 2006].

Finally a question arises. Is the loss of uniqueness observed and modeled for laboratory tests significant
only for those tests for which homogeneity is required? In other words, can we find similar nonuniqueness
problems for engineering situations? Answering such questions is not so easy, but some preliminary
results [Al Holo 2005; Chambon and Al Holo 2006] indicate that for some problems, such as the borehole
stability problem, the loss of uniqueness is important and may indicate poor reproducibility.
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