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SUMMARY

In this paper, a new finite element method is described and applied. It is based on a theory developed
to model poromechanical problems where the mechanical part is obeying a second gradient theory.
The aim of such a work is to properly model the post localized behaviour of soils and rocks saturated
with a pore fluid. Beside the development of this new coupled theory, a corresponding finite element
method has been developed. The elements used are based on a weak form of the relation between
the deformation gradient and the second gradient, using a field of Lagrange multipliers. The global
problem is solved by a system of equations where the kinematic variables are fully coupled with the
pore pressure. Some numerical experiments showing the effectiveness of the method ends the paper.
Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Soils and rocks are generally considered as porous materials filled by one or several fluids.
Interactions between the porous skeleton and the fluid phases are very important in many
engineering problems. It is therefore necessary to study applications involving multiphasic
materials. Different approaches have been proposed in the past to tackle such kind of problems.
The first one is the general theory of porous media (based on a mixture theory) which could be
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referred to the works of Bowen [1] and de Boer [2]. Using an averaging theory [3, 4], Lewis
and Schrefler [5] propose the general equation for multiphasic media. Finally, a third approach
follows the ideas of Biot [6] in the framework of thermodynamics of irreversible processes.
This has been developed by Coussy [7]. All these theories are only based on simple materials
as defined by Truesdell and Noll [8].

When submitted to large strains, geomaterials exhibit clear localized ruptures (like shear
bands [9, 10], or compaction bands [11, 12]), this phenomenon has been extensively studied,
especially when the geomaterial is assumed to be a monophasic material. In this case, numerical
modelling of such kind of localized shear zones suffers of pathological sensitivity to the
finite element discretization. One of the well known consequences is that rupture can occur
without energy consumption [13] which is physically non-admissible. The reason of such a
behaviour has now been clarified. It has been proved that an enhanced model incorporated an
internal length is necessary to provide an objective description of post localized loading paths.
Many enhancements have been proposed and studied in the past since the pioneering work
of Aifantis [14] (see Reference [15]). The non-local approach was first proposed for damage
concrete mechanics [16] and extended later to other materials. Another type of enhancement
corresponds to constitutive models with gradient of internal variables or with non-local internal
variables [17, 15]. A last family of enriched models comes from continua with microstructure.
This is the case for Cosserat models [18] (see Reference [19] or [15] for applications to
geomaterials) or for local second gradient ones [20–23] (see References [24, 25] for application
to geomaterials). It is not the aim of this paper to compare the advantages and the shortcomings
of every class of enhanced models. Readers interested by such a discussion can have a look
to the references of our paper co-authored with Caillerie and Tamagnini [26].

In the framework of biphasic porous media, there is very few constitutive models introducing
an internal length-scale. The most important works made in this topic have been performed
by Ehlers and coworkers who used Cosserat continuum in coupled problems within a large
strain elasto plastic framework [27, 28]. A gradient-dependent plasticity model has been recently
extended in two and three phases porous media by Zhang and Schefler [29].

In fact, the pore fluid equation seems introducing its own internal scale, which competes
with the length-scale introduced by enhanced models. Stability analysis, in the restricted case of
the so called linear comparison solid, have been performed to evaluate the relative importance
of each scale [30] and the instability conditions [31].

In the present paper, the purpose is to develop a coupled local second gradient model in
order to study hydromechanical applications. After a section describing the main notations,
a quasi-static formulation (which means that all inertia terms are neglected) of a coupled
microstructured medium is proposed. The analysis is restricted to a porous skeleton filled
by one compressible fluid. In order to solve numerically the field equations, a linear aux-
iliary problem is defined following the ideas of Borja [32] (Section 5). In all the develop-
ments, the geometrical effects are taken into account, which means that for the skeleton the
current configuration is different from the reference one. In Section 6, the linear auxiliary
problem is discretized using the finite element methodology [33]. A large strain isoparamet-
ric coupled finite element is proposed. It should be noted that geometrical effects introduce
additional coupling terms in the formulation. In the following section, a plane strain com-
pression test is modelled. For the sake of simplicity, the constitutive equation of the skeleton
is an hypo elasto-plastic model. Developments towards a hyper elasto-plastic one belong-
ing to the framework defined in Reference [26] has to be made. The preliminary numerical
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computations presented at the end of the paper show clearly the regularization of the localization
pattern.

2. NOTATIONS

A component is denoted by the name of the tensor (or vector) accompanied with tensorial
indices. All tensorial indices are in lower position as there is no need in the following of a
distinction between covariant and contravariant components. The summation convention with
respect to repeated tensorial indices is adopted throughout.

The time t plays an important role in the following, it is always indicated as an index in the
upper position. Derivation with respect to time is denoted by a dot. These time derivative are
material time derivatives, this means that they are computed for the same material (skeleton)
mass.

All the equations are written in the current (or spatial) configuration of the skeleton at
a given time t . All the functions defined in the following can be seen as functions of the
reference position of the skeleton denoted x0

i . Since the current configuration is known, the
mappings xt

i (x
0
i ) and x0

i (xt
i ) between this configuration and the reference one are known.

Finally, all the functions can be seen as function of x0
i or xt

i . In order to simplify the notations
we use the same notation for the functions and theirs values. So we will write for any function
a: a(x0

i ) = a(x0
i (xt

i )) = a(xt
i ).

Stresses are defined following the classical continuum mechanics conventions. Consequently,
positive pore pressures are in fact negative isotropic stresses.

3. BALANCE EQUATIONS OF A MICROSTRUCTURED POROUS MEDIUM

Geomaterials like soils, rocks and concrete are porous media generally considered as the
superposition of two continua [7]: the solid skeleton (grains assembly) and the fluid phases
(water, air, oil,...). For this study, our analysis is restricted to saturated conditions. It is assumed
that there are two immiscible phases: the porous skeleton and one fluid (water in the usual
case). Phase changes like evaporation and dissolution are not considered. Moreover solid grains
are assumed here to be incompressible.

3.1. Classical poromechanics

Based on averaging theories [3, 4], Lewis and Schrefler [5] proposed the governing equations for
the full dynamic behaviour of a partially saturated porous medium. Hereafter, these equations
are restricted for quasi-static problem in saturated conditions. In the following developments,
the balance equations of the coupled problem are written in the current solid configuration
denoted �t (updated Lagrangian formulation). Large strain effects are taken into account and
their contribution in the formulation can be clearly described (see Reference [34] for more
details).

The balance equations can be written separately for both phases or alternatively for the
whole mixture on one hand and one of the two phases on the other hand. All along this paper,
this second way is used.
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3.1.1. Balance of momentum
Balance of momentum for the mixture: In the mixture balance of momentum equation, the

interaction forces between fluid phase and grain skeleton cancelled. In a weak form (virtual work
principle), this equation reads: for any kinematically admissible virtual displacement field u�

i :∫
�t

�t
ij �

�
ij d�t =

∫
�t

(�s(1 − �t ) + �w, t�t )giu
�
i d�t +

∫
�t
�

t̄ t
i u

�
i d�t (1)

where ��ij = 1
2 ((�u�

i /�xt
j ) + (�u�

j /�xt
i )) is the kinematically admissible virtual strain field, �t

is the porosity defined as �t = �w, t /�t where �t is the current volume of a given mass of
skeleton and �w, t the corresponding volume of fluid, �s is the solid grain density, �w, t is the
fluid density, gi is the gravity acceleration.

Grains are assumed to be incompressible which means �s = cte and explains why there is
no superscript t for the grain density. The first right-hand term of Equation (1) corresponds
to gravity volume force of the mixture. �t

� is the part of the boundary where tractions t̄ t
i

are known.
Balance of momentum for the fluid phase: It is written in a strong form

�pt

�xt
i

+ F
S/W, t
i + �w, tgi = 0 (2)

where �t has been cancelled. In fact �tF
S/W, t
i is the true drag force applied on to the fluid

by the skeleton, p is the pore pressure.

3.1.2. Mass balance equations. Mass balance equations are written on one hand for the solid
and on the other hand for the fluid. The first one is written in strong form whereas the second
one is written in a weak form.

Mass balance equation for the solid phase: Since the current configuration used is defined
following the skeleton movement, the mass balance equation of the solid skeleton is necessarily
met. For a given mixture volume �t , mass balance equation reads

�(�s(1 − �t )�t )

�t
= 0 (3)

Mass balance equation for the fluid: In a weak form, this equation reads∫
�t

(
Ṁtp� − mt

i

�p�

�xt
i

)
d�t =

∫
�t

Qtp� d�t −
∫

�t
q

q̄ tp� d�t (4)

Qt is a sink term and �t
q is the part of the boundary where the input fluid mass per unit

area q̄ t is prescribed. Mt is the mass of the fluid phase inside the current configuration of the
skeleton �t defined hereafter in Equation (11). The mass flow mt

i is defined as follows:

mt
i = �w, t�tV

W/S, t
i (5)

where V
W/S, t
i is the true fluid velocity with respect to the solid phase.
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3.1.3. Constitutive equations. In order to solve the problem described in the previous sections
it is necessary to add the constitutive equations.

The first one gives the total stress �t
ij as a function of the kinematics. Here we assume first

that the Terzaghi’s definition of effective stress holds:

�t
ij = �′t

ij − pt�ij (6)

Then the effective stress �′t
ij is assumed to be related to the history of the kinematics of the

skeleton using any usual monophasic constitutive equation.
Second we assume that the drag forces are given by the law:

F
S/W, t
i = �w, t�t g

K
V

W/S, t
i (7)

F
S/W, t
i is the true drag force applied on the fluid by the skeleton for a current unit volume of

the mixture divided by the porosity. K is the Darcy permeability (m/s) and g is the norm of gi .
Third the compressible fluid is assumed to respect the following relationship [5]. This predicts

an increase of fluid density as a function of the pore pressure, defining kw as the fluid bulk
modulus:

�̇w, t = �w, t

kw
ṗt (8)

and finally the grains are assumed to be incompressible which means �s = cte.

3.1.4. Computation of the mass flow and the variation of fluid mass. The mass flow mt
i is

defined in Equation (5) and is obtained using the Darcy’s law (Equation (7)) and the balance
of momentum for the fluid (Equation (2)) as follows:

mt
i = −K

g

(
�pt

�xt
i

+ �w, tgi

)
= −�w, t �

�

(
�pt

�xt
i

+ �w, tgi

)
(9)

where � is the intrinsic permeability and � is the fluid viscosity.
In a volume �t , the fluid mass is equal to

Mt
�t = �w, t�t�t (10)

Variations of fluid mass content are related to the compressibility of the fluid phase and the
skeleton (even if the grains themselves are incompressible). The time derivative of this fluid
mass is obtained directly by using Equations (8) and (3), this yields for a unit mixture volume:

Ṁt = �w, t

[
ṗt

kw
�t + �̇

t

�t

]
(11)

3.1.5. Boundary conditions. In order to get a well posed problem it is necessary finally to
detail the boundary conditions.

For any point belonging to �t
� , which normal is denoted nt

j :

�t
ij n

t
j = t̄ t

i (12)

where t̄ t
i is given. On the other hand the displacements are known on the remain of �t .
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Similarly, for any point belonging to �t
q :

q̄ t = mt
i n

t
i (13)

where q̄ t is given. On the other hand the pressure is known on the remain of �t .

3.2. Local second gradient model for monophasic medium

Let us recall first the governing equations of a monophasic medium with microstructure. This
kind of models can be traced back to the pioneering work of the Cosserat brothers [18],
Mindlin [22] and Germain [20]. In the framework of microstructure continuum theory, a mi-
crokinematic gradient field vij is introduced to describe strain and rotation at the microscale.
With respect to classical continuum mechanics, additional terms are then added in the internal
virtual work of a given body [20]. The following expression holds for any virtual quantities:

W ∗
i =

∫
�t

(
�t

ij

�u∗
i

�xt
j

+ 	t
ij (v

∗
ij − F ∗

ij ) + �t
ijkh

∗
ijk

)
d�t (14)

where F ∗
ij is the virtual macrodeformation gradient, v∗

ij is the virtual microkinematic gradient,
	t
ij called microstress is an additive stress associated to the microstructure, h∗

ijk is the virtual
microsecond gradient and �t

ijk is the double stress dual of h∗
ijk .

In the local second gradient model used in the following, an assumption is added: the
micro kinematic gradient is equal to the macrodeformation gradient

vij = Fij (15)

As a consequence: v∗
ij = F ∗

ij . Finally, the principle of virtual work can be rewritten as
follows: ∫

�t

(
�t

ij

�u∗
i

�xt
j

+ �t
ijk

�2
u∗
i

�xt
j �xt

k

)
d�t = W ∗

e (16)

Assuming that the boundary �t is regular, the external virtual work W ∗
e can be defined as

follows:

W ∗
e =

∫
�t

�giu
∗
i d�t

� +
∫

�t
�

(t̄iu
∗
i + T̄iDu∗

i ) d�t (17)

where t̄i is the external (classical) forces per unit area and T̄i an additional external (double)
force per unit area, both applied on a part �t

� of the boundary of �t . D denotes the normal
derivative of any quantity q, (Dq = (�q/�xk)nk). To the authors’ knowledge, the additional
boundary condition (on T̄i) allows to produce solutions with boundary layers. In this work, our
interest is focused only on strain localization. This is why we have assumed that the double
forces are equal to zero.

Such a local approach has been developed by Chambon et al. [25, 35, 36] for geomaterials
and by Fleck and Hutchinson [37] for metals. One of the advantages of local second gradient is
the fact that constitutive equations remain local and therefore it is straightforward to formulate
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a second gradient extension of any classical models. For instance it is possible to develop a
hyperelastoplastic constitutive equation as it has been made by Chambon et al. [26].

The previous virtual work equation of second gradient models can of course be used in a
finite element code. However, this equation needs the use of C1 functions for the displacement
field as second derivatives of the displacement are involved. In order to avoid such functions
in the virtual work principle (16), the equalities between v∗

ij and F ∗
ij and between vij and

Fij are introduced through a field of Lagrange multipliers 
ij related to a weak form of the
constraint (15) (see Reference [24]):

∫
�t

(
�t

ij

�u∗
i

�xt
j

+ �t
ijk

�v∗
ij

�xt
k

)
d�t −

∫
�t


t
ij

(
�u∗

i

�xt
j

− v∗
ij

)
d�t − W ∗

e = 0 (18)

∫
�t


∗
ij

(
�ui

�xt
j

− vt
ij

)
d�t = 0 (19)

3.3. Local second gradient coupled model

Starting from Equations (1) and (4) of the coupled problem in classical poromechanics, mi-
crostructure effects can be introduced in the momentum balance equation by adding microkine-
matic gradient terms, under the previous assumptions (v∗

ij = F ∗
ij , vij = Fij ). Assuming that pore

fluid has no influence at the microstructure level, microkinematic gradient are not generated
by pore pressure variations. This latter hypothesis follows the ideas of Ehlers [27] concerning
a Cosserat model for biphasic medium. Cosserat model [18] is in fact a particular case of
microstructured medium [24].

According to the previous assumptions, we have the following governing equations:

∫
�t

(
�t

ij

�u∗
i

�xt
j

+ �t
ijk

�2
u∗
i

�xt
j �xt

k

)
d�t =

∫
�t

�mix,t giu
∗
i d�t +

∫
�t
�

(t̄iu
∗
i + T̄iDu∗

i ) d�t (20)

∫
�t

(
Ṁtp� − mt

i

�p�

�xt
i

)
d�t =

∫
�t

Qtp� d�t −
∫

�t
q

q̄ tp� d�t (21)

where �mix,t is the mass density of the mixture (�mix,t = �s(1 − �t ) + �w, t�t ). Introducing
Lagrange multiplier fields (like in the previous section), the governing equations of the local
second gradient coupled problem are then the following:

∫
�t

(
�t

ij

�u∗
i

�xt
j

+ �t
ijk

�v∗
ij

�xt
k

)
d�t −

∫
�t


t
ij

(
�u∗

i

�xt
j

− v∗
ij

)
d�t

=
∫

�t
(�s(1 − �t ) + �w, t�t )giu

∗
i d�t +

∫
�t
�

(t̄iu
∗
i + T̄iv

∗
iknk) d�t (22)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1749–1772



1756 F. COLLIN, R. CHAMBON AND R. CHARLIER

∫
�t


∗
ij

(
�ui

�xt
j

− vt
ij

)
d�t = 0 (23)

∫
�t

(
Ṁtp� − mt

i

�p�

�xt
i

)
d�t =

∫
�t

Qtp� d�t −
∫

�t
q

q̄ tp� d�t (24)

In the present work, the stress tensor �ij in Equation (22) is a total stress defined according
to Terzaghi’s postulate (6), on the contrary the double stress �ijk has no link with the pore
pressure.

Equations (22)–(24) have to hold for any time t , the virtual quantities in these equations
being dependant on the history of boundary conditions and then on time t . Moreover the
constitutive equations also have to hold for any time t .

4. TIME DISCRETIZATION

Considering a body submitted to a given loading path driven by the boundary conditions
history, solving the problem is finding the unknown fields ui, vij , 
ij and p, for which equations
from (22) to (24) hold, the skeleton constitutive equation and the boundary conditions for any
time t . In order to solve numerically this non-linear problem, the loading process is discretized
into finite time steps �t . The system of equations is then solved for any time t belonging
to a sequence like: 0, �t, 2�t and so on, using for every time step a full Newton–Raphson
procedure. Finally, a finite difference scheme is used to define the temporal evolution during a
finite time step and the time derivative:

xi = (1 − �)xt
i + �xt+�t

i

p = (1 − �)pt + �pt+�t (25)

ṗt+�t = pt+�t − pt

�t
= �p

�t

Knowing now the time evolution of all the variables, the field equations have to be met.
A weighted residual method in time with point collocation [33] is used here. The choice of the
� value is not trivial. It is possible to show for linear system that the problem is unconditionally
stable for � � 0.5 [33]. However, the system of equations considered here are highly non-linear
and no theoretical proofs can assess that the previous conclusion is still valid in that case. The
practice shows that extrapolation of the previous conclusions give generally good results. In
the following, a complete implicit scheme is chosen (� = 1).

5. LINEARIZATION OF THE FIELD EQUATIONS

In order to obtain a full Newton–Raphson algorithm, the idea is to define a linear auxiliary
problem deriving from the continuum one (instead of the discretized one as it is more usually
done) similarly to the work of Borja [32]. This approach gives the same results than standard
FEM procedure but make the linearization easier, especially for coupled problem in large strain
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formulation. Assuming known the configuration �t at time t in equilibrium with the boundary
conditions, the objective is to find the new configuration at the end of the time step (	 = t+�t).
A guess of the solutions gives us �	1 for which the equilibrium is not met (�	1 is assumed
to be known). Some residuals can be defined according to the following equations:

∫
�	1

(
�	1

ij

�u∗
i

�x	1
j

+ �	1
ijk

�v∗
ij

�x	1
k

)
d�	1 −

∫
�	1


	1
ij

(
�u∗

i

�x	1
j

− v∗
ij

)
d�	1

−
∫

�	1
(�s(1 − �	1) + �w,	1�	1)giu

∗
i d�	1 −

∫
�	1
�

(t̄iu
∗
i + T̄iv

∗
ikn

	1
k ) d�	1 = R	1 (26)

∫
�	1


∗
ij

(
�ui

�x	1
j

− v	1
ij

)
d�	1 = S	1 (27)

∫
�	1

(
Ṁ	1p� − m	1

i

�p�

�x	1
i

)
d�	1 −

∫
�	1

Q	1p� d�	1 +
∫

�	1
q

q̄	1p� d�	1 = W 	1 (28)

The aim is now to find a new configuration �	2, close to �	1, for which the residuals R	2, S	2

and W 	2 vanish (�	2 is the following guess of the configuration � at time 	). In order to
get the linear auxiliary problem, the field equations corresponding to �	2 are rewritten in
configuration �	1 and the resulting equations are substracted from the corresponding equations
(26)–(28). This yields:

∫
�	1

�u∗
i

�x	1
l

(
�	2

ij

�x	1
l

�x	2
j

det F − �	1
il

)
+ �v∗

ij

�x	1
l

(
�	2

ijk

�x	1
l

�x	2
k

det F − �	1
ij l

)
d�	1

−
∫

�	1

�u∗
i

�x	1
l

(

	2
ij

�x	1
l

�x	2
j

det F − 
	1
il

)
+ v∗

ij (

	2
ij det F − 
	1

il ) d�	1

−
∫

�	1
u∗
i (�mix,	2det F − �mix,	1)gi d�	1 = −R	1 (29)

∫
�	1


∗
ij

[(
�u	2

i

�x	1
k

�x	1
k

�x	2
j

det F − �u	1
i

�x	1
k

)
− (v	2

ij det F − v	1
ij )

]
d�	1 = −S	1 (30)

∫
�	1

(Ṁ	2det F − Ṁ	1)p� − �p�

�x	1
l

(
m	2

i

�x	1
l

�x	2
i

det F − m	1
l

)
d�	1 = −W 	1 (31)

where we assume that gi , t̄i , q̄ and Q are position independent and that double forces T̄i

vanish. detF is the Jacobian of Fij = �x	2
i /�x	1

j . Let us define:

du	1
j = x	2

j − x	1
j (32)
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dv	1
ij = v	2

ij − v	1
ij (33)

d
	1
il = 
	2

il − 
	1
il (34)

dp	1 = p	2 − p	1 (35)

d�	1
il = �	2

il − �	1
il (36)

d�	1
ikl = �	2

ikl − �	1
ikl (37)

d�	1 = �	2 − �	1 (38)

d�w,	1 = �w,	2 − �w,	1 (39)

Using a Taylor expansion of Equations (29)–(31) and discarding terms of degree greater than
one yields after some algebra (see Reference [36] for more details) to the following linearized
equations, which allow us to find the corrections of the displacement fields dui , dvij , d
ij and
the corrections of the pressure dp to be added to their respective current values to obtain a new
current configuration, and a new pore pressure field closer to a well-balanced configuration:

∫
�	1

�u�
i

�x	1
l

(
d�	1

il − �	1
ij

�dul

�x	1
j

+ �	1
il

�dum

�x	1
m

)
+ �v�

ik

�x	1
l

(
d�	1

ikl − �	1
ikj

�dul

�x	1
j

+ �	1
ikl

�dum

�x	1
m

)
d�	1

−
∫

�	1

�u�
i

�x	1
l

(
d
	1

il − 
	1
ij

�dul

�x	1
j

+ 
	1
il

�dum

�x	1
m

)
− v�

ij

(
d
	1

il + 
	1
il

�dum

�x	1
m

)
d�	1

−
∫

�	1
u�
i

[
�mix,	1 �dum

�x	1
m

− (�s,	1 − �w,	1) d�	1 + d�w,	1�	1
]

gi d�	1 = −R	1 (40)

∫
�	1


∗
ij

[(
�u	1

i

�x	1
j

− v	1
ij

)
�du	1

m

�x	1
m

+ �du	1
i

�x	1
j

− �u	1
i

�x	1
k

�du	1
k

�x	1
j

− dv	1
ij

]
d�	1 = −S	1 (41)

∫
�	1

p�

(
d�w,	1 �	1

kw
ṗ	1 + �w,	1 d�	1

kw
ṗ	1 + �w,	1 �	1

kw

dp	1

�t

+ d�w,	1 �̇
	1

�	1 + �w,	1

(
�du	1

m

�x	1
m

1

�t
− �̇

	1

�	1

�du	1
m

�x	1
m

)
+ Ṁ	1 �du	1

m

�x	1
m

)
d�	1

−
∫

�	1

�p�

�x	1
l

(
−d�w,	1 �

�

(
�p	1

�x	1
l

+ �w,	1gl

)
− �w,	1 �

�

(
�dp	1

�x	1
l

+ d�w,	1gl

)

+ �w,	1 �

�

�du	1
j

�x	1
l

�p	1

�x	1
j

− m	1
j

�du	1
l

�x	1
j

+ m	1
l

�du	1
m

�x	1
m

)
d�	1 = −W 	1 (42)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1749–1772



LOCAL SECOND GRADIENT COUPLED MODEL 1759

If we assume the following relationship coming from a linearization of Equations (6), (8)
and (3) (for the last three ones), the preceding system can be expressed as a function of the
unknowns dui, dvij , d
ij and dp

d�	1
ikl = D	1

ikljmn

�dv	1
jm

�x	1
n

(43)

d�	1
il = d�′	1

il − dp	1�il = C	1
ilkj

�du	1
k

�x	1
j

− dp	1�il (44)

d�w,	1 = �w,	1

kw
dp	1 (45)

d�	1 = (1 − �	1)
d�	1

�	1 = (1 − �	1)
�du	1

m

�x	1
m

(46)

It should be pointed out that matrices C	1
ilkj and D	1

ikljmn are computed through a consistent
linearization of the constitutive law integration algorithm. Consistent linearization operators are
now well known for first gradient law [38] and they are directly adapted to the second gradient
constitutive model like in Reference [35]. Equations (40)–(42) have different contributions
coming from geometrical non-linear effects (since we distinguished �	1 and �	2 in all the
developments), from the microstructure terms and finally from the couplings between pore
pressure and the mechanical problem. These contributions will be highlighted in the next
section, where the formulation of a bi-dimensional finite element is detailed.

6. COUPLED FINITE ELEMENT FORMULATION

The field equations (40)–(42) are spatially discretized using 2D plane strain isoparametric finite
elements with eight nodes for ui and p, four nodes for vij and one node for 
ij (Figure 1). The
usual quadratic serendipity shape function [33] are used for ui and p. The linear shape functions
are used for vij , and 
ij is assumed to be constant. The choice of quadratic shape function for
the pressure field comes from the experience of the authors in classical poromechanic problems,

(a) (b)

Figure 1. Quadrilateral element and parent element: (a) quadrilateral element; and (b) parent element.
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for which this kind of function has been used without any difficulties. A corresponding FE with
linear shape functions for the pressure will be experienced in the future in order to compare
its results with the one obtained with the element used in this paper.

In order to define the local element stiffness matrix, Equations (40)–(42) are rewritten in a
matricial form ∫

�	1
[U∗,	1

(x,y)]T[E	1][dU 	1
(x,y)] d�	1 = −R	1 − S	1 − W 	1 (47)

where [dU 	1
(x,y)] is defined in Equation (48) and [U∗,	1

(x,y)] has the same structure with corre-
sponding virtual quantities:

[dU 	1
(x,y)] ≡

[
�du	1

1

�x	1
1

�du	1
1

�x	1
2

�du	1
2

�x	1
1

�du	1
2

�x	1
2

du	1
1 du	1

2
�dp	1

�x	1
1

�dp	1

�x	1
2

dp	1

�dv	1
11

�x	1
1

�dv	1
11

�x	1
2

�dv	1
12

�x	1
1

· · · �dv	1
22

�x	1
2

dv	1
11dv	1

12dv	1
21dv	1

22d
	1
11d
	1

12d
	1
21d
	1

22

]
(48)

The finite element spatial discretization is introduced in Equation (47) using the transforma-
tion matrices [T 	1] and [B], which connect [dU 	1

(x,y)] to the nodal variables [dU 	1
Node]:

[dU 	1
(x,y)] = [T 	1][dU 	1

(�,
)] (49)

and

[dU 	1
(�,
)] = [B][dU 	1

Node] (50)

Integration of Equation (47) on one finite element yields

[U∗
node]T

∫ 1

−1

∫ 1

−1
[B]T[T 	1]T[E	1][T 	1][B]detJ 	1 d� d
[dUt

node]

≡ [U∗
node]T[k	1][dU 	1

node] (51)

where [k	1] is the local element stiffness matrix, J 	1 is the Jacobian matrix of the mapping
from (�, 
) to (x, y) and [dU 	1

node] has the following definition:

[dU 	1
Node]T = [du	1

1(−1,−1)du	1
2(−1,−1)dp	1

(−1,−1)dv	1
11(−1,−1)dv	1

12(−1,−1)dv	1
21(−1,−1)

×dv	1
22(−1,−1)du	1

1(−1,0)du	1
2(−1,0)dp	1

(−1,0)du	1
1(−1,1)du	1

2(−1,1)dp	1
(−1,1)

×dv	1
11(−1,1)dv	1

12(−1,1)dv	1
21(−1,1)dv	1

22(−1,1)du	1
1(0,−1)du	1

2(0,−1)dp	1
(0,−1)

×d
	1
11(0,0)d
	1

12(0,0)d
	1
21(0,0)d
	1

22(0,0)du	1
1(0,1)du	1

2(0,1)dp	1
(0,1)

×du	1
1(1,−1)du	1

2(1,−1)dp	1
(1,−1)dv	1

11(1,−1)dv	1
12(1,−1)dv	1

21(1,−1)dv	1
22(1,−1)
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×du	1
1(1,0)du	1

2(1,0)dp	1
(1,0)du	1

1(1,1)du	1
2(1,1)dp	1

(1,1)

×dv	1
11(1,1)dv	1

12(1,1)dv	1
21(1,1)dv	1

22(1,1)] (52)

[E	1] is a 25 × 25 matrix that contains all the terms of Equations (40)–(42):

[E	1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1	1
(4 × 4) 0(4 × 2) K	1

WM(4 × 3)
0(4 × 8) 0(4 × 4) −I(4 × 4)

G1	1
(2 × 4) 0(2 × 2) G2	1

(2 × 3) 0(2 × 8) 0(2 × 4) 0(2 × 4)

K	1
MW(3 × 4)

0(3 × 2) K	1
WW(3 × 3)

0(3 × 8) 0(3 × 4) 0(3 × 4)

E2	1
(8 × 4) 0(8 × 2) 0(8 × 3) D	1

(8 × 8) 0(8 × 4) 0(8 × 4)

E3	1
(4 × 4) 0(4 × 2) 0(4 × 3) 0(4 × 8) 0(4 × 4) I(4 × 4)

E4	1
(4 × 4) 0(4 × 2) 0(4 × 3) 0(4 × 8) −I(4 × 4) 0(4 × 4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)

Matrices E1, E2, E3, E4 and D are identical to these corresponding to local second gradient
for monophasic medium (see Reference [36] for details). Matrix KWW is the classical stiffness
matrix for a flow problem. KWM , KMW contain all the couplings terms appearing between the
mechanical problem and the flow one. Matrices G1 and G2 are related to the contribution of
gravity volume force. In all these matrices detailed hereafter, all terms coming from the large
strain formulation are written between braces.

[K	1
WW(3 × 3)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�w,	1 �

�
0

�w,	1

kw

�

�

(
�p	1

�x	1
1

+ �w,	1g1

)
+ �w,	1 �

�

�w,	1

kw

g1

0 �w,	1 �

�

�w,	1

kw

�

�

(
�p	1

�x	1
2

+ �w,	1g2

)
+ �w,	1 �

�

�w,	1

kw

g2

0 0
�w,	1

kw

�	1

kw
ṗ	1 + �w,	1 �	1

kw

1

�t
+ �w,	1

kw

�̇
	1

�	1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

[K	1
MW(3 × 4)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
−�w,	1 �	1

kw
�p	1

�x	1
1

} {
m	1

2

} {
−�w,	1 �	1

kw
�p	1

�x	1
2

} {−m	1
1

}
{−m	1

2

} {
−�w,	1 �	1

kw
�p	1

�x	1
1

} {
m	1

1

} {
−�w,	1 �	1

kw
�p	1

�x	1
2

}

A + {
Ṁ	1} 0 0 A + {

Ṁ	1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(55)
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[K	1
WM(4 × 3)] =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −1

0 0 0

0 0 0

0 0 −1

⎤
⎥⎥⎥⎥⎥⎦ (56)

[G1	1
(2 × 4)] =

[
B 0 0 B

B 0 0 B

]
(57)

[G2	1
(2 × 3)] =

⎡
⎢⎢⎢⎣

0 0 −�w,	1 �	1

kw
g1

0 0 −�w,	1 �	1

kw
g2

⎤
⎥⎥⎥⎦ (58)

where

A = �w,	1

(
1 − �	1

kw
ṗ	1 + 1

�t
−
{

�̇
	1

�	1

})
(59)

and

B = {−�mix,	1} + (�s,	1 − �w,	1)(1 − �	1) (60)

In Equation (47), the residual terms R	1, S	1 and W 	1 are computed for each element thanks
to the following relationship:

−R	1 − S	1 − W 	1 = P t∗
e − [U∗

node]T
∫ 1

−1

∫ 1

−1
[B]T[T t ]T[�t ]. det J t d� d


≡ [U∗
node][f t

HE] (61)

[�	1] =
[
�	1

11 − 
	1
11 · · · �	1

22 − 
	1
22 − �mix,	1g1 − �mix,	1g2 − m	1

1 − m	1
2 Ṁ	1

×�	1
111 · · · �	1

222

	1
11 · · · 
	1

22
�u	1

1

�x	1
1

− v	1
11 · · · �u	1

2

�x	1
2

− v	1
22

]
(62)

where [f t
HE] are the elementary out of balance forces. The external virtual power P t∗

e has two
contributions: the body forces and the boundary forces (for the mechanical and flow problems),
except the term related to gravity volume force, which is introduced in the [�	1] vector.

The global stiffness matrix and out of balance force can be obtained by assembling the
elementary matrices given by Equations (51) and (61). After solving the resulting auxiliary
linear system, a new configuration is found and the equilibrium is checked. Different approaches
exist to solve coupled equations problems. The staggered procedure concept consists in solving
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Table I. The finite step algorithm for one loading step.

1. Initial configuration:
stress �t−�t , double stress �t−�t , co-ordinates xt−�t , pore pressure pt−�t

2. Assumption on the final configuration and the final pressure
Update nodal co-ordinates: xtn , for n := 1

3. Beginning of the iteration n:
4. For each element

• For each integration point:

◦ compute the strain rate, the rotation rate, the second gradient rate and the pore
pressure rate,
◦ compute ��′

n, ��n and mn using constitutive equations and the flow model,
◦ update the effective stress and the double stress

�′tn :=�′t−�t + ��′
n,

�tn :=�t−�t + ��n,

◦ compute the total stress �tn :=�′tn − ptn ,
◦ compute the compliance matrices by mean of perturbation methods [Ctn

(4 × 4)
] and

[Dtn
(8 × 8)

]
• Compute the element stiffness matrix [Ktn ]
• Compute the element out of balance forces [f tn

HE
]

5. Compute the global stiffness matrix [Ktn ]
6. Compute the global out of balance forces [F tn

HE
]

7. Compute [�U
tn
node] by solving [Ktn ][�U

tn
node] = −[F tn

HE
]

8. Check the accuracy of the computed solution

• If convergence: go to 9
• If no convergence: update the new assumed final configuration and the final pore

pressure, n := n + 1, go to 3

9. End of the step

a first block of equations related to a variable field while the other are kept constant. In a
second step, the second block of equations is solved while the updated variable fields remain
fixed (see References [5, 39, 40]). Here a monolithic procedure is chosen where the full stiffness
matrix is computed at each iteration of the Newton–Raphson procedure.

Table I shows the algorithm used to solve one loading step of a local second gradient
coupled application.

7. NUMERICAL APPLICATION OF LOCAL SECOND GRADIENT COUPLED MODEL

Biaxial experiments are known to exhibit clearly strain localization either in soil or rock samples
(see for instance Reference [9]). These tests have been performed and shear banding has been
observed in drained or undrained conditions, in both contractive and dilative specimens [10].

Modelling such a plane strain compression test is proposed here in order to study the
regularization properties of the local second gradient model for a biphasic medium. In this first
approach, a very simple constitutive equation has been chosen for the skeleton. A classical model
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based on the Prandtl–Reuss elasto-plastic model gives the effective stress tensor �′
ij as follows:

�̇′
m = 3Kė (63)

˜̂�′
ij =

⎧⎪⎪⎨
⎪⎪⎩

2G1
˙̂�ij (‖�̂‖ < elim)

2G1

(
˙̂�ij − G1 − G2

G1

�̂′
kl

˙̂�kl

‖�̂′‖2
�̂′

ij

)
(‖�̂‖ > elim)

(64)

K is the bulk modulus, G1 and G2 are the shear moduli before and after the peak, respec-
tively, �̇′

m is the effective mean stress rate, ė is the mean strain rate, ˙̂�ij is the deviatoric strain

rate tensor and ˜̂�′
ij is the Jaumann rate of the deviatoric effective Cauchy stress tensor. ‖�̂‖

and ‖�̂′‖ are the second invariant of the deviatoric strain and effective stress, respectively, and
elim is a model parameter.

An exponential function is assumed for the evolution of shear modulus G2 after the yield
point, so that the material could reach its residual state smoothly:

G2 = Ḡ2 exp

(
Ḡ2

G1elim − �̂′
res

(‖�̂‖ − elim)

)
(65)

Ḡ2 is the value of the shear modulus just after the peak and �̂′
res is the residual value of the

second invariant of deviatoric effective stress tensor.
For the second gradient part of the model, a simple isotropic linear relationship deduced

from Reference [22] is used. It depends only on one elastic parameter denoted D:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃111

�̃112

�̃121

�̃122

�̃211

�̃212

�̃221

�̃222

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0 0 0 0
D

2

D

2
0

0
D

2

D

2
0 −D

2
0 0

D

2

0
D

2

D

2
0 −D

2
0 0

D

2

0 0 0 D 0 −D

2
−D

2
0

0 −D

2
−D

2
0 D 0 0 0

D

2
0 0 −D

2
0

D

2

D

2
0

D

2
0 0 −D

2
0

D

2

D

2
0

0
D

2

D

2
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�v̇11

�x1

�v̇11

�x2

�v̇12

�x1

�v̇12

�x2

�v̇21

�x1

�v̇21

�x2

�v̇22

�x1

�v̇22

�x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)
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Figure 2. Sketch of the boundary value problem.

v̇ij is the material time derivative of vij , �̃ijk is the Jaumann double stress rate defined by the
following equation:

�̃ijk = �̇ijk + �ljk�li + �imk�mj + �ijp�pk (67)

where �li is the spin tensor.
A drained strain-controlled bi-axial test is considered. Drained means here globally drained

test. This means that the boundary drainage systems are open: fluid is free to flow out of or
into the sample but overpressures can appear in the sample depending on the ratio between
loading rate and permeability.

The loading strain rate is 0.18% per hour. The bottom plate is smooth, rigid and remains
horizontal. The central point of this plate is horizontally fixed in order to avoid rigid body
displacement. The top plate is also smooth and rigid, and a prescribed vertical displacement
is then applied to every corresponding node of the mesh. No lateral confining pressure is
prescribed. The external additional double forces per unit area Ti are assumed to be equal to
zero all along the boundaries. Pore pressures are fixed to their initial value at the top and
bottom edges, in order to model the upper and lower drainage system. The pore fluid pressure
is initially equal to the atmospheric pressure (Figure 2).
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Table II. Parameters of the models.

First gradient model Second gradient model Flow model

K 97.3856 MPa D 500 N � 10−19/10−12 m2

G1 50 MPa �w 1000 kg/m3

Ḡ2 −2 MPa � 0.15
elim 0.01 kw 510−10 Pa−1

�̂res 0.2 �peak MPa �w 0.001 Pa s

The parameters used for the simulations are listed in Table II. Two values of intrinsic
permeability have been used and then allow to see the influence of that property on the
localization pattern.

In order to exhibit strain localization, different procedures are available. The more gen-
eral is the introduction of an imperfection. This could be a geometrical default [41], a
material imperfection [35] or a small disturbing force [42]. In a different way, Chambon
and co-workers [43] proposed an algorithm to search localized solutions in perfect sam-
ple using a random initialization of the strain rate at the beginning of the iterative pro-
cedure. In the following computations, a material imperfection is introduced in the bottom
left finite element. In this element, the parameter elim is 10% lower than the one used
elsewhere.

For the first simulation, the intrinsic permeability is equal to 10−12 m2. For such values of
loading rate and permeability, overpressures in the sample are very low and the corresponding
loading curve is equivalent to the curve obtained with a monophasic local second gradient
model (Figure 4). Figure 3 shows us the localization pattern clearly initiated by the material
default and the water flows related to the drainage of the sample. The pore fluid flow seems
to be independent of the developed shear band because the constitutive model introduces no
dilatancy in the plastic regime and the permeability is very high in comparison with the
strain rate.

Other simulations of biaxial experiment have been performed with a permeability value
of 10−19 m2. In fact, for such a value, the loading rate is so fast that the drainage is not
possible and the curve corresponds to an undrained biaxial test. Different mesh sizes have
been used and Figure 4 shows us that the corresponding load–displacement curves are merged.
Equivalent strains are plotted on Figure 6 for 20 × 10, 30 × 15, 40 × 20 elements meshes. The
zone where strains are localized is clearly seen. Before the localization process, the strain in
the sample is homogeneous. Just after localization, the geomaterial inside the shear band loads
plastically, but it unloads elastically outside. This is quite clear in Figure 7: a square is plotted
for each plastic Gauss point. This allows us to accurately measure the thickness of the shear
band in our computations and to observe that it is mesh independent provided the elements are
small enough. In such local second gradient model, the width of the shear band is proportional
to the parameter D of the second gradient model [24].

Observation of the convergence profile obtained through Newton–Raphson iterations in the
previous modelling validates the analytical expressions of the element stiffness matrix detailed
in Section 6. Figure 5 shows a rapid decrease of the error norm up to the numerical noise. The
different curves correspond to steps at a given value of axial strain (EPS). Eventually, these
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Figure 3. Localization mode and water flow after 2.5% axial strain (� = 10−12 m2).

Figure 4. Axial strain vs global reaction for five biaxial tests.

preliminary computations show that the permeability has an influence on the loading curve
(Figure 4) but not on the shear band thickness (Figures 7 and 8). This observation is of course
only valid for the model used in the computation.
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Figure 5. Convergence profile in coupled biaxial test.

Figure 6. Deviatoric deformation after 2.5% axial strain (� = 10−19 m2).

8. CONCLUSIONS

Enhanced models are necessary to obtain regularized solutions for localized plastic strain fields
computed with a finite element method. Many enhancements have been developed in the past,
especially in the case of monophasic materials. However, geomaterials are mainly porous media
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Figure 7. Plastic zones after 2.5% axial strain (� = 10−19 m2).

Figure 8. Plastic zones after 2.5% axial strain (� = 10−19 m2).
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filled by one or more fluids and it is thus interesting to study the influence of the fluid on the
localization problem.

In this paper, our analysis is restricted to saturated soils or rocks filled by one compressible
pore fluid. A coupled second gradient formulation has been proposed in the framework of
microstructure continuum. A complete description of a large strain finite element using this
local second gradient coupled model has been presented and first numerical results have been
obtained for biaxial tests modelling.

Numerical results show clearly the regularization of the localization pattern. This study is
only a preliminary one and some further investigations are necessary in order to draw more
clear conclusions on the influence of permeability. Indeed the numerical effort for local second
gradient modelling is essentially concerned with the development of the finite element. In the
next future, more realistic constitutive models (non-associativity, yield function depending on
mean stress, etc...) will be directly used in coupled applications.
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