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Abstract 

A method for the reconstruction of missing data based on an EOF decomposition has been applied to a large data 

set, a test case of Sea Surface Temperature satellite images of the Adriatic Sea. The EOF decomposition is 

realised with a Lanczos method, which allows optimising computational time for large matrices. The results 

show that the reconstruction method leads to accurate reconstructions as well as a low cpu time when dealing 

with realistic cases. The method has been tested with different amounts of missing data, artificially adding 

clouds ranging from 40% to 80% of data loss, and then compared to the same data set with no missing data. A 

comparison with in situ data has also been made. These validation studies show that results are robust, even 

when the amount of missing data is very high. The reconstruction of the data from the Adriatic Sea shows 

realistic features and a reliable temperature distribution. In addition, the method is compared to an Optimal 

Interpolation reconstruction. The results obtained with both methods are very similar. The main difference is the 

computational time, which is reduced nearly 30 times with the method presented here. Once the reconstruction 

has been performed, the EOF decomposition is analysed to show the method's reliability, and a cold event on the 

Albanian coast is studied. The reconstructed data reflect the effect of wind on the Albanian coast, that led to a 

cold-water episode in this zone for a 6-day period. 
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1. Introduction 

Satellite images are commonly used in oceanography. They allow realising general studies of the sea surface 

characteristics (e.g. Gacić et al., 1997; Borzelli et al., 1999) as well as studies at depth that present a signal at the 

surface, such as internal waves (e.g. da Silva et al., 1998; Liu et al., 1998). Satellite images are widely used due 

to their extensive coverage, in time and space. No other data acquisition method gives the coverage and precision 

of satellite images as quickly. Obtaining observational data in this way is therefore very useful in operational 

oceanography and in near real time studies. 

There are several kinds of data measured by satellites, depending on the type of sensors used: Sea Surface 

Temperature (SST), chlorophyll or Sea Surface Height (SSH). The receptors working in the visible and infrared 

ranges present however one disadvantage: the clouds present in the atmosphere can totally or partially cover the 

studied area. The loss of data due to clouds can reach a high percentage in some periods. There can also be noise, 

or malfunctions in the satellite that reduce its coverage. A complete data set is crucial for many applications 

using satellite images, as in Empirical Orthogonal Function (EOF) analysis, when tracking features in the ocean 

or in the study of zones with high spatial and temporal variability. In addition, complete fields of sea surface 

temperature are used to force meteorological models. For other studies where it might not be crucial to have 

complete satellite coverage, it is always preferable to have a maximum amount of information. 

Several methods have been used in the past when dealing with recovery of missing data. Spline interpolation 

(Emery and Thomson, 1998) has been used by, e.g., Everson et al. (1997). Inverse methods, such as optimal 

interpolation (OI) (Bennett, 2002), have also been widely used in the reconstruction of SST data sets (e.g. Chu et 

al., 1997; Fieguth et al., 1998; Houseago-Stokes, 2000; He et al., 2003), as well as in the reconstruction of Sea 

Level Anomaly (SLA) data sets (e.g. Fieguth et al., 1998; Le Traon et al., 1998; Le Traon and Didarboure, 1999; 

Le Traon et al., 2001). Many studies have reconstructed historical SST and in situ data sets (see e.g. Reynolds 

and Smith, 1994; Smith et al., 1996; Kaplan et al., 1997; Kaplan et al., 1998) using OI. Reynolds and Smith 

(1994) used OI to realise a global SST analysis. In Smith et al. (1996), the OI analyses are used to compute the 
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most dominant EOFs. These EOFs are then fitted to in situ data to compute the reconstructed SST set. The work 

by Kaplan et al. (1997) first calculates the EOFs from the covariance matrix, and then a least-squares fit is done 

to estimate the best reconstruction of a 136-year SST set on the Atlantic Ocean. In Kaplan et al. (1998) the same 

technique is applied, and three different fitting methods are compared. One disadvantage of the optimal 

interpolation as a method for reconstructing missing data is the necessity for a priori information about the error 

statistics of the data, generally poorly known (Bennett, 2002). The computational cost of these techniques may 

be prohibitive when using large matrices (Kaplan et al., 1997). 

The alternative methodology presented by Beckers and Rixen (2003) is a self-consistent, parameter-free 

technique for the reconstruction of gappy data that presents the advantage of not needing this kind of a priori 

information. The method allows calculating the missing data from an optimal number of EOFs determined by a 

cross-validation technique (e.g. Wilks, 1995; Brankart and Brasseur, 1996; von Storch and Zwiers, 1999). This 

cross-validation also gives an error estimate of the filled data. The method is based on the fact that an EOF 

analysis aims to extract a small number of significant degrees of freedom, present in the physical system, from a 

large data set. These reduced variables should represent a large fraction of the original variability of the data set 

(e.g. Wilks, 1995). The combination of the dominant EOFs and their amplitudes can therefore help recover 

missing data values. 

The aim of this work is the application of the reconstruction method presented by Beckers and Rixen (2003), 

hereafter called DINEOF (Data INterpolating Empirical Orthogonal Functions) to a realistic case: a data set 

covering a whole subbasin at high resolution. The data chosen for this purpose is a series of Advanced Very 

High Resolution Radiometer (AVHRR) images covering the entire Adriatic Sea for a six-month period. 

The paper is organised as follows: in Section 2, a description of the main characteristics of the Adriatic Sea is 

presented, followed by a review of applications of satellite images in this zone. The data set used in this work is 

described in Section 3. In Section 4 the method used for the reconstruction of missing data is briefly presented, 

as well as some estimates of the performance of the code and computational time. Reconstruction results of the 

Adriatic images are shown in Section 5, with additional validation studies, apart from the cross-validation itself. 

A comparison with a classical OI reconstruction is made in Section 6. To show the robustness of the results 

obtained, the EOF decomposition of the reconstructed data is presented in Section 7. Finally, we present our 

conclusions. 

 

2. The Adriatic Sea 

The Adriatic Sea is a subbasin of the Mediterranean Sea (see Fig. 1) of about 800 by 200 km, connected to the 

Ionian Sea by the Strait of Otranto. The northern and central parts of the basin are very shallow, with maximum 

depths of 270m, and a mean depth of 35m (Artegiani et al., 1997a). The southern part is deeper, reaching 1200 

m, but nearby, in the Strait of Otranto, the depth decreases again, to 780m (e.g. Cushman-Roisin et al., 2001). 

The circulation in the basin is cyclonic, with water coming from the Ionian basin and entering the Strait of 

Otranto to the east of the Adriatic Sea (Eastern Adriatic Current, EAC). This current is wide and weak, and 

brings, at depth, warm and salty modified Levantine Intermediate Water to the northern basin. A western current 

flowing southward closes the cyclonic circulation. This current is called WAC (Western Adriatic Current), and is 

thinner than the EAC. In winter, it brings at surface cold and fresh water to the southern basin. Salty and cold 

water coming with the WAC fills the depth at this southern part. Embedded in this main circulation path are 

three sub-basin cyclonic gyres, in the northern part of the Adriatic, between the Istrian Peninsula and the Jakuba 

Pit, and in the southern Adriatic Sea, respectively (e.g. Orlić et al., 1992; Poulain, 2001). The basin-wide 

cyclonic surface circulation is mainly produced by winds. There are two dominant winds: the steady 

southeasterly wind, called Sirocco, which enters the basin by the Strait of Otranto, and the northeasterly wind 

called Bora, which enters the Adriatic Sea from the Northeast (Bergamasco et al., 1999; Poulain, 1999). In Fig. 1 

one can see the general direction of these winds. The fresh water input in the Adriatic Sea is mainly due to rivers 

in the northern and eastern coasts. The Po River accounts for 28% of this runoff (Cushman-Roisin et al., 2001). 

The mean surface temperature in winter is 14°C. In summer, the southern part is warmer (24 °C) than the 

northern part (22 °C) (values obtained from the MEDAR/Medatlas climatology, MEDAR-Group (2002)). In the 

zonal direction, the water is warmer in the open sea than in the eastern coastal waters. A coastal front can be 

found throughout the year, but its position varies between seasons. For a detailed description of the Adriatic's 

characteristics see e.g., Orlić et al. (1992), Artegiani et al. (1997a), Artegiani et al. (1997b), Cushman-Roisin et 

al. (2001). 
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Fig. 1. The Adriatic Sea and its bathymetry (depth in meters). The arrows show the typical winds found in this 

area. In solid line, the Bora, and in dashed line, the Sirocco. 

 
 

2.1. Satellite observations in the Adriatic Sea 

Remote sensed data has been used to study the Adriatic Sea in different works (e.g. Gacić et al., 1997; Borzelli et 

al., 1999; Cushman-Roisin et al., 2001; Mauri and Poulain, 2001; Alvarez, 2003). A large number of features can 

be identified from the SST field. For example, the signature of the Western Coastal Layer (WCL), formed to the 

south of the Po delta and related to the WAC. Filaments advecting cold waters from the eastern coast (detaching 

at the Istrian Peninsula and at southern positions along the Croatian coast, between 43°N and 44°N) to open 

seawaters have also been detected from satellite images (Borzelli et al., 1999). These filaments can extend up to 

a hundred of kilometres, with a width of about 10-20 km, and have been observed in summer. Mauri and Poulain 

(2001) have also observed cold waters (21-23 °C) in the nearby the Croatian coast in September and October. 

The signal of the Po River can be identified from satellite images, as it can spread over the entire northern basin 

in the summer season. The Po River water is slightly warmer than seawater in summer, so other variables, such 

as chlorophyll, act as better tracers of the Po plume than temperature. In winter the plume is weaker, the water 

flows mainly southward and the Po River water is several degrees colder than seawater. The work by Gacić et al. 

(1997) presents a complete analysis of the seasonal and interannual variability of the surface temperature of the 

Adriatic Sea. Studies of this kind could benefit from any method recovering missing information due to clouds. 

3. Data Set 

A set of 135 Advanced Very High Resolution Radiometer (AVHRR) images of the Adriatic Sea obtained from 

http://radlab.soest.hawaii.edu/avhrr/adria/cdrom/html/ (Dousset et al., 1998) is used to test the DINEOF method. 

The images range from 9 May 1995 to 22 October 1995. Their size is 248 × 709 pixels, with a resolution of 1.25 

km. Land points are not used in this method, so the final spatial size is 94755 (out of 175 832). In order to 

minimise skin temperature effects due to diurnal heating, only nighttime images are used. The mean cloud 

coverage is 61%. Some of these images present extreme cloud coverage (more than 95%) and have been 

eliminated in order to obtain reliable results. Images containing less than 5% of data do not provide useful 

information, and might affect the final result. A subset of 105 images (hereafter called the 'Complete Set' for 

clarity) with less than 95% of cloud coverage is kept for the analysis. The mean cloud coverage of this data set is 

52%. In Fig. 2 we can see that the distribution of the cloud coverage in the Complete Set is very homogeneous, 

with a slightly higher cloud concentration in the northern Adriatic and in the southwestern part of the basin.         

The coastline has extreme cloud coverage, probably due to slight errors that occurred when treating the images at 

these zones. This point highlights the importance of a correct image processing to avoid high data loss. 
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Moreover, clouds in the satellite images must be precisely identified to obtain correct results in the 

reconstruction. Otherwise, artificial features may appear in the results. This is why a good cloud detection 

algorithm must be used. For the Adriatic data set, three cloud detection tests were conducted with nighttime 

images (see http://radlab.soest.hawaii.edu/avhrr/adria/cdrom/html/index.htm for detailed information on the 

cloud detection algorithm). These tests aimed to (1) detect temperature variations due to convective clouds (clear 

water pixels present very uniform brightness temperature, in contrast to clouded pixels); (2) compare to MODB 

climatology (Brasseur et al., 1996; Rixen et al., 2001); the maxima and minima of this climatology were 

increased and lowered by 1 °C, and pixels falling outside this range were eliminated; and (3) detect stratiform 

clouds (based on differences between the infrared channels). These tests followed the work by Saunders and 

Kriebel (1988). However, as we will show, the reconstruction results in a filtering of the original data, which can 

correct some of the artificial features that were not detected by these tests (see for example, Fig. 6). 

 

Fig. 2. Mean percentage of cloud coverage for the Complete Set of images. The points show the distribution of 

the in situ data obtained from the MEDAR/Medatlas database used for validation of the reconstruction. A total 

of 452 stations were extracted from this database. 

 
 

 

4. The method 

Beckers and Rixen (2003) have presented a self-consistent method for the reconstruction of missing data in 

oceanographic data sets, DINEOF. Consider that X is the initial matrix of dimensions m×n, m>n (with m the 

spatial dimension and n the temporal dimension), containing the observations. It may also contain some 

unknown values corresponding to the missing data. For the reconstruction of these data, a Singular Value 

Decomposition (SVD) technique is used to compute the EOFs of the matrix, in which a first guess has been 

introduced for the missing data. The equation: 

 

allows calculating the spatial EOFs, U, with dimension m × r, the temporal EOFs, V, with dimension n × r, and 

their singular values S, with dimension r × r. The value r is the rank of the matrix, with r ≤ min (m,n). Only the 

most significant spatial and temporal EOFs are necessary for the reconstruction method. The k largest singular 

values and singular vectors can also be calculated by eigenvector decomposition: 

 

with ui the ith column of U and ρi the corresponding singular value, i= 1,.. .,k. To avoid using Eq. (2), which 

implies the m × m matrix XX
T
, we can rather use: 
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where A = X
T
X is a real symmetric n × n matrix. 

DINEOF can be explained as follows: 

•   The average value of the matrix is subtracted once for the entire procedure and the missing data points are 

initialised to zero in order to have an unbiased first guess. The missing data, however, are 'flagged' to 

differentiate them from those existing points on the mean. This demeaned matrix is used throughout the whole 

procedure. 

•   Two steps are then repeated for a given k until convergence: 

-   An EOF decomposition of the matrix is realised, with only the first k EOFs, to obtain a first estimate of the 

singular values and singular vectors. 

-   The elements Xi,j corresponding to the flagged missing data are now replaced by the value obtained with the 

EOF series: 

 
An improved guess has thus been introduced for the missing data, so we recompute the EOFs and obtain a new 

value for the missing data. 

•   Once the convergence is reached, the number of computed EOFs is increased, from k= 1,... ,Kmax, so at the 

end we have Kmax estimates for the missing data reconstructed with 1,2,... ,Kmax EOFs. But which estimate is the 

best? The answer is obtained by cross-validation. 

•   We calculate the optimal number of EOFs from the series of Kmax EOFs. To do so, a random set of data is 

initially set aside from the valid data to apply a cross-validation technique, as described in, e.g., Wilks (1995, 

Chapter 6), Brankart and Brasseur (1996), von Storch and Zwiers (1999, Chapter 18), Beckers and Rixen (2003). 

This data set has a size of min(0.01 × m × n + 40,0.03 × m × n), and for this particular case, 99532 points are 

retained for the cross-validation. The optimal number of EOFs is the one that minimises the error between the 

data set aside and the values obtained at these points with the reconstruction method. 

•   Once the optimal number N of EOFs is known, the whole procedure is repeated, now including the data set 

aside for cross-validation, but only with the N first EOFs considered as optimal. Final values for the missing data 

are then computed. 

This is a general description of how the method works. For a more detailed description, see Beckers and Rixen 

(2003). 

In the present work, we apply the reconstruction method for missing data DINEOF to a large matrix. We use a 

Lanczos method (see, e.g. Chatelin, 1993; Toumazou and Cretaux, 2001) for the EOF decomposition phase to 

make the application of DINEOF effective when working with large matrices. The desired characteristic of the 

EOF decomposition algorithm is the possibility to compute only the k largest EOFs at a small computational 

cost, since it must be used several times during the DINEOF iterations. 

Toumazou and Cretaux (2001) have compared three different EOF decomposition methods, one based on the 

SVD algorithm, and two that express Eq. (1)) as an eigenvalue problem: the QR strategy and the Lanczos 

method. They have shown that a Krylov-type method, called the Lanczos method, is a good choice when using 

large matrices. The EOF analysis performed by the mentioned methods gives similar results, although the 

Lanczos method requires half the storage memory than the others, and up to 22 times less computational time for 

large matrices. Another attractive characteristic of the Lanczos method is that it does not need to compute all the 

singular values, only the k largest ones. For these reasons, the Lanczos solver provided by Toumazou and 

Cretaux (2001), which uses the ARPACK freeware (Lehoucq et al., 1997), has been implemented in DINEOF. 

The main characteristic that makes the Lanczos method suitable when dealing with a large matrix is that, instead 

of working with the n × n matrix A of Eq. (3), a p x p (p  n) tridiagonal matrix is used, obtained by the 

projection of A onto the sub-space Krylov Kp(A, q) (Chatelin, 1993). The eigenvalues are calculated in this 

reduced matrix, in an iterative way until a convergence criterion is satisfied. This stopping criterion is based on 

the backward error (Bennani and Braconnier, 1994). For a more detailed explanation of the Lanczos method, see, 

e.g., Chatelin (1993) and (Toumazou and Cretaux, 2001). 
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4.1. Code performance 

A comparison between several codes that calculate EOF decomposition has been already made by Toumazou 

and Cretaux (2001) and is not the aim of this work. However, several tests were carried out to test the EOF 

reconstruction code performance. A Silicon Graphics MIPS R12000, 400 MHz is used to run DINEOF. In Table 

1 we show the computation time of the Lanczos method for EOF decomposition (i.e., Lanczos method called 

once), calculated with several subsets obtained from the initial data. For a matrix of dimensions m x n, the cost of 

the Lanczos method is proportional to m
1.23

n
1.5
. The total computational time for DINEOF is also presented in 

Table 1, being the cost of the total reconstruction method with, always, m > n. As can be seen, for the larger 

matrix studied (94755 × 135) a total time of 119 min is necessary, and for the smallest case (8281 × 20), the 

whole procedure is finished in less than a minute. In an attempt to further improve computational time, 

interesting for very large matrices reconstruction, we have introduced different convergence criteria in the 

calculation of the singular values, as well as different criteria for the iterations made when searching the 

convergence of the singular values. We tested different values for missing data initialisation, stopping criteria to 

find the optimal number of EOFs, and the control of the iterations made by the Lanczos method. Only slight 

changes in computational time were attained, accounting for up to 10% of saved time. 

 

Table 1. Time (in s) for EOF decomposition with the Lanczos method, and for the whole reconstruction process 

m n Time (SVD decomposition) Time (reconstruction) 

94755 135 27.96 7148.72 

94755 105 20.31 5389.77 

94755 75 15.19 3992.92 

94755 50 13.46 3589.61 

94755 20 1.72 822.3 

39616 135 15.94 3846.17 

39616 105 10.53 2182.37 

39616 75 8.11 1941.81 

39616 50 3.5 1018.5 

39616 20 0.62 307.83 

23 205 135 6.85 1597.34 

23 205 105 5.0 1026.96 

23 205 75 2.68 668.25 

23 205 50 1.91 385.32 

23 205 20 0.34 138.2 

8281 135 1.39 371.7 

8281 105 1.17 283.51 

8281 75 0.84 209.42 

8281 50 0.47 133.69 

8281 20 0.12 49.12 

The size of the matrix is m × n, with m the spatial dimension and n the temporal dimension. 

 

5. Results 

The first test we conducted is the reconstruction of the Complete Set. DINEOF keeps 10 EOFs as optimal for 

reconstruction (number of EOFs that minimises the error in cross-validation), as can be seen in Fig. 3, which 

minimise the expected error to 0.6 °C. These 10 EOFs explain 98.97% of the initial variance, which has been 

calculated as the variance of those points not covered by clouds. 

In Figs. 4-6 we can see three examples of the quality of DINEOF results. They show three original images, with 

blanks where there are no data, and their reconstruction. Fig. 4 is of 23 July, and we can see the warm plume of 

the Po River, which reaches 32 °C and spreads over a large surface in the northern Adriatic and flows southward 

following the west coast, forming the WCL. We can also see a weak cold filament going from the Istrian 

Peninsula (in the east coast) to open sea. Finally, at the southeast, on the Albanian coast, there is a strong cold 

signal. This kind of cooling event has been reported by e.g. Bergamasco and Gacić (1996) and Gacić et al. 

(1997), and the cause may be the cooling and mixing due to the Bora wind that blows parallel to this coast. This 

image will be further commented later in this work. Fig. 5 corresponds to 3 September. In this image, a strong 

cold filament can be observed at the same location as in Fig. 4. This filament has a temperature of about 20 °C, 
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which corresponds to the situation described by Mauri and Poulain (2001) for September-October. In Fig. 6, of 5 

October, a strong cooling event occurs in the northern Adriatic, where temperature decreases to 18°C. This 

situation is typical of autumn, when temperatures begin to decrease in this zone (Gacić et al., 1997). In this 

image, we clearly see the effect of filtering of the reconstruction method, due to the rejection of some EOFs by 

cross-validation: in the cloudy image, some cold pixels are present at the limits of clouds in the centre of the 

Adriatic. The gradient with surrounding waters suggests that it is not a real feature, and that some cloud pixels 

may have been interpreted in the initial data set as sea pixels. In the reconstruction these features have been 

eliminated, and the result is a more realistic representation of surface temperature. Also real features, such as 

currents or meanders, are smoothed in the reconstructed data. Preventing the smoothing of real features by 

DINEOF is currently under study. The whole series of 105 images reconstructed by DINEOF, as well as the 

other results presented later in this work can be seen at http://modb.oce.ulg.ac.be/alvera 

 

Fig. 3. Error obtained with cross-validation for reconstruction of the Complete Set. N is the number of EOFs. 

 
 

 

Fig. 4. Original cloudy image (a) from the Complete Set for 23 July and its reconstruction (b). A warm Po plume 

is clearly seen, as well as cold waters along the Albanian coast, marked with an arrow. 

 
 

Fig. 5. Original cloudy image (a) from the Complete Set for 3 September and its reconstruction (b). The arrow 

shows a strong cold filament detaching from the Istrian Peninsula. 
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In Fig. 7 a time series of a random point (point located at a latitude of 42N and a longitude of 17.3E, situated in 

the centre Adriatic, south of the Croatian Islands) in the Adriatic Sea is shown, with the reconstructed and the 

original values, including the gaps. As we can see, the reconstruction process smoothes the original data. The 

mean temperature of the initial matrix, calculated over existing points, has been also plotted. The reconstructed 

series shows some spikes that are also present in the initial data, as for example, around the 10 September. This 

may indicate that there are some days that show smaller temperature in the whole basin, and this effect is also 

reflected in the reconstruction. 

 

Fig. 6. Original cloudy image (a) from the Complete Set for 5 October and its reconstruction (b). 

 
 

 

Fig. 7. Time Series of a random point (point at [42N, 17.3E]) in the Adriatic Sea. Solid coarse line represents 

the reconstructed field, · represents the original data, with gaps where there are no data, and thin solid line 

represents the mean initial temperature. 

 
 

5.1. Validation 

To establish the efficiency of DINEOF, a third data set extracted from the previous one is used. In this data set, 

only the cleanest images are taken into account. The result is a sequence of 15 images with mean cloud coverage 

of 18%. Extra cloud coverage is then added to this data set, so that we can then compare the reconstruction to the 

original images. Clouds are extracted from other images from the Complete data set, so that the coverage 

presents a realistic aspect. The extra clouds added increase mean cloud coverage up to 40%, 60% and 80%, in 

order to construct three different data sets, each with different amounts of cloud coverage. 

Continuity in time of the images is not necessary to effectuate the reconstruction. Good results can be obtained 

with irregularly time-distributed data. However, if the set of images is too sparse in some periods (e.g., only one 

or two images in summer and the rest in autumn), the reconstruction will be deteriorated by irrelevant EOFs 

describing the variability of a different period of the year, since the information for the former period is 

insufficient. To avoid this problem, the set of 15 images contains only data from September and October. 
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An example of reconstruction of these three sets can be found in Fig. 8 which shows the reconstruction of the 

three data sets the 16 October 1995. The initial, almost clean image of 16 October is shown in Fig. 8a.                  

The images with an additional 40%, 60% and 80% are shown in Fig. 8 c.l, d.l and e.l respectively.                     

Their reconstruction is shown in Fig. 8 c.2, d.2 and e.2 respectively. The reconstructed image from the 40% of 

added clouds shows a good agreement with the original field, free of clouds, as well as the image that was 

covered with 60% of clouds. The main physical features are realistically represented, such as cold temperatures 

south of the Po River and the warm current entering by the Strait of Otranto and following the east coast. 

Temperature distribution is maintained. Fig. 8 e.2 is a little bit noisier, due to the extreme cloud coverage of this 

data set, 80%. In this last figure, the maximal temperatures are slightly weaker in the reconstruction than in the 

original field, although the temperature distribution is well represented (again, the warm current entering the 

Adriatic Sea by the Strait of Otranto is maintained). In Fig. 8b the difference between the reconstruction of the 

40% added clouds 8c.2 and the initial clean image 8a is shown. The difference between them is very little, with 

the higher values, as it would be expected, in the zone where clouds were added, although there are differences 

of the same magnitude in the centre Adriatic. 

In these tests, only 2 EOFs were retained for the reconstruction (minimum error obtained by cross-validation, see 

Fig. 9). The data loss due to added clouds results in a decrease of variance on the reconstructed images. The 

variance of the three data sets (with 40%, 60% and 80% of cloud coverage) is 94%, 90%, and 80% of the 

original data variance respectively. Note that the variance has been calculated in relation to the images where 

extra clouds were added. 

 

Fig. 8. Image of 16 October. (a) is the original image, with low cloud coverage; (b) is the difference between the 

reconstruction of 40% added clouds and the initial image; (c.l) is the initial image plus 40% of added clouds; 

(c.2) shows the reconstruction of (c.l); (d.l) is the initial image plus 60% of added clouds; (d.2) shows the 

reconstruction of (d.l); (e.l) is the initial image plus 60% of added clouds; (e.2) shows the reconstruction of (e.l). 
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Fig. 9. Error obtained with cross-validation for the validation test. N is the number of EOFs. 

 
 

Fig. 10 shows the Root Mean Square (RMS) error between the three reconstructed subsets of 15 images and the 

original one, related to cloud coverage. Error increases with cloud coverage, but not very much. As can be seen, 

there are points of near 90% coverage that show only errors of 0.7 °C, while other points show higher errors and 

smaller cloud coverage. The RMS error for each data set is about 0.89 °C, 0.78 °C and 1.25°C for the 40%, 60%, 

and 80% of added cloud coverage respectively, which is comparable to the error estimate obtained with cross-

validation (Fig. 9). 

It may appear surprising that the set of 40% added cloud coverage presents a slightly higher error than the set of 

60% added clouds. This is simply due to the fact that the added clouds are 'real' clouds, i.e., they are taken from 

other images of the data set, so they are not homogeneously distributed, as would be obtained with an artificial 

random coverage. As a result, the set with 40% extra cloud coverage has zones where cloud coverage is very 

high, while clouds in the 60% added clouds set are more homogeneously distributed. As this situation is certainly 

possible in reality, we decided not to modify the cloud distribution, although it does have to be considered when 

looking at the obtained RMS error. 

 

Fig. 10. RMS error related to cloud coverage. 

 
 

5.2. Independent data 

In situ data from the MEDAR/Medatlas database (MEDAR-Group, 2002), covering the period of the Complete 

Set, have been used as a source of independent data for the validation. In Fig. 2 we can see the distribution of the 

stations extracted from MEDAR/Medatlas. A total of 452 observations taken at these stations are considered. 
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Surface points from MEDAR/Medatlas database are warmer than the satellite images used here, mostly in 

summer, due to daily reheating. As the SST images used in this work are night images, the data from 

MEDAR/Medatlas have been taken at 5 m depth in order to avoid skin temperature effects. The error between in 

situ and reconstructed data is minimised at this depth. The difference between MEDAR/Medatlas data and the 

reconstruction of the Complete Set is presented in Fig. 11. In this figure we can see the difference between 

MEDAR/Medatlas data and: (a) the original points (i.e., not covered by clouds) on the SST data set before 

applying DINEOF; (b) these same points after the reconstruction; and (c) those points that were missing in the 

initial data and whose value have been obtained using DINEOF. The total RMS error for the original satellite 

data (before DINEOF) is 0.71 °C, which we can consider as the error of the satellite measures in relation with in 

situ measures. Other works have found similar errors in satellite data (e.g. Wick et al., 1992). After the 

reconstruction, the error of these points is 0.67 °C. This reduction in error is due to the fact that the truncate 

series of EOFs used for the reconstruction does not contain noise that may exist in the initial data. For the 

clouded points that have been reconstructed, the RMS error is 0.95 °C, i.e., only 0.28 °C higher than the real 

initial points. The difference between the satellite data and in situ data is higher in southern stations, with the 

satellite data generally warmer than in situ data. 

 

Fig. 11. Difference between the satellite images and in situ data from MEDAR/Medatlas database. (a) Shows 

this difference for initial non-clouded points, before reconstruction. (b) Shows this difference for initial non-

clouded points, after reconstruction. (c) Shows this difference for initialy clouded points, reconstructed by 

DINEOF. 

 
 

6. Comparison with an Optimal Interpolation method 

The Harvard Ocean Descriptive Predictive System (HOPS) OI package (Davis, 1985; Robinson and Leslie, 

1985; Carter and Robinson, 1987) has been used to reconstruct the Complete Set in order to compare this 

reconstruction to DINEOF. The HOPS system is based on a minimisation of a pre-selected error norm, chosen to 

be the mean square difference between the estimate and the true value of the field. A multivariate space-time 

objective analysis scheme is used to produce regularly gridded fields in time and space (analyses) from the initial 

data (i.e., irregularly distributed observational data). In this case, the clouded images are used as initial data.          

The main parameters used in this reconstruction are summarised in Table 2. 

The results of reconstruction by the OI method have been compared to MEDAR/Medatlas in situ data.             

The OI approach has a high computational cost, and to obtain results similar to DINEOF, a total computational 

time of 40h 30min is necessary. It must be said that for this OI reconstruction, only one point in 100 was used, 

because the reconstruction of the total Complete Set with this method would have taken too long. The RMS error 

between initially non-clouded points and in situ data is 1.78°C. For clouded points, the RMS error is 2.4 °C. The 

OI reconstruction thus presents a higher error than DINEOF (errors given in Section 5.2). Of course, a higher 

number of points could have been used for the reconstruction, thus obtaining a smaller error. As the test realised 

here was at the limit of the computer resources, we were unable to take a higher number of points. 

The OI results can be improved by a fit to the initial data. The procedure explained by Smith et al. (1996) is 

followed. First, the 15 most dominant EOFs are calculated from the OI reconstruction and then the amplitudes 

are fitted, in the least-squares sense, to the initial existent data. The RMS error is now 0.89 °C for initially 

clouded points, and 0.65 °C for non-clouded points. This improvement in the OI reconstruction is easy to obtain 

and entails only small additional computational cost. The errors of the fitted reconstruction are thus similar to 

those obtained by the DINEOF reconstruction, with a difference in time required to calculate them. 
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An additional test was carried out, to determine what the behaviour of the OI procedure would be if the same 

computational time as used for DINEOF were allotted, i.e., one hour and a half. To stay within this time, only 

one point out of 1600 could be taken, otherwise the allowed computational time would have been exceeded. The 

reconstruction obtained in this case with the OI procedure is very poor, and the mean value of the initial existing 

points is usually recovered as the reconstruction, due to the lack of influential points. 

 

Table 2. Main parameters of the OI reconstruction 

Number of influential points 20 

Radius of influence 25 km 

Influential time window 6 days 

Observation error 0.1 °C 

Correlation, zonal zero crossing 60 km 

Correlation, meridional zero crossing 60 km 

Zonal decorrelation (decay) scale 40 km 

Meridional decorrelation (decay) scale 40 km 

Temporal decorrelation (decay) scale 6 days 

 

7. An application: EOF analysis 

To conclude this work, we realised an EOF decomposition. We aim to show the quality of the reconstructed 

images with this example. Any kind of study can be done with the reconstructed data set, as there is no longer a 

coverage limitation. The first three EOFs are presented, and we pay special attention to a cold event that 

occurred on the Albanian coast in July (Fig. 4). 

Fig. 12 shows the first three spatial modes. These three modes account for 94% of the variability (84.6%, 7.2% 

and 2.2% respectively). The first mode (Fig. 12a) is positive almost everywhere in the basin, indicating a general 

warming or cooling of the Adriatic Sea. The temperature distribution corresponds to that described as the typical 

situation in the Adriatic Sea. Indeed the east coast presents smaller values than the west coast. The zone 

surrounding the Po River has the strongest values, indicating that the influence of the Po River is very high. 

When looking at the first temporal mode (Fig. 13a) we see a seasonal cycle, with a warming trend when 

approaching summer and a cooling when approaching autumn. The first mode thus represents the seasonal cycle 

ranging from May to October. 

In the first and second modes, there is a clear signal of the EAC entering the Ionian Sea. The different evolution 

in time of both modes contributes to the modulation of this current. The first mode reaches a maximum when the 

second one has its smallest values, i.e., at the end of July. Then the second mode presents its highest values while 

the first one decreases towards zero. 

 

Fig. 12. Spatial EOFs, modes 1-3 (a)-(c). Units are °C
1/2
. 

 
 

The second spatial mode (Fig. 12b) also presents the WAC exiting the Adriatic Sea. We can see the signal of the 

filament detaching from the Istrian Peninsula. In the second temporal mode (Fig. 13b), we can see that the 

fluctuations reach their highest values from 1 September to the end of the record. The EAC is more intense in 

autumn (Artegiani et al., 1997b; Cushman-Roisin et al., 2001; Poulain, 2001), and when looking at the Complete 
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Set, we can see that both currents, EAC and WAC, increase their intensity in this period. We can also observe a 

north-south division of the basin temperature in the second spatial mode, with the largest negative values in the 

Croatian coast, south of the Istrian peninsula. In summer, the temperature in the northern basin is higher than the 

temperature in the southern basin. The opposite occurs in winter (Cushman-Roisin et al., 2001). As can be seen 

when looking at the second temporal mode, the values from May to August are near zero or negative, which 

indicates that the northern basin is warmer than the southern one in the summer season, as the second spatial 

mode presents negative values in the north. In autumn, the second temporal mode reaches its highest values, 

indicating that the northern basin is then colder than the southern basin. 

 

Fig. 13. Temporal EOFs, modes 1-3 (a)-(c). Units are °C
1/2
. 

 
 

In the third spatial mode (Fig. 12c) we can clearly see the signal of the Po plume, which extends over a large 

zone. This is the situation mainly found in summer, when winds decrease and the Po River water can spread over 

the entire northern basin. In winter, the plume is reduced, and winds force it to follow the west coast of the 

Adriatic Sea (Cushman-Roisin et al., 2001; Mauri and Poulain, 2001). This situation can be seen in the third 

temporal mode (Fig. 13a), where we see a gentle decreasing trend all along the time series as autumn 

approaches. The water coming from the Po River is warmer than the surrounding waters from May to August. In 

September-October, when the temporal mode becomes negative, the Po River water is colder than that in open 

sea. This situation has been described by Gacić et al. (1997) and Cushman-Roisin et al. (2001). Again, the largest 

negative values are found on the Croatian coast. These waters are cold in summer (positive values of the 

temporal mode), but in September, when the EAC inflow is increased, the hot waters also affect this zone, which 

become warmer than in summer (negative values of the temporal mode). South of the Istrian peninsula, there is 

the signal of a filament with negative values. 

 

Fig. 14. ECMWF wind series projected to NE direction. The arrow shows the peak of wind speed on 20 July 

1995. 
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Fig. 15. Wind mean distribution for the period from 17 July to 22 July 1995. 

 
 

One feature that attracted our attention is a peak that is present in the second and third temporal modes, occurring 

23 July. This abrupt change is negative in the second mode, and positive in the third one. This peak occurs on 23 

July; this image has already been shown (Fig. 4). In this figure, we can see a cold tongue of water along the 

Albanian coast, in the southeast of the Adriatic, which is also partially visible in the initial cloudy data set (Fig. 

5). This feature can be observed from 22 to 26 July. Bergamasco and Gacić (1996) and Gacić et al. (1997) 

describe the occurrence of cold waters in this zone, but its cause is not well documented. It may be an upwelling 

due to the action of the northeasterly Bora wind, when it blows parallel to the coast, or simply the vertical 

mixing induced by the wind. The study of the wind series for this period is thus important to understand this 

event. We used the ECMWF Re-Analysis (ERA) wind series from May to October. This data set covers the 

Adriatic Sea with a half-degree resolution in both latitude and longitude. As a result, a total of 14 × 13 points 

over the Adriatic are used. In Fig. 14 the projection of this time series in the NE direction is shown in order to 

identify Bora wind. As can be seen, an arrow marks a peak occurring on 20 July, when the wind reaches high 

values in Bora direction. Looking at the wind distribution these days (Fig. 15), it can be seen that for a period of 

six days, from 17 to 22 July, the wind blows constantly parallel to the Albanian Coast, with the maximum speed 

reached on 20 July. The speed ranges from 3 to 5m/s, which is not considered as a strong Bora event. However, 

this speed is only exceeded on 9 October, so the event of 20 July is one of the strongest of the period May-

October 1995. The figures shown suggest that the cold tongue observed at the Albanian coast is caused by the 

action of the Bora. The reconstructed data set very accurately reflects this event. 

 

8. Conclusion 

A reconstruction method, called DINEOF, has been successfully applied to a large matrix. The method is robust, 

simple to use and does not need any a priori information about the error statistics of the data. The results 

obtained have been analysed, giving an example of their reliability and usefulness. 

The aim of this work was the application of the method to a realistic case, a data set covering the whole Adriatic 

Sea for a six-month period. To do so, a Lanczos solver was combined with DINEOF, in order to calculate the 

EOFs in an optimised way. Computational times are good for the examples given in this paper. However, for the 

application of the methodology to very large matrices some additional optimisation work could be done, such as 

stop criteria for the calculation of the optimal number of EOFs, which would indicate when the minimum error 

calculated by cross-validation has been attained. 

The results of the reconstruction in the Adriatic Sea are accurate and smoothly included in the final result, as 

seen in the visual examples given and in the validation studies made with a small set of the matrix. The 

validation was carried out in a data set with increasing amounts of missing data, where 40%, 60% and 80% of 

data loss were added. The comparison of the reconstructed fields with the original one reveals that the error is 
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small, about 0.89 °C, 0.78 °C and 1.25°C for the 40%, 60% and 80% of missing data respectively. The 

comparison with in situ data from the MEDAR/Medatlas database also reveals an RMS error of the same 

magnitude, of about 0.95 °C for the points that are covered by clouds in the Complete Set. When visually 

checking the reconstruction results, we can see that the main physical features are recovered in the final result, 

such as the Po River Plume, cold filaments generated in the eastern coast, or the warm water current entering the 

Adriatic Sea by the Strait of Otranto in autumn. 

Some artificial features in the initial data are also filtered out of the final result using the reconstruction method. 

This is highly interesting when dealing with data sets that have not been properly treated and present abrupt 

temperature changes in the vicinity of clouds. 

A comparison with an OI method was realised. The clouded data are reconstructed with OI, and then the EOFs 

are calculated and their amplitudes are fitted to the initial data. The results show that both methods, fitted OI and 

DINEOF, perform very similarly. The main difference is in the computational time, which is nearly 30 times 

greater for the OI reconstruction. In many situations, such as an operational frame, this time difference is very 

important. 

An EOF analysis of the reconstructed field shows the utility of the reconstructed images. The first mode shows 

the seasonal cycle, from spring to autumn. The second mode presents the modulation of two general currents, the 

EAC and the WAC. Finally, the third mode shows the modulation of the Po plume. A cold event on the Albanian 

coast has been studied, and compared to a time series of wind obtained from ECMWF. This cold event is shown 

to be related to Bora winds that blow over the Albanian coast in the studied period. 

In this study, DINEOF has been applied to a temperature field. Further work may show its utility when 

reconstructing other variables, such as salinity or chlorophyll. When dealing with chlorophyll fields, the 

patchiness that usually characterises their distribution (Martin, 2003; Strass, 1992) makes the reconstruction of 

these data a difficult task. Chlorophyll fields are very decorrelated, and techniques like optimal interpolation may 

have difficulty reconstructing this data. The characteristics of DINEOF make it suitable for reconstruction of 

such data. Any other field obtained from satellites (from passive receptors that cover a large area and thus 

provide a good data coverage) or from dense oceanographic data sets is suitable to be reconstructed. 
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