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Abstract

The quality assessment of a nested model system of the Mediterranean Sea is realised. The model has two zooms in the
Provençal Basin and in the Ligurian Sea, realised with a two-way nesting approach. The experiment lasts for nine weeks, and at
each week sea surface temperature (SST) and sea level anomaly are assimilated. The quality assessment of the surface temperature
is done in a spatio-temporal approach, to take into account the high complexity of the SST distribution. We focus on the multi-scale
nature of oceanic processes using two powerful tools for spatio-temporal analysis, wavelets and Empirical Orthogonal Functions
(EOFs). We apply two-dimensional wavelets to decompose the high-resolution model and observed SST into different spatial
scales. The Ligurian Sea model results are compared to observations at each of those spatial scales, with special attention on how
the assimilation affects the model behaviour. We also use EOFs to assess the similarities between the Mediterranean Sea model and
the observed SST. The results show that the assimilation mainly affects the model large-scale features, whereas the small scales
show little or no improvement and sometimes, even a decrease in their skill. The multiresolution analysis reveals the connection
between large- and small-scale errors, and how the choice of the maximum correlation length of the assimilation scheme affects the
distribution of the model error among the different spatial scales.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The quality assessment of a three-dimensional model
forecast is a difficult task, particularly when studying its
spatio-temporal characteristics. For this kind of study
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we can use in situ data, but their coverage is usually
limited in space and/or time, making difficult the
comparison with a three-dimensional model. Another
possibility is the use of satellite observations, which
have very good coverage in space and time but are
limited to the ocean surface. The comparison of the
model even to such incomplete fields can however add
valuable information to the understanding of the model
behaviour.
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The comparison between these complex fields,
model and observations, is not straightforward because
two fields describing the distribution of a variable can
differ in many ways (e.g. an overall bias, missing pro-
cesses, bad positioning of a given feature, etc.). The first
step to assess the quality of a forecast is thus to establish
which processes are being studied. The definition of the
spatio-temporal scales related to these processes will
then fix the model characteristics that we need to study.

Forecast verification depends thus on what we want
to verify, and at which spatio-temporal scales. The ve-
rification process must be designed to find the answers
to the questions that may arise when dealing with fore-
cast results. In field forecast verification, these questions
are related to the accuracy of the model with respect to
observations, but also to the spatial distribution of the
studied variable and the temporal evolution of this
distribution. The study of the spatial distribution of a
variable can help us to see if there are missing processes
in the model (such as a recurrent gyre or a front) and to
learn about the capacity of the model to represent the
reality at different physical spatial scales.

The study of such complex error fields cannot be done
with a unique error measure. To answer questions related
to the spatial distribution of a variable, its spatial
distribution averaged over time can be studied. How-
ever, in field forecast verification special attention must
be paid to the fact that the number of grid points in a
model and the spatial correlation between them makes
very difficult to study the skill distribution in space
(Livezey and Chen, 1983). It is very unlikely that two
adjacent points in a model grid are completely inde-
pendent, so the interpretation of a spatial skill (temporal
averaged) becomes ambiguous (Wilks, 1995; Briggs and
Levine, 1997; Jolliffe and Stephenson, 2003).

Time error evolution is thus preferred to avoid the
correlation problem, as long as the time between anal-
yses is longer than the temporal correlation scale. An
average over all points in a grid at a given time is thus
commonly used in the verification process. The tem-
poral evolution of the error is very useful to obtain a
general idea about the quality of the model. It is often
the only way an error measure is applied. However, to
answer some of the questions specified above, one
needs to keep the spatial distribution of the studied
variable. Spatio-temporal techniques can help us to
study the evolution of a variable in time, keeping the
spatial distribution information, and avoiding the ambi-
guity of correlation between adjacent points. Multi-scale
techniques allow us to study the behaviour of a model at
different spatial scales (Daubechies, 1992; Mallat, 1998),
or even to focus on a specific scale of interest. Nested
models, as the one we are working with, can also be
considered as a multi-scale approach. Each nested level
is a refinement of the parent model, so the verification
at those two model grids can also give us an idea about
the model behaviour at different spatial and/or temporal
scales (Denis et al., 2003).

Wavelet Transforms are widely used in multi-scale
decomposition studies (Daubechies, 1992; Torrence and
Compo, 1998). They overcome the localisation problem
of Fourier Transforms. By using a variable window size
that is translated and dilated over the studied domain,
wavelets allow us to separate a signal into orthogonal
components related to the position and scale of the signal
(Mallat, 1989, 1998).

Several studies have applied a multi-scale approach to
analyse the spatial behaviour of a variable. Liang and
Robinson (2005) established a multi-scale Energy and
Vorticity Analysis (MS-EVA), that uses wavelets for the
multi-scale decomposition. Liang and Robinson (2004)
used MS-EVA to study the energy and vorticity balances
at different spatial and temporal scales of the Iceland-
Faroe Front and considered the transfer and distribution
of energy and vorticity between the large-scale, meso-
scale and sub-mesoscale. A similar approach was used by
Fournier (2002, 2003) for atmospheric fields. Yano et al.
(2001) made a three-dimensional study of a convective
cloud system, characterising preferred spatial orientations
of the system. Briggs and Levine (1997) and Casati et al.
(2004) worked with 500-hPa geopotential height fields
and rain fields respectively.

Two-dimensional wavelets have been recently applied
in the frame of forecast verification (Briggs and Levine,
1997; Casati et al., 2004). In these papers the authors
decomposed a model into several spatial scales using
wavelets, and assessed the quality of the model at each of
these scales. As these scales have a physical meaning, we
can identify the error with a physical process characteristic
of each scale (Briggs and Levine, 1997).

This last approach is exploited in this work. Wavelets
are a perfect tool for spatio-temporal analyses of two-
dimensional fields. The aim is to decompose the model
forecast sea surface temperature (SST) and the observa-
tions into different resolution levels or scales. Then, the
comparison between model and observations can be done
at each of these scales. This allows us to identify the scales
that are mainly contributing to the global error, and thus to
have a closer look into the behaviour of these fields.

Empirical Orthogonal Functions (EOFs) are also
used in this work. They can decompose a matrix into
orthogonal modes representing the major patterns of
variability found in the data. EOFs are very useful in the
comparison between a model and observations in a
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spatio-temporal frame. We can study whether the model
presents the same spatial and temporal distribution than
the observations at their major modes of variability. The
study of the spatial modes allows us to see if there are
missing features in the model, or if they are represented
with the appropriate intensity. The temporal modes
allow us to see if the temporal cycle (e.g. monthly,
seasonal or annual cycle) is accurately represented by
the model, or if there is a shift or a difference in intensity
between model and observations. Several works use
EOFs to study the spatial and temporal characteristics of
the ocean. For example, Lermusiaux (2001) studied the
three-dimensional variability of the Massachusetts Bay
using EOFs. Lermusiaux (2002) made an analysis about
the sensitivity of a mapping method to the size of the
considered subspace, the studied scales, and the system
dynamics. Molcard et al. (2002) realised an EOF
analysis of the wind stress over the Mediterranean
Sea, to study the relationship between wind stress and
the ocean response. Beckers et al. (2002) used EOFs for
the intercomparison of different models in the Mediter-
ranean Sea.

In this work we present the quality assessment of a
three-dimensional model in the Mediterranean Sea. The
model has two zooms to the Provençal basin and to the
Ligurian Sea (Barth et al., 2005). These three models are
connected by a two-way nesting approach. The quality
assessment of the different resolution models gives us an
idea about how it behaves at different grid resolutions.
We study the model error at the basin and sub-basin
scales before applying the mentioned spatio-temporal
techniques. We then apply wavelet decomposition to the
Ligurian Sea model, and this decomposition will allow
us to study the spatial characteristics from one to about a
hundred kilometres.

The model is forced by data assimilation. Weekly
SST and SLA are assimilated during nine weeks. In
Fig. 1. The Mediterranean Sea grid (22×28 km resolution) and its bathymet
Provençal Basin in solid line and the Ligurian Sea in dashed line.
addition, we dispose of daily satellite SST images for the
quality assessment. Thus, we focus on time scales from
one day to a month.

This work is organised as follows: first, a brief
description of the Mediterranean and Ligurian Sea
main characteristics is made in Section 2. Then the
model and data used, and a brief description of discrete
wavelet transforms are presented in Section 3. Section
4 presents the time evolution of the model SST error of
the Mediterranean and Ligurian Sea models, which
gives us an idea about the behaviour of the model at the
basin and sub-basin scales. Then these models are
analysed in a spatio-temporal frame: the Ligurian Sea
model first, with two-dimensional discrete wavelet
analysis in Section 5, and then the Mediterranean Sea
with an EOF analysis in Section 6. We pay special
attention to the impact of the assimilation in the model
behaviour and in the distribution of the error at
different scales. Finally, we present the conclusions of
our work in Section 7 along with the recommendations,
obtained through the error analyses, to improve the
model skill.

2. The Mediterranean sea

TheMediterranean Sea (see Fig. 1) is a semi-enclosed
sea with an extension of approximately 3000 km in the
zonal direction and 1500 km in the meridional direction.
It is connected to the Atlantic Ocean by the Strait of
Gibraltar, a narrow canal of 20 km width and 300 m
depth.

The Mediterranean Sea freshwater input (precipita-
tion and river discharges) does not balance the evapo-
ration. This evaporation/precipitation balance mainly
controls the large-scale circulation in the Mediterranean
Sea: the evaporation makes the surface water more
saline, originating a convective process that involves the
ry. The two successive squares represent the next nested domains, the
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entire water column and that leads to the formation of
deep waters in zones like the Western Mediterranean
and the Rhodes gyre. In the Strait of Gibraltar, the cooler
and lighter Atlantic water enters the Mediterranean
above the outflowing saltier and warmer Mediterranean
Water (Viudez et al., 1996). Due to evaporation and
mixing, the Atlantic Water gradually changes its phy-
sical and chemical properties, forming the Modified
Atlantic Water (MAW). The MAW forms a surface layer
of about 100-200 m depth all over the Mediterranean
Sea (Millot, 1999). Circulation in the Mediterranean Sea
follows a cyclonic path all over its basins and sub-
basins. The MAW contributes to the formation of an
intermediate water mass (Levantine Intermediate Water,
LIW) in the Eastern Mediterranean, due to warming and
evaporation processes. This newly formed LIW returns
to the west and exits the Mediterranean through the
Strait of Gibraltar below the MAW.

The circulation in the Mediterranean Sea occurs at
mainly three spatial scales: basin scale, sub-basin scale
and mesoscale. At a basin scale, the most important
pattern is the zonal circulation of MAW. The sub-basin
scale is characterised by gyres (sub-basinscale gyres)
and permanent or quasi permanent cyclonic and
anticyclonic structures (e.g. Rhodes gyre and Ierapetra
Gyre) interconnected by intense jets and meandering
currents (Malanote-Rizzoli et al., 1999). We can also
think in terms of time scale, as interannual scale (e.g.
deep water mass formation and variations in volume
transport), seasonal scale (e.g. thermocline depth variat-
ions, gyres) and smaller scales (Brankart and Brasseur,
1998; Pinardi and Masetti, 2000).

2.1. Liguro–Provençal basin

The circulation in the Ligurian Sea (dashed box in
Fig. 1) describes a cyclonic gyre, which is more intense
in winter and is mainly due to wind curl stress (Larnicol
et al., 1995). Two northward currents surrounding the
coast of Corsica, the West Corsican Current and the East
Corsican Current, feed the circulation pattern of this
area. Both branches join north of Corsica, forming the
Northern Current (NC), which flows south-westward
following the French and the Spanish coasts along the
continental slope. The signal of the NC extends from the
north of Corsica to as far as the Catalan Sea (Albérola et
al., 1995; Sammari et al., 1995; Astraldi et al., 1999;
Millot, 1999).

The Ligurian Sea presents a marked seasonal
variability, mainly noticed in the variations in volume
and position of the NC all along the year (Albérola et al.,
1995; Albérola and Millot, 2003). The modulation of the
NC is determined by changes in the two currents that
feed it, the Western and Eastern Corsican currents
(Astraldi and Gasparini, 1992; Sammari et al., 1995;
Astraldi et al., 1999). The NC is also affected by a high
mesoscale activity (Albérola et al., 1995), mainly
reflected in the formation of meandering structures all
along the NC path. The meandering structures can be as
wide as the NC and they can advance at the same
velocity (Sammari et al., 1995). These seasonal and
mesoscale variations can be seen all along the NC south-
westward flow (Font et al., 1995).

3. Material and methods

3.1. The GHER model

The GHER (GeoHydrodynamics and Environmental
Research) model, a three-dimensional model (Beckers,
1991) has been applied to the Mediterranean Sea. The
model is governed by the primitive equations and it has
a free surface. In the vertical, the model uses a double-
sigma coordinate with 31 levels. The numerical scheme
conserves mass, heat and salt. Other details of the
GHER model can be found in Beckers (1991) and Barth
et al. (2005).

The Smith and Sandwell (1997) bathymetry has been
used in the model. The initial salinity and temperature
are computed from MODB (Mediterranean Ocean
DataBase, Brasseur et al. (1996)). Two river freshwater
inputs are also included: the Rhone (in France) and the
Arno (in Italy) rivers, obtained from Tusseau and
Mouchel (1994) and from Rinaldi (pers. comm.),
respectively. Daily heat and momentum fluxes are
calculated from bulk formulae. Temperature of the air at
two meters, cloud coverage, wind speed at 10 m, dew
point temperature and pressure fields are obtained from
the European Center for Medium-Range Weather
Forecasting (ECMWF), and they are used for the
computation of the heat fluxes. The ECMWF analysis
fields have a resolution of 1/2° and are produced each
6 h. The heat fluxes used in the model are interactive,
i.e., they depend of the surface temperature provided by
the GHER model.

This model has been applied in a two-way nesting
approach to the Ligurian Sea (Barth et al., 2005). The
model consists in three nested sub-domains: the coarsest
grid represents the whole Mediterranean, with 22×28 km
resolution, the intermediate grid covers the Liguro-Pro-
vençal basin (4×6 km), and the finest grid is centred in the
Ligurian Sea, with 1.5×1.9 km resolution. These three
domains can be seen in Fig. 1, where the bathymetry is
also represented.
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From 6 July to 1 September 2000, an assimilation
experiment has been carried out. Eachweek SSTand SLA
satellite data are assimilated into the model via a Singular
Evolutive Extended Kalman filter (Pham and Verron,
1998; Brasseur et al., 1999; Brankart et al., 2003), which
is a reduced order Kalman filter. For the computation of
the error covariance of the model, an ensemble of 200
members was generated. Initial conditions and atmo-
spheric forcings are perturbed and then the ensemble of
200 members runs for 2 weeks, beginning on 5 July. The
final ensemble is used to calculate the error covariance of
the model. For further information on the assimilation
experiment, see (Barth et al., 2007-this issue).

The aim of this study is to learn how the SST
assimilation influences the model skill. We refer to
the model with SST assimilation as Forecast. This
simulation is studied each week before the assimilation
of SST and SLA, so the Forecast is still independent
from the observations that will be assimilated into the
model. To assess the contribution of the assimilation of
SST and SLA into the model, we use a free run (i.e. a
run without assimilation, but with the same parameter-
isation and forcings as the Forecast). This data set is
called Free run. Finally, the result of the assimilation
of observations is used. This data set is used to study
the impact of the assimilation step on the model, and it
is called Analysis. This data set is then dependent of
observations.

3.2. Observations

Advanced Very High Resolution Radiometer
(AVHRR) SST data from the German Aerospace Re-
search Center (DLR, http://eoweb.dlr.de:8080/servlets/
template/welcome/entryPage.vm) are assimilated into
the model, and they will be used in the skill assessment.
They have a resolution of approximately 1 km. To avoid
artificial skill when comparing the model with assim-
ilated data, the comparison is always done before the
data is assimilated. DLR data are mean weekly com-
posite temperature fields. The composite value for every
pixel is computed from the daily maximum temperature
images, and clouded pixels are excluded from the data.
We refer to this data set as DLR SST.

Daily AVHRR Pathfinder v5 SST data (hereafter
Pathfinder SST) are also used. Pathfinder SST data are
available via anonymous ftp at the Jet Propulsion Labo-
ratory web site (ftp://podaac.jpl.nasa.gov). They consist
on daily averaged global SST maps. A subset ranging
from 6 July to 1 September 2000 and covering the
Mediterranean Sea is used. Only descending (nighttime)
passes are selected, to minimise skin temperature effects.
They are derived from the 5-channel AVHRR on board
the NOAA-7, 9, 11, 14, 16 and 17 polar orbiting
satellites. Together with the Pathfinder SST data, quality
flags can also be obtained. Clouds are identified from
these quality flags, so each user can decide the mask that
will be applied to the data. The possibility of choosing
the level of quality of the data that we want to keep, and
the fact that nighttime passes are separated from daytime
passes, makes the Pathfinder SST a product of higher
quality than the daily DLRSST. Quality flags classify the
Pathfinder SST from 0 (the worst) to 7 (the best), but
there is no linear relation between those levels. The
quality flags are given pixel-by-pixel, and they are the
result of a series of ‘pass’ or ‘fails’ of different quality
tests. These tests penalise pixels outside the Reynolds'
climatology (Reynolds and Smith, 1994), or those pixels
situated at the edges of the scan line. Other tests include
the brightness temperature, zenith angle and glint tests.
A complete explanation about the Pathfinder products
and how these tests were performed can be found in
Kilpatrick et al. (2001).

We have classified quality flags under 5 as clouds or
missing data. The Pathfinder SST data set used in this
work has thus some missing data. Before using them we
have reconstructed the missing data with an EOF-based
method, called DINEOF (Data INterpolating Empirical
Orthogonal Functions, Beckers and Rixen, 2003;
Alvera-Azcárate et al., 2005). DINEOF is a parameter-
free method that allows to reconstruct missing data in an
accurate and fast way. The main advantages of this
method is that it does not need a priori knowledge about
the error statistics of the data, and that it can reconstruct
big matrices with up to 30 times less computational time
than other classically used methods, as optimal
interpolation (Alvera-Azcárate et al., 2005), leading to
the same accuracy of the results. The method uses a
cross-validation technique to establish the optimal
number of EOFs necessary for the reconstruction.
DINEOF is thus inherently self-contained but will
work well only as long as EOF analysis on a complete
data set would work efficiently. In particular, propagat-
ing features are generally not well captured by the method
and the orthogonality of the modes does not always allow
interpreting them physically.

To validate the reconstruction of missing data in the
Pathfinder SST data set, we compared them to 256 in situ
stations from theMEDAR/Medatlas database (MEDAR-
Group, 2002). The Root Mean Square (RMS) error
between the reconstruction and in situ data was 0.81 °C
for initially missing points and 0.93 °C for initially
existing points. This last error can be considered as the
error between the satellite and in situ data. Note that the
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error of the initially missing points is even smaller than
the error of the initially existing data.

3.3. Discrete wavelet transforms

In this section we give a brief presentation of the one-
dimensional wavelet transform and its main character-
istics, used afterwards in the model results analysis. For
a comprehensive explanation on wavelets the reader is
referred to Daubechies (1992), Mallat (1998) and
references therein.

Wavelets are a set of functions generated by a mother
wavelet ψ(x). This real function has, among others, the
following properties (Kumar and Foufoula-Georgiou,
1997; Torrence and Compo, 1998):

• Unit norm:
R
wðxÞ2dx ¼ 1.

• Zero mean:
R
wðxÞdx ¼ 0. This characteristic allows

a wavelet to extract high-frequency variations of the
studied function.

• Most wavelets have a compact support, or a expo-
nential decay to zero. Wavelets allow therefore a
localisation in space in contrast to Fourier modes,
which have an infinite support.

From this mother wavelet, a set of orthogonal
wavelets fwm;n8m; n a ℤg is obtained by (Daubechies,
1992):

wm;nðxÞ ¼ 2−m=2wð2−mx−nÞ ¼ 1ffiffiffiffiffiffi
2m

p w
x−n2m

2m

� �
ð1Þ

where ψ(x) is dilated and translated by means of para-
meters m and n. In order to complete this set of func-
tions, we must introduce the scaling function ϕ(x) (also
called father wavelet) with the following properties:

• Unit norm:
R
�ðxÞ2dx ¼ 1.

• Unit mean:
R
�ðxÞdx ¼ 1. This characteristic allows

a scaling function to extract low-frequency variations
of the studied function.

• The mother wavelet and the scaling function are
orthogonal:

R
wðxÞ�ðxÞdx ¼ 1.

From this scaling function, a set of functions is ob-
tained by transforming the scaling function ϕ(x):

�m;nðxÞ ¼ 2−m=2�ð2−mx−nÞ ð2Þ

For any M, the set of functions formed by the
wavelets fwm;n8mVM ; naℤg and the scaling function
f�M ;n 8n aℤg is a complete set of orthogonal func-
tions. The discrete wavelet transform consists in pro-
jecting a function g(x) onto these basis functions. The
term “discrete” refers to the fact that the scale parameter
m and the translation parameter n take only integer
values. The scalar product between the function g(x)
and all the basis functions are the scaling function co-
efficients am,n and the wavelets coefficients dm,n:

am;n ¼
Z

�m;nðxÞgðxÞdx ð3Þ

dm;n ¼
Z

wm;nðxÞgðxÞdx ð4Þ

for all m; naℤ (with ℤ the ensemble of integer numbers)
and m≤M. Each of these coefficients is related to a
scale and a location given by parameters m and n. This
property makes wavelets very appropriate for multi-
resolution analysis (Mallat, 1998).

From the coefficients dm,n and am,n, the original func-
tion can be reconstructed by:

gðxÞ ¼
Xl
n¼−l

XM
m¼−l

dm;nwm;nðxÞ

þ
Xl
n¼−l

aM ;n�M ;nðxÞ ð5Þ

In particular ifMYl, for a function with zero mean:

gðxÞ ¼
Xl
n¼−l

Xl
m¼−l

dm;nwm;nðxÞ ð6Þ

The approximation Am(x) and the details Dm(x) are
defined for all m≤M by:

AmðxÞ ¼
Xl
n¼−l

am;n�m;nðxÞ ð7Þ

DmðxÞ ¼
Xl
n¼−l

dm;nwm;nðxÞ ð8Þ

The functions Am represent the variations larger or
equal than the scale m, and functions Dm represent the
variations smaller than m. Rewriting Eq. (5), a function
g(x) can be decomposed into separate scales or resolution
levels:

gðxÞ ¼ D1ðxÞ þ D2ðxÞ þ ::: þ DM ðxÞ þ AM ðxÞ ð9Þ

A discrete wavelet transform can be viewed as a
hierarchical decomposition that iteratively filters the
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high-frequency signal out of the large-scale signal. The
approximation of the previous scale is decomposed into
approximation and details of the current scale,

A0ðxÞ ¼ gðxÞ ð10Þ

AmðxÞ ¼ Amþ1ðxÞ þ Dmþ1ðxÞ ð11Þ

The wavelet decomposition can also be applied to a
vector g(xi) with i=1…N, N=2M (i.e. a vector of dyadic
length). The vector g(xi) can be decomposed into
M scales. The wavelet coefficients are then obtained
from the discrete wavelet ψm,n(xi) and scaling function
ϕm,n(xi). As before, indexes m and n determine the
dilation and translation of the wavelet and scaling
function. The approximation and detail coefficients are
represented by:

am;n ¼
XN
i¼1

�m;nðxiÞgðxiÞ ð12Þ

dm;n ¼
XN
i¼1

wm;nðxiÞgðxiÞ ð13Þ

where m=1…M and n=1…2M−m. For the largest scale of
the decomposition M, the index n is dropped for the
approximation coefficient (aM) and the scaling function
(ϕM (xi)) in order to simplify the notation. The ap-
proximation coefficient aM is related to the mean value
of the vector ḡ, since:

�M ðxiÞ ¼ 1ffiffiffiffi
N

p ð14Þ

aM ¼
ffiffiffiffi
N

p
ḡ ð15Þ

The decomposition of the vector g(xi) into M scales
is given by:

gðxiÞ ¼
XM
m¼1

X2M−m

n¼1

dm;nwm;nðxiÞ þ aM�M ðxiÞ ð16Þ

We will work with the detail coefficients at all scales
and the approximation at the largest scale, as they retain
the necessary information at each scale to reconstruct
the initial function. There are different interpretations of
the length scale associated to the detail coefficients.
Here we follow the convention given by Lindsay et al.
(1996) and Casati et al. (2004), which interprets the
details resolution as the grid resolution. The reader
should be aware that some authors (e.g. Yano et al.,
2001) define the details resolution as the shortest wave-
length that can be represented by the wavelet on a grid.
Both conventions differ by a factor of two. If Δx is the
initial grid spacing of the function g(x), then we define
the resolution of the details coefficients at scale m as
Δx2m−1.

The explanation on wavelet characteristics given pre-
viously can be extended to two-dimensional wavelets,
which are obtained by the orthogonal product of one-
dimensional wavelets and scaling function. The detail
coefficients, however, are divided into horizontal, vertical
and diagonal details that account for different spatially
oriented frequency channels (Mallat, 1989; Kumar and
Foufoula-Georgiou, 1993).

The wavelet chosen to decompose a data set will
undoubtedly affect its decomposition. This is why a
careful choice of the mother wavelet is very important.
Torrence and Compo (1998) name several choices that
should be taken into account when choosing the wave-
let: i) orthogonal or non-orthogonal wavelets; ii) com-
plex or real wavelets (complex wavelets are also largely
used in geophysics, e.g. Spedding et al. (1993), Chapa
et al. (1998), Rao and Murthy (2001); iii) the width of
the wavelet (or compact support); and iv) the shape of
the wavelet; in fact, the shape of the wavelet should be
chosen accordingly to the characteristics of the data to
analyse, because the results change when using different
wavelet forms. There are other methods to choose the
more adequate waveform. In Briggs and Levine (1997),
the wavelet that minimises the entropy of the wavelet
transform is chosen. Casati et al. (2004) worked with
binary rain fields, and the square-shaped Haar wavelet
fitted the best to the data. In this work, two-dimensional
Haar wavelets are used.

In Oceanography, there is an additional degree of
difficulty when using two-dimensional wavelets.
Oceanographic domains often contain irregular bound-
aries at the limit between land and sea, which is not the
case in the atmosphere, for example. We have treated
land–sea boundaries as an extension of the one-dimen-
sional case: when the analysed time series does not have
a dyadic length, it is normally padded with extra values
up to the nearest dyadic length. These added points can
be constructed in many different ways, e.g. with zeros,
or a periodic extension of the original data, a gently
decrease to zero, the mean value of the variable, etc. The
same can be done in two dimensions to reach the dyadic
length trying to minimise the perturbation of the wave-
let coefficients at the land–sea boundary. Land points
have been replaced by the mean value of the field, and
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discontinuities at the land–sea boundary have been re-
duced by the following iterative procedure:

gðsþ1Þ
i; j ¼ gðsÞi; j þ að4gðsÞi; j −g

ðsÞ
iþ1; j−g

ðsÞ
i−1; j

−gðsÞi; jþ1−g
ðsÞ
i; j−1Þ if i; j is a land point

ð17Þ

gðsþ1Þ
i; j ¼ gðsÞi; j elsewhere ð18Þ

with α=0.05, and Ns=500 iterations performed. The
width of the transition zone is approximately

ffiffiffiffiffiffiffiffi
aNs

p ¼ 5
grid points. This is a very simple approach, but it has
proven useful in our case. Future work should include
more specificmethods for irregular boundary treatment, as
the approach by Oh et al. (2001) and Naveau and Oh
(2004), based on a polynomialwavelet regression, special-
ly designed to deal with irregular boundaries. Second
generation wavelets (Sweldens, 1997; Daubechies et al.,
1999) can be very helpful when working on irregular
grids, and can also deal with irregular boundaries.

As the wavelet is translated along the domain, it
crosses land–sea boundaries. The transition from sea to
land points results in perturbed wavelet coefficients,
even after applying Eq. (17). For this reason, the use of a
small support wavelet will help to reduce this effect.
Wavelets have a determined compact support, or ef-
fectively non-zero zone. Awide wavelet affects a higher
number of data points than a narrow wavelet. For ex-
ample, Daubechies Wavelet family has a compact sup-
port of 2No−1, with No the order of the wavelet. The
Haar Wavelet has a support width of 2, the smallest
support width of all the wavelet families. For this
reason, the Haar Wavelet has been chosen for this work
to reduce the boundary effects.

3.3.1. Wavelets and RMS error decomposition
As previously shown, wavelets form a complete basis

of orthonormal functions. Therefore the L2 norm of a
given function g(xi) can be decomposed into the sum of
the square of its wavelets coefficients. In a discrete form,
this relationship can be written as:

XN
i¼1

gðxiÞ2 ¼
XM
m¼1

X2M−m

n¼1

d2m;n þ a2M ð19Þ

where g(xi) is the value of the function at point i; N is the
total number of spatial points; dm,n are the detail co-
efficients at scale m and point n; and aM is the appro-
ximation coefficient at scale M, the coarsest of the
decomposition. Given any size of the initial decomposed
matrix, the term aM is a single number, which is related to
the mean of the initial vector.

If the vector g(xi) is the difference between a forecast
F(xi) and observations O(xi), we have:

XN
i¼1

ðFðxiÞ−OðxiÞÞ2 ¼
XM
m¼1

X2M−m

n¼1

ðdFm;n−dOm;nÞ2

þ ðaFM−aOM Þ2 ð20Þ

with dm,n
F the detail coefficients of the forecast at scale m

and point n, dm,n
O the detail coefficients of the observations,

and aM
F and aM

O the approximation of the forecast and the
observations respectively. Dividing Eq. (20) by the total
number of points N of the vector we obtain:

1
N

XN
i¼1

ðFðxiÞ−OðxiÞÞ2 ¼ 1
N

XM
m¼1

X2M−m

n¼1

ðdFm;n−dOm;nÞ2

þ 1
N
ðaFM−aOM Þ2

ð21Þ
We can define the squared RMS of the wavelet
decomposition at scale m as

RMS2m ¼ 1
N

X2M−m

n¼1

ðdFm;n−dOm;nÞ2 ð22Þ

The term 1
N ðaFM−aOM Þ2 of Eq. (21) is the square of the

bias. Eq. (21) can be rewritten as the sum of the squared
centred RMS and the squared bias (B):

RMS2 ¼
XM
m¼1

RMS2m þ B2 ð23Þ

We have divided the RMS error of the forecast F(xi)
into the sum of the RMS error of all spatial scales of the
wavelet decomposition plus a bias term B ¼ 1ffiffiffi

N
p ðaFM−aOM Þ2

� �
.

This decomposition is an extension to the largely known
RMS error decomposition into centred RMS and bias
(see, e.g.Murphy and Epstein, 1989; Taylor, 2001). It is
apparent from Eq. (23) that the sum of RMSm

2 over all
scales m is equal to the centred RMS.

3.3.2. Taylor diagram
A wavelet decomposition is very useful to study the

model results at different resolution levels. However, the
results can be complex to analyse, because there are many
factors that influence each scale, a different behaviour for
each scale and error measure, and the evolution with time
of those scores. A Taylor diagram (Taylor, 2001) can be
very useful in this situation, because it groups several
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error measures into one graphic, allowing a joint
interpretation of the results. The Taylor diagram has
been already used in the study of atmospheric models
(Gates et al., 1999; Boer and Lambert, 2001; Denis et al.,
2003) and in the ocean (e.g Raick et al., 2007-this issue).

The Taylor diagram is based on the relation between
the RMS error, the centred RMS error and bias (B):

RMS2 ¼ B2 þ RMSV2 ð24Þ

then the centred RMS (RMS′) can be expressed as:

RMSV2 ¼ S2f þ S2o−2Sf Sor ð25Þ

where r is the correlation and Sf and So are the vari-
ance of the forecast and the observations respectively
Sf ¼ 1

N−1
PN

n¼1ðx f
n −x̄Þ2

� �
. Note the relation between Eq. (25)

and the law of the cosines:

c2 ¼ a2 þ b2−2ab cos� ð26Þ

where a, b and c are the sides of a triangle and ϕ is the
angle opposite to c. With this relation, we can easily
plot into one diagram several statistics of a field (their
standard deviations, the correlation and the RMS′).
The mentioned statistics are plotted as follows:

• The standard deviation is plotted as the radial dis-
tance to the graphic origin.

• The correlation between both fields is given by the
azimutal position.

• The RMS′ is the linear distance between the observ-
ations and the model points.

The standard deviation and the RMS′ can be nor-
malised by the standard deviation of the observations
(RM̂S′=RMS′ /So; Ŝf=Sf /So and Ŝo=1), so that the
observations lay in the abscissa axis, with a normalised
standard deviation of 1. The other variables are plotted
relative to the observations. A point represented this
way into the graphic has the same standard deviation as
the observations if it is situated at a distance of one from
the origin. The standard deviation is higher if this dis-
tance is higher, and the opposite if the distance is smaller
than one. A large angle separating the model from the
observations indicates a bad correlation.

4. Model skill at the basin and sub-basin scales

The first test we will perform consists in studying the
impact of the assimilation of DLR SST data at each
assimilation cycle, to identify weaknesses or problems
that may appear because of the assimilation itself. We
compare the DLR SST data (with a resolution of∼1 km)
to the Ligurian Sea model (with a resolution of 1.5×
1.9 km) and in the Mediterranean Sea model (with a
resolution of 22×28 km). For the comparison with the
Mediterranean Sea model, the DLR SST resolution is
degraded to 10 km. This study will give us an idea about
how the model behaves at the basin and sub-basin scales,
and how this error evolves in time.

Figs. 2 and 3 show the evolution of the SST bias of
Mediterranean Sea and Ligurian Sea models respective-
ly. The first thing that may be noticed is that the (lower
resolution) Mediterranean Sea model has a smaller bias
than the (higher resolution) Ligurian Sea model. The
bias in the Mediterranean Sea model (Fig. 2) is always
smaller than 0.5 °C. However, the improvement of the
Forecast over the Free run is small. The assimilation of
SSTseems to have little impact on theMediterranean Sea
model bias. In the Ligurian Sea model (Fig. 3) the
variations of bias over time are more evident. The Fore-
cast has a smaller bias than the Free run over the first
seven weeks of the experiment, with improvements as
high as 0.5 °C. However, during the two last weeks of the
experiment, the Free run has a much smaller bias than
the Forecast. We can better understand what happens at
the end of the experiment by looking at the temporal
evolution of the mean SSTover the Ligurian Sea for each
model run and the observations (Fig. 4). In this figure we
see that the Free run is systematically colder than the
observations. The assimilation of the SST brings the
model nearer to the actual temperature, so the Forecast is
nearer to the observations than the Free run. On 24
August the Free run has a smaller bias than the Forecast,
due to the combined action of two errors that, by coin-
cidence, cancel each other: a too cool SST on 17 August
and an incorrect warming trend contradicting the ob-
servations. The Forecast, on the other hand, has a correct
mean SST on 17 August after the assimilation (the Anal-
ysis), but the erroneouswarming trend results in a too high
mean SST on 24 August. An increased assimilation rate
(for example, each five days instead of each week), would
probably improve the Forecast results, avoiding a large
divergence between the model and the observations. The
Free run presents a decreasing trend similar to the Fore-
cast from 24 to 31 August, which indicates that the
cooling episode at the end of the experiment is also
present in the atmospheric forcings. However, there is a
week of delay between the beginning of the decreasing
trend in the observations and the model results. This delay
can be caused by a late response of the model to the
atmospheric forcings or by an actual delay between the
observed SST and the atmospheric forcings.



Fig. 2. Bias time evolution for the SST of the Forecast, Free run and
Analysis in the Mediterranean Sea model.

Fig. 4. Time evolution of the mean SST in the Ligurian Sea model. The
mean SST of the Analysis is almost identical to the observed mean
SST.
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Figs. 5 and 6 show the RMS error of the Medi-
terranean Sea and the Ligurian Sea models respectively.
The Mediterranean Sea model Forecast has a smaller
error than the Free run during the whole experiment,
with improvements as high as 0.5 °C. The assimilation
has a larger effect on RMS error than on the bias. The
RMS error on the Mediterranean Sea model is overall
better than the RMS error on the Ligurian Sea model.
This is due to an effect called double penalty (Hoffman
et al., 1995; Ebert and McBride, 2000). Low-resolution
models represent the reality in a smooth way, without
much of the observed small-scale variability. High-re-
solution models represent this small-scale variability
more realistically, in the form of eddies, meanders, etc.
Even if the later model looks more realistic, it can
account for a bigger error than the low-resolution model,
because of the incorrect positioning of the small-scale
features. The high-resolution model has more degrees of
Fig. 3. Bias time evolution of Forecast, Analysis and Free run SST in
the Ligurian Sea model.
freedom than the low-resolution model. These addition-
al degrees of freedom correspond to small spatial scales
and have thus a limited predictability.

The Ligurian Sea model RMS error (Fig. 6) reflects
again the cooling episode error on 24 August, but
overall the Forecast performs better than the Free run.
A significant fraction of the RMS error in the Ligurian
Sea model is due to the bias. It is therefore interesting to
decompose the RMS error into the contribution of the
bias and the RMS error based on observations and
model SST without their mean. The later RMS is called
centred RMS, and one can show that RMS, bias and
centred RMS are related by Eq. (24). The centred RMS
error (Fig. 7) shows that the bias (as shown in Fig. 3) is
the major source of error on 17 and 24 August. At the
beginning of the experiment the RMS error is mainly
due to the SST distribution (high centred RMS), while at
Fig. 5. RMS error time evolution for the SST of the Forecast, Free run
and Analysis in the Mediterranean Sea model.



Fig. 6. RMS error time evolution of Forecast, Analysis and Free run
SST in the Ligurian Sea model. Fig. 8. Time average RMS error at each spatial scale including the bias

term.
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the end of the experiment the SST bias is more
important than the error in the temperature distribution
of the Ligurian Sea. The origin of the error in the
Ligurian Sea (distribution of the SST or mean value) is
therefore variable in time. A bias at the scale of the
Ligurian Sea is more likely to be associated to errors in
the heat fluxes, and an erroneous SST distribution may
result from misrepresented hydrodynamic features such
as frontal positions, phase of meanders and position of
eddies.

5. Spatio-temporal analysis using Wavelet
Transforms

The error analysis of the Ligurian Sea model is
pursued with a wavelet transform. This decomposition
emphasises the distribution of the error at different
spatial scales, related to distinct physical processes. We
Fig. 7. Centred RMS error time evolution for the SST of the Forecast,
Free run and Analysis in the Ligurian Sea model.
have decomposed the Ligurian Sea model and DLR SST
observations into eight resolution levels with a two-
dimensional discrete Haar wavelet. The model has been
interpolated to the resolution of the observations (∼1 km).
As the initial model resolution is 1.5×1.9 km, we must
bear in mind that the model is not able to resolve features
smaller than its resolution when interpreting the results of
the wavelet decomposition. The resolution levels reached
by the wavelet decomposition are 1, 2, 4, 8, 16, 32, 64 and
128 km. The decomposition allows us to analyse the error
at each of these spatial scales. The figures presented in this
section that do not have information about the time
distribution are time averages.

The RMS error for each wavelet scale is depicted in
Fig. 8. The highest error reduction from the Free run to
Fig. 9. Percentage each scale, including the bias term, contributes to
the time and space average total RMS2 error.



Table 1
RMS2 at each scale, including the bias term, for Forecast, Free run and Analysis wavelet coefficients, and the total RMS2 of the corresponding model
run

Scale (km) 1 2 4 8 16 32 64 128 Bias RMS2 model

Free 0.01 0.02 0.04 0.08 0.16 0.26 0.29 0.23 0.17 1.26
Forecast 0.01 0.02 0.03 0.06 0.13 0.17 0.21 0.20 0.15 1.01
Analysis 0.01 0.01 0.02 0.03 0.04 0.02 0.01 0.002 0.001 0.14

Units are °C2.
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the Forecast occurs from 16 to 128 km. The Analysis
error shows a maximum at 16 km. The fast decay of the
Analysis RMS error from this maximum to larger scales
suggest that the assimilation is mainly impacting large
scales, which we can explain as follows: the structure of
the correction from the assimilation is determined by the
observations and the model error covariance. The error
covariance acts as a filter and controls which scales of
the model are corrected by the assimilation. The error
covariance matrix is obtained by an ensemble simulation
and is therefore neither invariant in time nor isotropic. The
model error covariance is limited to a maximum corre-
lation length of 47 km, as explained in Barth et al. (2007-
this issue). This maximum correlation length corresponds
to scales 6 to 7 (32 to 64 km) in the wavelet decompo-
sition. Corrections are not strictly limited to 47 km, but
their amplitude decreases significantly for scales smaller
than scale 6. Coherent features with length scales higher
than 47 km are also corrected. This explains the peak
observed in theAnalysisRMS error (Fig. 8): the correction
acts mainly at scales larger than 32 km, so scales 16 and
smaller are less affected by the assimilation.
Fig. 10. Standard deviation of the correction, model trend and trend of
the error for each scale. Scale 256 stands for the basin-wide
contribution calculated from the approximation at the highest scale
of the decomposition.
The percentage of RMS2 (in Fig. 9 and Table 1)
shows how the total RMS2 is divided among scales, or
how each scale contributes to the total RMS2 error,
according to Eq. (23). The distribution of RMS2 is very
similar in the Free run and in the Forecast, with scales
32 and 64 km of the Forecast contributing in a lesser
amount to the total error than in the Free run, due to the
correction of the assimilation. Scales smaller than 32 km
contribute little to the total error. Most of the SST model
error is located at large scales, and is efficiently cor-
rected by the assimilation. This finding basically con-
firms the choice of themaximum correlation length, but a
small improvement can be expected by choosing a lower
value of the maximum correlation length, since scale
16 km still accounts for 13% of the total error of the
Forecast. This correlation length should not be smaller
than 16 km, as scales 1 to 8 km have each a small impact
on the total error of the model.

The time evolution of the Analysis run is the cumu-
lated effect of the “free” model evolution and the cor-
rection applied by the assimilation. Since both effects
have very different nature, it makes sense to study them
separately. The correction (CRt=At−Ft, with At and Ft

the Analysis and the Forecast at time step t) and the
model trend (Tt=Ft−At−1, with At−1 the Analysis at time
Fig. 11. Evolution in time of the standard deviation of the Forecast
trend of the model error.



Fig. 12. SST for (a) observations, (b) Analysis, (c) Free run and (d) Forecast on 13 July 2000.

Fig. 13. Spatial distribution of the standard deviation of the correction
of the Forecast by the assimilation on 13 July 2000 at scale 4 km. The
magnitude of the wavelet coefficients (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
v¼1 D

2
v

q
, where D1, D2 and D3

correspond to the horizontal, vertical and diagonal direction of details)
is used in this figure to calculate the standard deviation of the
correction.
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step t−1) are calculated at each scale for the two-di-
mensional SST fields:

CRm;t ¼ Am;t − Fm;t ð27Þ

Tm;t ¼ Fm;t − Am;t−1 ð28Þ

with CRm,t the correction, Tm,t the model trend, Am,t the
Analysis and Fm,t the Forecast at time t and scale m. We
will compare these measures to the trend of the model
error TEt, also decomposed at each scale:

TEm;t ¼ ðFm;t−Om;tÞ−ðAm;t−1−Om;t−1Þ ð29Þ

with TEm,t the trend of the model error, and Om,t the
observations at time t and scale m. TE measures how
the error of the model changes with time for each of the
resolution scales. The standard deviation of these three
measures is shown in Fig. 10.

The assimilation mainly corrects scales larger than
32 km, as seen by the rapid increment of the standard
deviation of the correction. This explains the error
reduction from the Free run to the Forecast RMS error
at those scales seen in Fig. 8. The correction can be
viewed as the part of the trend of the model that is
considered error by the assimilation scheme. The trend of
the model, on the other hand, is also higher at large
scales, because the large scales in the SST have higher
variability than the small scales. There is a peak in the
trend of the model at 16–32 km, corresponding to the
meso-scale, which presents a high activity in the Ligurian
Sea related to the formation of small eddies and meanders
along the NC. The high values at 128 km and the mean
term account for the basin-wide trend of summer heating.
The trend of the Free run (not showed) has a similar
distribution, so the maximums at 16 to 32 km and the
basin-wide scale are not introduced by the assimilation.
Except for the scale 64 km, the standard deviation of the
model trend is higher than the standard deviation of the



Fig. 14. Spatial distribution of the standard deviation of the correction induced by the assimilation at scale 4 km for the 9 weeks of the experiment. The
standard deviation of the correction is calculated as specified in Fig. 13.

Fig. 15. Taylor diagram for Free run (in grey), Forecast (in black) and
Analysis (in white).
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trend of the model error and of the correction. This is an
indication of skill of the model at all scales except 64 km.

It is also interesting to see the evolution in time of the
standard deviation of the trend of the model error at each
scale (Fig. 11). Scales 1 to 16 km present a steady pattern
with higher values of the trend of the model error with the
increasing scale. Larger scales (32 to 128 km) have a
variable contribution to the total error. We can identify the
scales that cause the different errors found in Section 4.
For example, scales 32 and 64 km dominate the trend of
the model error on 13 July, when the main error found in
the model was due to RMS error (Fig. 6). On the other
hand, on 24 August scale 128 km is the most important
source of error in the model, followed by the 64 km scale.
On this day, the bias was the most important source of
error on the model (Fig. 3).

We have shown that the impact of the assimilation is
stronger at scales larger than the correlation length.
Correction at scales of 64 km and larger accounts for
basin-wide changes, as the general temperature distri-
bution in the Ligurian Sea. We will look now at how the
correction affects the small scales. We take as an ex-
ample the SST on 13 July, which is a day with a par-
ticular high RMS error in both the Forecast and Free
run. In Fig. 12 the SST distribution for the observations,
Free run, Forecast and Analysis is shown. The obser-
vations (panel a) show a high variability, that the model



Fig. 16. Standard deviation distribution for the Forecast, Free run,
Analysis and observed SST.
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(Free run in panel c and Forecast in panel d) fails to
represent. The general circulation of the Ligurian Sea is
clearly seen in the observations, with the warm NC
describing a cyclonic gyre along the Italian and French
coasts, and with colder temperatures in the centre of the
basin. The Free run, in panel c, fails to represent the
described main circulation, which is the cause of the high
error obtained this day. The Free run SST distribution is
very different from the observations, and the variability is
smaller. The Forecast, in panel d, has a better SST
distribution, and the path of the NC can be detected. The
Analysis, in panel b, is the result of the assimilation of the
observations shown in panel a into the Forecast shown in
panel d. The Ligurian Sea SST in theAnalysis is close to the
observations since the observed SST has been assimilated.

The spatial distribution of the correction for this day
at scale 4 km is shown in Fig. 13. The 4 km scale has
Fig. 17. Standard deviation distribution of the surface velocity and the
correction of surface velocity induced by the assimilation.
been chosen as representative for the small-scale, as
smaller scales may not have been well resolved by the
model. The assimilation is mainly correcting the SST
along the French coast and the NC, which is clearly mis-
positioned in the model (too far offshore). The mis-
position of the NC induces also an error on small scales.
The position of this small-scale error is clearly linked to
the large-scale current. From a physical point of view,
the interpretation is straight forward, since the small-
scale features are generated at the large-scale fronts. Such
an analysis could not be possible with Fourier decom-
position, since the location in space is not retained in the
Fourier space.

The correction on the other days of the model run is
shown in Fig. 14. We can see that the correction around
the NC is done during the two first weeks of the expe-
riment. Other zones that are corrected by the assimila-
tion are the southwest corner of the model domain and
the northern coast of Corsica. The correction in the
centre of the Ligurian Sea is very small, because the
variability of this zone is smaller than along the path of
the coastal cyclonic currents (Northern Current, Eastern
Corsican Current and West Corsican Current).

Fig. 15 contains the Taylor diagram for Free run,
Forecast and Analysis for the eight scales of the wavelet
decomposition. This diagram displays the standard
deviation, correlation and centred RMS of the model
runs and compares it to observations (see description of
the Taylor diagram in Section 3.3.2). The main ad-
vantage of this diagram is that it summarises several
error measures into one graphic, and we can have a
general vision of the model skill. Scales 16 to 128 km
are very near to the observed standard deviation, but
their correlation and centred RMS is worst than for
Fig. 18. Variance of Free run, Forecast and observations for each EOF
mode.



Fig. 19. First spatial mode for the Free run.
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smaller scales. In addition, in large scales the impact of
assimilation is higher: the Forecast is systematically
nearer to the observations than the Free run. At small
scales, the assimilation is causing a decrease on the Fore-
cast standard deviation (the Free run has already a small
standard deviation, but this is accentuated by the assi-
milation). The better correlation and centred RMS ob-
served at small scales indicates that they are able to
represent more accurately the observations, although the
effect on standard deviation must be further studied.

The causes for the decrease in the SST standard
deviation can be multiple. For example, a strong hori-
zontal diffusion can eliminate the small features from the
Fig. 20. First spatial mod
model results. A strong vertical mixing can also weaken
the surface variability by increasing the thermal inertia of
the surface water, and thus damp the horizontal signal of
small-scale features. Again, the model is not able to
represent features smaller than 2 km, and the small scales
close to the model resolution are not well resolved by it.
In addition, the small-scale information added by the
assimilation of high-resolution data is related to the
correlation length of the assimilation scheme. Scales
smaller than this correlation length are not modified by
the assimilation. A certain amount of variance at small
scales in the observations is also due to noise, not present
in the model.
e for the Forecast.



Fig. 21. First spatial mode for the observations.

Fig. 22. First temporal mode for Free run, Forecast and observations.
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The variance distribution at different spatial scales of
the wavelet decomposition depends strongly on the
nature of the physical variable. The study of the standard
deviation of two different variables, SST and currents,
points out some of these differences. The SST standard
deviation distribution among scales for each model run,
Analysis and observations is shown in Fig. 16. The
Analysis intersects the Forecast at about 32 km, so the
assimilation is causing a decrease of variance at scales
smaller than about the maximum correlation length.
The Free run has a higher variance than the Forecast
at all scales, so the decrease in variance at small scales
is transmitted to large scales in the Forecast. Both
Free run and Forecast present a high difference with
observations at scales 1 to 3 (1 to 4 km), for the reason
stated above.

We have compared the SST standard deviation of
Fig. 16 to the surface velocity standard deviation, shown
in Fig. 17. The surface velocity is directly related to the
kinetic energy. The correction applied to the currents
after the assimilation of SST (Eq. (27)) is also repre-
sented in this figure. The distribution of the velocity
standard deviation (higher values for small scales) is
very different to the SST distribution. The SST is mainly
influenced by the atmospheric forcings, which have a
typical variability scale larger than the variability scales
found in the ocean. The standard deviation distribution
of the surface velocity reflects the variability scales
typical of the ocean, so small scales of the velocity have
higher variability than the SST small scales. The energy
distribution for the currents correction is however
similar to the distribution of the correction of the tem-
perature, because the structure of the velocity covari-
ance is directly related to the structure of the temperature
covariance.

6. Spatio-temporal analysis using EOFs

Wavelet transforms are very useful to analyse a
model at different resolution levels. However, to analyse
the whole Mediterranean Sea model we prefer to use
EOFs. The irregular land–sea boundaries of the Medi-
terranean Sea model will affect the wavelet coefficients,
making very difficult the analysis. EOFs are not affected
by irregular boundaries, because only the sea points are
retained for their calculation. Recall that for the com-
putation of EOFs no missing data can be present in the
analysed matrix. In this section, the reconstructed Path-
finder SST data introduced in Section 3.2 are used in the
comparison with model results.



Table 2
Correlation between the model and the observations for each EOF
mode

Spatial mode Temporal mode

Mode Forecast Free run Forecast Free run

1st 0.89 0.78 0.96 0.96
2nd 0.48 0.56 0.69 0.77
3rd 0.22 0.2 0.16 0.37
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Model and Pathfinder SST data have different reso-
lutions, so the number of points representing the Medi-
terranean Sea is different for each of these matrices.
Pathfinder SST has 139188 sea points and the Medi-
terranean Sea model grid has 4155 sea points. Both
matrices have 60 time instants. For the direct compar-
ison between the EOFs obtained with Pathfinder SST
and the EOFs obtained with the model results, the ratio
between the number of points must be taken into con-
sideration. The relationship between the number of points
and the singular values (S) of the EOFs based on the
observations and model for this case is:

P
i
S2model;iP

i
S2obs;i

fNmodel

Nobs

f0:03 ð30Þ

For the direct comparison between model and ob-
servations singular values, the scaling factor

ffiffiffiffi
N

p
must

be used. The right EOFs U are then multiplied by the
singular values S when displayed to take into consider-
ation the difference in the number of points. The spatial
EOFs depicted in this section represent °C, and the spatial
Fig. 23. Second spatial mo
EOFs are adimensional. For the computation of the
EOFs, the two-month time and space average from 6 July
to 1 September is subtracted from the matrices.

The first six EOFs have been calculated for each of the
studied matrices (Free run, Forecast and observations).
The number of EOFs chosen corresponds to the optimal
number of EOFs retained by DINEOF to reconstruct the
Pathfinder SST data set (see Section 3.2). The variance
explained by each mode is shown in Fig. 18, calculated as
Vi=S

2
data set, i /Pdata set, with Pdata set the total number of

points (in space and time) of the data set, Forecast, Free
run or observations. The three most important modes
account for a big part of the total variance explained by
the six first EOFs. Thus, only these three modes will be
kept for the study.

6.1. First EOF mode

The first spatial mode (Figs. 19–21 for Free run,
Forecast and observations respectively) represents the
summer SST distribution in the Mediterranean Sea. The
spatial distribution of the SST is very similar for the
three data sets, or in other words, the model (both
the Free run and the Forecast) is able to accurately
represent the SST distribution of the first EOF in the
Mediterranean Sea. In the already warm waters of the
summer Mediterranean Sea, two zones are contributing to
the surface warming: the north-western Mediterranean
(Gulf of Lions and Ligurian Sea) and the Northern
Adriatic Sea. The Gulf of Lions and the Northern Adriatic
are influenced by river runoff of the Rhone River and the
Po River respectively. Po River water is warmer than the
de for the Free run.



Fig. 24. Second spatial mode for the Forecast.
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surrounding open seawater in summer (e. g. Gacić et al.,
1997) so it influences the warming of the Northern
Adriatic. The Rhone River runoff has been also found to
be warmer than the surrounding waters of the Gulf of
Lions, at least in year 2000 (e. g. Younes et al., 2003). On
the other hand, the water entering the Mediterranean Sea
by the Gibraltar Strait and the Bosphore Strait are the only
two sources of cold water. It must be mentioned that the
Black Sea is not explicitly included in the model. The
signal observed at the Bosphore Strait is the result of the
relaxation of the model to the climatology.

The first temporal mode (Fig. 22) represents the sum-
mer heating trend from July to August. The correlation
Fig. 25. Second spatial mod
between the observations and the Forecast is better than
for the Free run (see Table 2). The amplitude minimum
found in July is slightly shifted in the model respect to the
observations. The RMS error between the model and the
observations first temporal mode is 0.04 for bothFree run
and Forecast. If the first temporal mode of the model is
forwarded 2 days in time, the RMS error is minimised to
0.035, indicating a slight shift between model and obser-
vations. However, the maximum at the end of the exper-
iment is reached at the same time by the model and the
observations. The temporal shift is only present the first
half of the experiment, which explains that only a small
improvement has been reached by shifting the model.
e for the observations.



Fig. 26. Second temporal mode for Free run, Forecast and
observations.
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6.2. Second EOF mode

The second EOF spatial mode in all three fields
(Figs. 23–25) presents a zonal crest-trough-crest struc-
ture. However, the crest of the Forecast in the Western
Mediterranean is displaced to the North compared to
the observations. The distribution of the Free run is
closer to the observations than the Forecast, as indi-
cated by the correlation in Table 2. On the other hand,
the amplitude is better reproduced by the Forecast than
by the Free run. The three data sets show a similar time
evolution of the second EOF mode (Fig. 26).

While the first mode represents the seasonal heating
forced by the atmosphere, the second EOFmode accounts
for the intrinsic ocean variability, mostly at the meso-
scale and sub-basin scale. The second EOF mode of the
Fig. 27. Third spatial mod
observations shows the variability of the Rhone River
Plume, an upwelling west of Corsica and Sardinia, cold
waters off the Sicilian south coast, the Ierapetra Gyre
(southeast of Crete, Ayoub et al. (1998) and Rhodes Gyre
(west of Cyprus, Milliff and Robinson (1992). In the
second EOF mode of the observations and Free run,
these features are correlated in the same way, except the
Ierapetra Gyre in the Free run,which presents the opposite
correlation pattern than the observations. This means that
the SST of the Ierapetra Gyre decreases with time in the
observations, and increases in the Free run. In the Fore-
cast, the Ierapetra Gyre is in phase with the observations,
as well as the cold waters off the Sicilian south coast and
the Rhodes Gyre. The Rhone River Plume is not present
in the Forecast. The double anticyclonic gyre system in
the Alboran Sea is clearly visible in the second EOF of the
Forecast, but is not captured by the second EOF of the
observations and Free run.

The assimilation has a positive effect on the first EOF
mode. However, the second EOF mode, representing the
dynamical features not directly forced by the heat fluxes,
is deteriorated by the assimilation. This indicates that the
assimilation adversely affects the equilibrium of these
dynamical structures during the analysis.

6.3. Third EOF mode

The third EOF of Free run and observations (Figs. 27
and 28 respectively) are in good agreement, especially
in the Provençal Basin and the Levantine Basin. The
Rhodes Gyre is again visible in the third EOF of both
data sets. The Algerian current is also present in both,
but it is stronger and better defined in the observations
e for the Free run.



Fig. 28. Third spatial mode for the observations.
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than in the Free run. However, the third EOF of these
two data sets has the opposite sign on the Tunisian Shelf.

The third EOF of the Forecast (Fig. 29) is quite
different from the observations and Free run. In par-
ticular, the Forecast shows an East–West modulation of
the Algerian Current, instead of the North–South mo-
dulation visible in the Free run and observations. The
structures in the Levantine Basin and Ionian Sea are also
different from the observations. Since the third and
fourth EOFs of the Forecast have a similar variance (see
Fig. 18), only a small change can alter the order of these
EOFs. Indeed, we found that the fourth EOF of the
Forecast (not shown) is very similar to the third EOF of
the observations and Free run.
Fig. 29. Third spatial mo
7. Conclusions

In this work we have analysed the results of a two-
way nested model in the Mediterranean Sea. The overall
behaviour of the model is good, and the assimilation of
SSTand SLA improves its quality in terms of RMS error
and bias when compared to a Free run. However, some
aspects of the model can be ameliorated. For example,
when the atmospheric heating/cooling trend is in dis-
agreement with the observed SST (as seen at the end of
this experiment), an assimilation frequency shorter than
one week is necessary to prevent the model to diverge
from the observed SST. We have seen that the low-
resolution model has a smaller RMS error than the high-
de for the Forecast.
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resolution model, due to the double penalty effect. This
effect is related to the increased small-scale variability in
the high-resolution model, which is less predictable.
This effect has to be considered when interpreting model
results at different resolutions.

A detailed study of the model spatial behaviour,
using two-dimensional wavelets, has allowed to point
out some weaknesses or aspects that could be improved
in the model. First, the wavelet analysis has revealed
different behaviours for the small and large-scales in the
model.

Large scales are significantly improved by the assi-
milation, as noticed by the decrease in RMS error and
correlation from the Free run to the Forecast. Also, the
standard deviation of the model large scales is very close
to the observations, even in the Free run. The RMS
distribution among scales shows that most of the error in
the model is due to the large scales, so the reduction of
the total error by the assimilation is due to the improve-
ment of the model accuracy at large scales.

We have detected a problem in the position of the
Northern Current (NC) in the Ligurian Sea model.
Although only the SST has been studied, we have been
able to detect the characteristics of the NC, as it has a
very clear signal in the SST. The NC is a feature at
large-scale, and its mis-positioning contributes signif-
icantly to the total error. However, the wavelet analysis
has revealed the link between the position of this
current and an error in the small scales. Small-scale
errors are high near the NC, especially where the path
of the current is mis-represented. The error at the small
scales is therefore partially induced by large scales
error. Such a finding would not be possible with a
classical Fourier analysis, where the spatial information
is lost.

The contribution of the small scales to the total error
is masked by the large-scale error. By isolating the
small-scale with the wavelet analysis, we have revealed
model weaknesses at these scales. The small-scale
variability of the model is systematically lesser than the
variability of the observed SST. The assimilation further
reduces this variability, and in addition it does not im-
prove significantly the correlation or the RMS error of
the small scales.

Large-scale SST errors in the model can be attributed
to poorly known atmospheric heat fluxes, and the
position of the NC. However, the detection of the cause
of the error in the small scales is more complex to
determine. The initial condition does not contain already
variability at the small scales. The inability of the model
to later generate this variability at small scales can be
due to various reasons. For example, a too high
horizontal diffusion (explicit and implicit due to the
finite resolution) can be responsible for the reduction of
the variability at small scales.

The scale distribution of variance depends on the
nature of the variable. The SST variance distribution is
very different from the velocity variance distribution.
The SST variance is dominated by large-scale features,
while the surface velocity variance is highest at small
scales. We attribute this different behaviour to the fact
that the SST distribution in summer is largely influenced
by atmospheric forcing, and the typical atmospheric
variability scales are much larger than the variability
scales in the ocean. The velocity scale distribution reflects
the typical size of ocean flow features in the Ligurian Sea.

The multiresolution analysis has also shown that the
choice of the maximum correlation length during the
assimilation influences directly the error distribution of
the model. The maximum correlation length of the as-
similation scheme is 47 km, and this value is not in
disagreement with the finding that the model has the
highest error at scales 32 km and larger. However, a
fine-tuning of this parameter could improve the model
results, since scale 16 km in the model presents only a
slight decrease of error with the assimilation. This scale
could benefit from a smaller value of the maximum
correlation length. This new value should not be smaller
than 16 km, as scales smaller than that contribute little to
the total error.

The EOF analysis of the Mediterranean Sea has
revealed that the assimilation mainly improves the sea-
sonal heating represented by the first EOF mode. The
second EOF mode is degraded by the assimilation. This
mode includes the dynamical features not directly forced
by the heat fluxes, such as gyres, the Rhone River plume,
and coastal upwellings. This indicates that the assimi-
lation does not account for the dynamical balance of
these features, and therefore the signal of these structures
is weakened by the assimilation.

The EOF modes of the model runs and the ob-
servations present overall the same structures for the
first and second modes. However, when comparing
EOFs, we must take into account that the ranking of the
EOFs mode is not necessarily the same for different data
sets. If eigenvalues are close (which often happens at
higher order modes), a small perturbation can change
the order of these EOFs. This happened in the Forecast
fourth EOF, which is very similar to the third EOF of
Free run and observations.

It is worthwhile to notice that the wavelet analysis and
theEOFdecomposition lead to similar conclusions, viewed
from a different perspective. The fact that the first EOF is
improved by the assimilation is consistent with the error
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decrease of large scales in the Ligurian Sea model after the
assimilation noticed with the wavelet analysis. However,
the assimilation degrades the second EOF mode, which is
directly linked with the lack of improvement of the small-
scale features in the Ligurian Sea model.
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