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[1] In the design of nuclear waste disposals, an important topic concerns the development
of an excavated damage zone, where permeability increases. A correct numerical
prediction of the coupled processes occurring during excavation is therefore needed. In
this paper, a nonclassical hydraulic boundary condition is described. It mixes two modes
of water exchanges in partial saturation: seepage and evaporation flows. Seepage flow
avoids unphysical water inflow into the rock mass, which might be obtained with usual
boundary condition in dilatant geomaterial. Evaporation flows enable the
thermodynamical equilibrium between air relative humidity in the cavity and in the rock
mass. The numerical modeling of a cavity excavation in dilatant geomaterial is carried out.
The results show the influence of the hydraulic boundary condition on the convergence of
the cavity. Depending on the value of the transfer coefficient, the proposed numerical
model can recover the results obtained with an imposed atmospheric pressure or suction at
the cavity wall. The determination of the mass transfer coefficient is thus needed and can
be achieved through drying experiments or can be estimated thanks to in situ
measurements.
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1. Introduction

[2] Deep geological layers are being considered potential
host rocks for the high-level radioactivity waste disposals.
Some underground research facilities (URF) have been
constructed in Europe [Neerdael and Boyazis, 1997; Delay
et al., 2007] and in the USA [Rutqvist et al., 2005], in order
to study the feasibility of such network of galleries. The
main purpose of underground waste disposals is the pres-
ervation of the human activities from the radioactivity
effects. The potential geological host layers have a common
property: their permeability is very low. All the altering
processes of this natural barrier are thus crucial issues. An
important topic concerns the development of an excavated
damage zone (named EDZ) around the galleries. This EDZ
increases the permeability of the host formation and conse-
quently the radionuclides migration as well. A correct
numerical prediction of the coupled processes occurring
during the excavation is therefore needed. For this purpose,
a constitutive model of the mechanical behavior is neces-
sary. The present paper will not focus on the constitutive
law but will show the significant influence of both the
constitutive law and the hydraulic boundary condition at the
cavity wall on the response of the dilatant geomaterial with
a low permeability. Indeed the usual boundary condition
(for the flow problem) during excavation is a progressive
decrease of the pore water pressure down to the atmospheric

pressure. On one hand, such boundary condition could
predict an unphysical pore water pressure distribution (see
section 6). On the other hand, the relative humidity in the
cavity is usually controlled thanks to a ventilation system.
This could be modeled by a decrease of the pore water
pressure at the cavity wall down to the corresponding
suction at the end of the excavation [Hoxha et al., 2004].
This boundary condition relies on the assumption of a
quasi-instantaneous equilibrium between the air relative
humidity and the pore water pressure of the cavity wall.
This assumption could be too optimistic. This highlights the
need of a more detailed expression of the water exchanges
between humid air in the cavity and the rock mass. Two
modes of exchange can occur: seepage flow and vapor flow
[Ghezzehei et al., 2004]. The seepage flows are liquid flows
that are introduced for solving free surface seepage prob-
lem. Following the ideas of Brezis et al. [1978] and Bardet
and Tobita [2002], seepage condition is imposed as a
Signorini’s type condition on the water pressure. Vapor
exchanges occur when the relative humidities in the cavity
air and rock mass are different. Several formulations of the
vapor flows can be found in the literature, which usually
assume that the flow is proportional to the difference of
relative humidity [Anagnostou, 1995], vapor pressure
[Zhongxuan et al., 2004], the vapor potential [Kowalski,
1997] or the vapor density [Ben Nasrallah and Pere, 1988].
The proportionality coefficient (or mass transfer coefficient)
is usually determined through experiments as a complex
function of different parameters such as the degree of
saturation, the porosity or the wind velocity in the cavity
[Dracos, 1980; Anagnostou, 1995; Zhongxuan et al., 2004].
[3] In this paper, a quasi-static formulation of the balance

equations of a porous medium is first recalled in section 2.
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The expression of the water exchange flows occurring at the
cavity wall is described in section 3. In order to solve
numerically the field equations, a linear auxiliary problem is
defined following the approach of Borja and Alarcon
[1995] (section 4) and the field of unknowns is obtained
through a Newton-Raphson scheme. In section 5, the linear
auxiliary problem is discretized using the finite element
methodology [Zienkiewicz and Taylor, 2000]. Large strain
isoparametric coupled finite element and boundary finite
element formulations are proposed. The water exchange
flows will be discretized by a special finite element, which
aims modeling the hydraulic boundary condition. Finally, an
example of the influence of the hydraulic boundary condi-
tion will be presented for the excavation and the ventilation
of a deep cylindrical cavity (section 6).

2. Balance Equations of a Porous Medium

[4] In the numerical study, the geomaterials of the geo-
logical layer are porous media generally considered as the
superposition of several continua [Coussy, 1995]: the solid
skeleton (grains assembly) and the fluid phases (water, air,
oil. . .). On the basis of averaging theories [Hassanizadeh
and Gray, 1979a, 1979b], Lewis and Schrefler [2000]
proposed the governing equations for the full dynamic
behavior of a partially saturated porous medium. Hereafter
these equations are restricted for quasi-static problem in
unsaturated conditions, under Richard’s assumptions (con-
stant air pressure). This assumption may be irrelevant in the
particular case of low and ultralow permeable porous media.
For this study, isothermal condition and incompressible
solid grains are assumed. The unknowns of the mechanical
and the flow problems are respectively the displacements ui
and the pore water pressure pw (possibly negative in
unsaturated case). In the following developments, the bal-
ance equations are written in the current solid configuration
denoted Wt (updated Lagrangian formulation).

2.1. Balance of Momentum

[5] In the mixture balance of momentum equation, the
interaction forces between fluid phases and grain skeleton
cancels. In a weak form (virtual work principle), this
equation reads for any kinematically admissible virtual
displacement field ui*:

Z
Wt

st
ijeij*dW

t ¼
Z
Wt

rs 1� ftð Þ þ Str;wr
t
wft

� �
giui*dWt þ

Z
Gt
s

�tti ui*dG
t

ð1Þ

where eij* = 1
2
((@ui*/@xj

t) + (@uj*/@xi
t )) is the kinematically

admissible virtual strain field,ft is the porosity defined asft=
Wv,t/Wt where Wt is the current volume of a given mass of
skeleton and Wv,t the corresponding porous volume, rs is
the solid grain density, Sr,w

t is the water relative saturation,
rw
t is the water density, gi is the gravity acceleration and

Gs
t is the part of the boundary where tractions ti

t are
known.
[6] The total stress sij

t is defined as a function of the
kinematics. Here we assume first that the Bishop’s defini-
tion of effective stress holds [Nuth and Laloui, 2008]:

st
ij ¼ s0t

ij � Str;wp
t
wdij ð2Þ

with s0ij
t the effective stress, pw

t the pore water pressure and
dij the Kronecker symbol.

2.2. Mass Balance Equations

[7] The water mass balance equation reads in a weak
form:

Z
Wt

_M
t
pw*� mt

i

@pw*

@xti

� �
dWt ¼

Z
Wt

Qtpw*dWt �
Z
Gt
q

qtpw*dGt ð3Þ

where pw* is the virtual pore water pressure field, Qt is a sink
term and Gq

t is the part of the boundary where the input water
mass per unit area qt is prescribed.Mt and mi

t are respectively
the mass of the water inside the current configuration of the
skeleton Wt and the mass flow. They are defined hereafter
respectively in equation (6) and equation (4).
[8] Water mass balance equation (equation (3)) has to hold

for any time t, the virtual quantities in this equation being
dependant on the history of boundary conditions and on time t.
[9] The mass flow mi

t is defined as follows:

mt
i ¼ �rtw

kktr;w
mw

@ptw
@xti

þ rtwgi

� �
ð4Þ

where k is the intrinsic permeability, kr,w
t is water relative

permeability and mw is the water dynamic viscosity.
[10] The compressible fluid is assumed to respect the

following relationship [Lewis and Schrefler, 2000]. This
predicts an increase of water density as a function of the
pore water pressure, defining cw as the water bulk modulus:

_rtw ¼ rtw
cw

_ptw ð5Þ

If the grains are assumed to be incompressible (which
means rs is constant), the time derivative of the water mass
is obtained directly by using equation (5) and mass balance
equation for the solid phase. This yields for a unit mixture
volume:

_M
t ¼ rtw

_pt

cw

Str;wf
t þ _S

t

r;wf
t þ Str;w

_W
t

Wt

" #
ð6Þ

3. Water and Vapor Exchanges at the Cavity Wall

[11] During the excavation processes, the pore water
pressure at the cavity wall is decreasing. After excavation,
we may consider for long-term predictions that a thermo-
dynamical equilibrium is reached between the cavity air and
the rock mass. The wall moisture tends to be in equilibrium
with the air humidity in the tunnel thanks to liquid water
and vapor exchanges occurring at the boundary between
cavity and rock mass. Because of plastic dilatancy of the
material, the numerical hydromechanical modeling with
classical boundary conditions of the flow problem provides
totally unphysical results as an injection of a huge amount
of water in the medium during excavation. Nonclassical
boundary condition such as seepage or vapor exchanges has
to be considered to correctly model the hydromechanical
processes.
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[12] Seepage flows occur only when the pore water
pressure at the cavity wall is larger than the cavity air
pressure. The seepage condition can be expressed as a
unilateral flow condition (Signorini’s boundary condition)
in order to avoid water inflow into the rock mass (Figure 1).
For computational purpose, this condition is introduced in a
finite element code using a ramp function [Bardet and
Tobita, 2002; Zheng et al., 2008] (Figure 1). The ramp
function gives the expression of the seepage liquid flow S:

�S ¼ b: p f
w � patm

� 	2
if p f

w � pcavw and p f
w � patm

�S ¼ 0 if p f
w < pcavw or p f

w < patm

8<
: ð7Þ

with pw
f the pore water pressure in the rock mass formation,

pw
cav the water pressure corresponding to the relative

humidity in the cavity (using equation (10)), patm the
atmospheric pressure and b a seepage transfer coefficient.
This transfer coefficient should be as high as possible
compare to the permeability of the medium, in order to
respect the seepage condition.
[13] Vapor exchanges occur when a difference between

relative humidities in cavity air and rock mass exists. In the
following, the conceptual model for the vapor exchanges
relies on the existence of a locally uniform distribution of
vapor concentration on the cavity porous surface [Ghezzehei
et al., 2004]. The exchange takes place between the cavity
wall and the cavity atmosphere through a boundary layer,
which thickness controls the vapor transfer.
[14] Vapor inflows or outflows are physically possible.

Several formulations of these fluxes can be found in the
literature. Each of them is using a mass transfer coefficient
which can be expressed as a function of the degree of
saturation, the porosity or the air velocity in the cavity
[Dracos, 1980; Anagnostou, 1995; Zhongxuan et al., 2004].
To obtain the evaporation flow, this mass transfer coefficient
can be multiplied by the difference of relative humidity
[Anagnostou, 1995], vapor pressure [Zhongxuan et al.,
2004] or vapor potential [Kowalski, 1997] between cavity
air and the geological formation. As proposed by Ben
Nasrallah and Pere [1988], we choose to express vapor

exchanges as the difference of vapor density between the
tunnel atmosphere and rock mass:

E ¼ a r f
v � rcavv

� 	
ð8Þ

with rv
f and rv

cav vapor density respectively in the formation
and in the cavity and a a vapor mass transfer coefficient.
[15] In isothermal conditions, the different evaporation

flow expressions give identical results, if the value of mass
transfer coefficient is modified upon the chosen formula-
tion. In anisothermal conditions, a new nonlinearity is
introduced, because vapor mass transfer coefficient depends
itself on temperature. Experimentations at different temper-
atures are thus necessary to determine the thermal sensitiv-
ity of this coefficient.
[16] The vapor density rv is given by the following

thermodynamic relationship:

rv ¼ hrv;0 ð9Þ

where h is the relative humidity and rv,0 the saturated vapor
density.
[17] Relative humidity in porous medium is related to the

capillary pressure pc by the Kelvin’s law:

h ¼ exp � pcMv

RrwT

� �
ð10Þ

with pc the capillary pressure (pc = pg – pw), Mv vapor
molar mass (0.018 kg mol�1), R the molar gas constant
(8.134 J mol�1 K�1), T the absolute temperature (�K) and
rw the water density.
[18] Saturated vapor density is obtained by ideal gas law:

rv;0 ¼
pv;0Mv

R:T
ð11Þ

where pv,0 is the saturated vapor pressure given by the
experimental expression following [Collin, 2003]:

pv;0 ¼ a exp �b=Tð Þ ð12Þ

26with a = 112659 MPa and b = 5192.74 for temperatures
included between 273�K and 373�K.
[19] Other possibility to obtain the saturated vapor den-

sity consists of defining an empirical relationship on the
basis of experimental results. For example, for temperatures
included between 293 and 331�K, Ewen and Thomas
[1989] have proposed the following relationship on the
basis of data from Mayhew and Rogers [1976]:

1

rv;0
¼ 194:4 exp

h
� 0:06374 T � 273ð Þ

þ 0:1634� 10�3 T � 273ð Þ2
i

ð13Þ

[20] On the basis of previous expressions, the total flow q
between cavity air and the geological formation is simply
expressed as the sum of the seepage flow and vapor
exchange flow:

q ¼ S þ E ð14Þ

Figure 1. Seepage boundary condition.
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[21] Because of permanent air ventilation of the cavities,
we can consider that air relative humidity and vapor density
in the tunnel are constant. Evaporation and seepage flows
evolve thus according to the value of water pressure pw

f at
the cavity wall (Figure 2).
[22] Initially, if rock mass humidity is higher than cavity

air humidity (pw
f � patm > pw

cav), vapor exchanges take place
from the geological formation to the cavity. Evaporation
flows remain constant as long as rockmass is totally saturated
(pw

f > patm). When pore water pressure is lower than atmo-
spheric pressure, the geological formation is desaturated and
vapor exchanges decrease until the equilibrium between
porous medium and ambient atmosphere is obtained. Seep-
age flows exist only if pore water pressure at the cavity wall is
higher than pressure in the cavity atmosphere.
[23] If rock mass humidity is lower than cavity air

humidity (pw
f < patm and pw

f < pw
cav), condensation flows

take place from the tunnel atmosphere into the formation in
order to resaturate the rock mass. The saturation increases
progressively to reach the tunnel relative humidity level. On
the other hand, no seepage flow occurs.

4. Linearization of the Field Equations

[24] For a given boundary value problem at time t, the
equilibrium is not a priori met and some residuals appears in
the expression of the field equations (equations (1) and (3)),
which can be rewritten as follows:

Z
Wt

st
ij

@ui*

@xtj
dWt �

Z
Wt

rs 1� ftð Þ þ Str;wr
t
wf

t
� �

giui*dWt

�
Z
Gt
s

t
t
i ui*dG

t ¼ Rt ð15Þ

Z
Wt

_M
t
pw*� mt

i

@pw*

@xti

� �
dWt �

Z
Wt

Qtpw*dWt þ
Z
Gt
q

qtpw*dGt ¼ W t

ð16Þ

with Rt and Wt respectively the mechanical and the flow
residuals.
[25] A Newton-Raphson scheme is proposed to find a

new solution of displacements and pressures field, for which
equilibrium is met. The idea is to define a linear auxiliary
problem deriving from the continuum one (instead of
the discretized one as it is more usually done) similar to
the work of Borja and Alarcon [1995]. This approach
gives the same results as standard FEM procedure but make
the linearization easier, especially for coupled problem in
large strain formulation.
[26] If we assume known the configuration of Wt (xi

t and
pw
t ) at time t in equilibrium with boundary conditions, the

objective is to find the new configuration in equilibrium at
the end of the time step (t = t + Dt). A first guess of a new
configuration Wt1 (xi

t1 and pw
t1) is realized, for which the

equilibrium is not met. Mechanical and flow residuals flow
Rt1 and Wt1 exist, as shown in equations (15) and (16). The
aim is to find a new configuration Wt2, close to Wt1, for
which the residuals Rt2 and Wt2 vanish. In order to get the
linear auxiliary problem, the field equations corresponding
to Wt2 are rewritten in configuration Wt1 (using the Jacobian
transformation) and the resulting equations are subtracted
from the corresponding initial equations written in config-
uration Wt1.
[27] In this paper, linearization of balance of momentum

equation (equation (15)) is not developed. We refer to
developments in the work of Collin et al. [2006] and the
results are presented hereafter. Concerning linearization of
mass balance equation for the water (equation (16)), Collin
et al. [2006] present developments when second terms of
mass balance equation do not vary according to the config-
uration Wt1 or Wt2, because qt and Q are assumed displace-
ment and hydraulic field independent. In our formulation,
water mass per unit area qt is defined in equation (14) and is
pore water pressure dependent. Second terms of mass
balance equation for the water are then modified with
configuration variations. The subtraction of field equation

Figure 2. Evaporation and seepage flows.
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corresponding to Wt2 is rewritten in configuration Wt1

(using the Jacobian transformation) with corresponding
equation in configuration Wt1 becomes

Z
Wt1

_M
t2
detF � _M

t1
� �

pw*�
@pw*

@xt1l
mt2

i

@xt1l
@xt2i

detF � mt1
l

� �� �
dWt1

¼
Z
Gt1
q

qt2detF � qt1
� 	

pw*dGt1 �W t1

ð17Þ

where we assume that Q is position independent and that
det F is the Jacobian determinant of Fij = @xi

t2/@xj
t1,

transporting scalars on large strains for mapping from Wt2 to
Wt1.
[28] Let us define

dut1j ¼ xt2j � xt1j ð18Þ

dpt1w ¼ pt2w � pt1w ð19Þ

dft1 ¼ ft2 � ft1 ð20Þ

drt1w ¼ rt2w � rt1w ð21Þ

dSt1r;w ¼ St2r;w � St1r;w ð22Þ

dkt1r;w ¼ kt2r;w � kt1r;w ð23Þ

dqt1 ¼ qt2 � qt1 ð24Þ

Using a Taylor expansion of equation (17) and discarding
terms of degree greater than one yields after some algebra

(for further details, see Chambon et al. [2001], Chambon
and Moullet [2004], and Collin et al. [2006]) the following
linearized equations:

R
Wt1 pw*

drt1w St1r;w
ft1

cw

_pt1w þ rt1w St1r;w
dft1

cw

_pt1w þ rt1w St1r;w
ft1

cw

dpt1w
Dt

þ rt1w dSt1r;w
ft1

cw

_pt1w

þ drt1w _S
t1
r;wf

t1 þ rt1w
dSt1r;w

Dt
ft1 þ rt1w _S

t1
r;wdf

t1 þ drt1w St1r;w

_Wt1

Wt1

þ rt1w dSt1r;w

_W
t1

Wt1 þ rt1w St1r;w
@dut1m
@xt1m

1

Dt
�

_Wt1

Wt1

@dut1m
@xt1m

 !
þ _M

t1 @dut1m
@xt1m

0
BBBBBBBBB@

1
CCCCCCCCCA
dWt1

�
R
Wt1

@pw*

@xtll

�drt1w
kkt1r;w
mw

@pt1w
@xt1l

þ rt1w gl

� �
� rt1w

kkt1r;w
mw

@dpt1w
@xt1l

þ drt1w gl

� �

�rt1w
k
mw

dkt1r;w
@pt1w
@xt1l

þ rt1w gl

� �
þ rt1w

kkt1r;w
mw

@dut1j
@xt1l

@pt1w
@xt1j

�mt1
j

@dut1l
@xt1j

þ mt1
l

@dut1m
@xt1m

0
BBBBBBBB@

1
CCCCCCCCA
dWt1

¼
R
Gt1
q
pw* dqt1 þ qt1

@dut1m
@xt1m

� �
dGt1 �W t1

ð25Þ

This allows us to find the corrections of the displacement
fields dui and the corrections of the pore water pressure dpw
to be added to their respective current values to obtain an
new current configuration and a new displacements and
pore water pressures field closer to a well-balanced
configuration.
[29] If we assume the following relationships coming

from a linearization of equations (5) and (14), the preceding
equation can be expressed as a function of the unknowns dui
and dpw

drt1w ¼ rt1w
cw

dpt1w ð26Þ

dft1 ¼ 1� ft1� 	 dWt1

Wt1 ¼ 1� ft1� 	 @dut1m
@xt1m

ð27Þ

dSt1r;w ¼
@St1r;w
@pt1w

dpt1w ð28Þ

dkt1r;w ¼
@kt1r;w
@St1r;w

@St1r;w
@pt1w

dpt1w ð29Þ

dqt1 ¼ a dr f ;t1
v � drcav;t1v

� 	
þ 2b p f ;t1

w � pcav;t1w

� 	
	 dp f ;t1

w � dpcav;t1w

� 	
¼ a

rv;0Mv

RTrt1w
h f ;t1 � hcav;t1
� 	

þ 2b p f ;t1
w � pcav;t1w

� 	� �
	 dp f ;t1

w � dpcav;t1w

� 	
ð30Þ

if p f
w � pcavw and p f

w � patm
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[30] Linearization of the mechanical problem can be
found in work by Collin et al. [2006] and gives

Z
Wt1

@u
i
@xt1l

dst1
il � st1

ij

@dul
@xt1j

þ st1
il

@dum
@xt1m

 !
dWt1

�
Z
Wt1

u
i rt1mix
@dum
@xt1m

�
 
rt1s � St1r;wr

t1
w

 !
dft1

þ drt1w St1r;wf
t1 þ dSt1r;wr

t1
w ft1

!
gidWt1 ¼ �Rt1 ð31Þ

where rmix
t1 is the mass density of the mixture in configura-

tion Wt1 (rmix
t = rs

t(1�ft) + Sr,w
t rw

t ft), Rt1 is the residual of
the mechanical problem and dsil

t1 can be linearized by

dst1
il ¼ ds0 t1

il � St1r;wdp
t1
w dil � dSt1r;wp

t1
w dil

¼ Ct1
ilkj

@dut1k
@xt1j

� St1r;wdp
t1
w dil � dSt1r;wp

t1
w dil ð32Þ

where we assumed the Bishop’s definition of effective stress
tensor [Nuth and Laloui, 2008]. It should be pointed out that
matrix Ciljk

t1 is computed through a consistent linearization of
the constitutive law integration algorithm [Simo and Taylor,
1985].
[31] Equations (25) and (31) have different contributions

coming from geometrical nonlinear effects (since we dis-
tinguished Wt1 and Wt2 in the developments) and from the
couplings between pore water pressure and the mechanical
problem. These contributions will be highlighted in section 5,
where the formulation of a coupled finite element and a
boundary finite element are detailed.

5. Coupled 2-D Finite Element and Boundary
Finite Element Formulations

[32] Classical boundary condition of flows problems are
respectively the Dirichlet (imposed pressure) and the Neu-
mann type (imposed flux). On the boundary of a body of
volume W, we can impose the following classical boundary
conditions (Figure 3): flux different from zero on the surface
Gq1, pressure variations on the surface Gp, and impervious
condition on Gq2 = G\{Gq1 [ Gp}.
[33] To reproduce the seepage and evaporation flows

which occur near the tunnel surface, we need classical
quadrilateral 2-D finite elements (to simulate the rock mass
coupled behavior), associated with a new boundary finite
element through which the hydraulic exchanges between
cavity air and the formation take place. This boundary
element is necessary because the seepage and evaporation
flows correspond to nonclassical boundary condition. The
special element has been developed in the finite element
code Lagamine [Collin, 2003] and is defined by four nodes
(Figure 4). The first three nodes are located on the boundary
(N1, N2 and N3). They allow a spatial discretization of the
pore water pressure distribution along the boundary. The

Figure 4. (a) Two-dimensional finite element and boundary element and (b) the corresponding parent
elements.

Figure 3. Flow boundary conditions.
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fourth node is introduced to define the relative humidity in
the cavity and its geometrical position does not influence
the results (N4). The corresponding one-dimensional parent
element is defined as a function of z (�1 < z < 1). In the
following, the finite element formulation of the problem is
presented, with a special emphasize of the numerical
description of the four-node boundary finite element.
[34] In order to define the local element stiffness matrix,

equations (25) and (31) are rewritten in a matricial form:

Z
Wt1

U

;t1
x;yð Þ

h iT
Et1� �

dU t1
x;yð Þ

h i
dWt1

¼
Z
Gt1
q

U

;t1
x;yð Þ

h iT
Ft1� �

dU t1
x;yð Þ

h i
dGt1

q � Rt1 �W t1 ð33Þ

where [dU(x,y)
t1 ] is defined in equation (34) and [U(x,y)

*,t1] has
the same structure as the corresponding virtual quantities:

dU t1
x;yð Þ

h iT
� @dut11

@xt11

@dut11
@xt12

@dut12
@xt11

@dut12
@xt12

dut11 dut12
@dpt1w
@xt11

@dpt1w
@xt12

dpt1w

� �

ð34Þ

[35] In equation (33), the left-hand term is computed by a
2-D coupled finite element and the first right-hand term is
evaluated by the 1-D boundary finite element. The finite
element spatial discretization is introduced in equation (33)
using the transformation matrices [Tt1] and [B] for the 2-D
finite element (and respectively [St1] and [C] for the
boundary finite element), with connect [dU(x,y)

t1 ] to the nodal
variables [dUNode

t1 ] (Figure 4):

dU t1
x;yð Þ

h i
¼ T t1� �

dU t1
x;hð Þ

h i
for the 2�D finite element ð35Þ

dU t1
x;yð Þ

h i
¼ St1
� �

dU t1
zð Þ

h i
for the boundary finite element ð36Þ

and

dU t1
x;hð Þ

h i
¼ B½ � dU2D;t1

Node

h i
for the 2�D finite element ð37Þ

dU t1
zð Þ

h i
¼ C½ � dUBE;t1

Node

h i
for the boundary finite element ð38Þ

The usual one-dimensional quadratic Serendipity shape
functions are used for the boundary finite element.

[36] Integration of equation (33) on finite element yields

U
2D;

node

h iT Z 1

�1

Z 1

�1

B½ �T Tt1� �T
Et1� �

T t1� �
B½ �det J t1dxdh dU

2D;t1
Node

h i

� U
BE;

node

� �T Z 1

�1

C½ �T St1
� �T

Ft1� �
St1
� �

C½ �detLt1dz dU
BE;t1
Node

h i
� U

2D;

node

h iT
k2D;t1
� �

dU t1
Node

� �
� U

BE;

node

� �T
kBE;t1
� �

dU
BE;t1
Node

h i
ð39Þ

where [k2D,t1] and [kBE,t1] are the local element stiffness
matrices respectively of the 2-D finite element and of the
boundary finite element, Jt1 is the Jacobian matrix of the
mapping from (x,h) to (x, y) for the 2-D finite element (and
Lt1 is the Jacobian matrix of the mapping from (V) to (x, y)
for the boundary finite element) and [dUNode

2D,t1] and [dUNode
BE,t1]

have the following definition:

dU
2D;t1
Node

h iT
¼

dut1
1 �1;�1ð Þdu

t1
2 �1;�1ð Þdp

t1
w �1;�1ð Þ � dut1

1 �1;0ð Þdu
t1
2 �1;0ð Þdp

t1
w �1;0ð Þ � dut1

1 �1;1ð Þdu
t1
2 �1;1ð Þdp

t1
w �1;1ð Þ

�dut1
1 0;�1ð Þdu

t1
2 0;�1ð Þdp

t1
w 0;�1ð Þ � dut1

1 0;1ð Þdu
t1
2 0;1ð Þdp

t1
w 0;1ð Þ � dut1

1 1;�1ð Þdu
t1
2 1;�1ð Þdp

t1
w 1;�1ð Þ

�dut1
1 1;0ð Þdu

t1
2 1;0ð Þdp

t1
w 1;0ð Þ � dut1

1 1;1ð Þdu
t1
2 1;1ð Þdp

t1
w 1;1ð Þ

2
66664

3
77775 ð40Þ

dU
BE;t1
Node

h iT
¼ dut11ð�1Þdu

t1
2 �1ð Þdp

t1
w �1ð Þ � dut11 0ð Þdu

t1
2 0ð Þdp

t1
w 0ð Þ

h
� dut11 1ð Þdu

t1
2 1ð Þdp

t1
w 1ð Þ

i
ð41Þ

[37] [Et1] and [Ft1] are (9 � 9) matrixes that contain all
the terms of equations (25) and (31), respectively for 2-D
finite element (2D) and boundary finite element (BE):

Et1� �
¼

K2D
MMt1

ð6�6Þ
K2D
WMt1

ð6�3Þ

K2D
MW t1

ð3�6Þ
K2D
WW t1

ð3�3Þ

2
64

3
75 ð42Þ

Ft1� �
¼

0ð6x6Þ 0ð6x3Þ

KBE
MW t1

ð3x6Þ
KBE
WW t1

ð3x3Þ

2
64

3
75 ð43Þ

Matrices KWW
2D and KMM

2D are the classical stiffness matrices
for a flow and a mechanical problem with 2-D finite
element. KWM

2D and KMW
2D contain all the couplings terms

appearing between the mechanical problem and the flow
one:

K2D
WW t1

3�3ð Þ
¼

rt1w
kkt1r;w
mw

0 C1

0 rt1w
kkt1r;w
mw

C2

0 0 D

2
66664

3
77775 ð44Þ
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K2D
MM t1

6�6ð Þ
¼

C1111 C1112 � st1
12 C1121 C1122 þ st1

11 0 0

C1211 þ st1
12 C1212 C1221 � st1

11 C2222 0 0

C2111 C2112 � st1
22 C2121 C2122 þ st1

21 0 0

C2211 þ st1
22 C2212 C2221 � st1

21 C2222 0 0

G 0 0 G 0 0

G 0 0 G 0 0

2
66666666666666664

3
77777777777777775

K2D
MW t1

3�6ð Þ
¼

�rt1w
kkt1r;w
mw

@pt1w
@xt1

1

mt1
2 �rt1w

kkt1r;w
mw

@pt1w
@xt1

2

�mt1
1 0 0

�mt1
2 �rt1w

kkt1r;w
mw

@pt1w
@xt1

1

mt1
1 �rt1w

kkt1r;w
mw

@pt1w
@xt1

2

0 0

Aþ _M
t1

0 0 Aþ _M
t1

0 0

2
66664

3
77775

K2D
WM t1

6�3ð Þ
¼

0 0 �St1r;w � pt1w
@St1r;w
@pt1w

0 0 0

0 0 0

0 0 �St1r;w � pt1w
@St1r;w
@pt1w

0 0 � rt1w
cw

St1r;wf
t1 þ rt1w

@St1r;w
@pt1w

ft1

 !
g1

0 0 � rt1w
cw

St1r;wf
t1 þ rt1w

@St1r;w
@pt1w

ft1

 !
g2

2
66666666666666666666664

3
77777777777777777777775

ð47Þ

where

A ¼ rt1w 1� ft1� 	 St1r;w

cw

_pt1w þ _S
t1
r;w

 !
þ St1r;w

1

Dt
�

_W
t1

Wt1

 ! !

ð48Þ

C1 ¼ rt1w
cw

kkt1r;w
mw

@pt1w
@xt11

þ rt1w g1

� �
þ rt1w

rt1w
cw

kkt1r;w
mw

g1 þ rt1w
k
mw

@kt1r;w
@St1r;w

	
@St1r;w
@pt1w

@pt1w
@xt11

þ rt1w g1

� �
ð49Þ

C2 ¼ rt1w
cw

k
mw

@pt1w
@xt12

þ rt1w g2

� �
þ rt1w

rt1w
cw

k
mw

g2 þ rt1w
k
mw

@kt1r;w
@St1r;w

	
@St1r;w
@pt1w

@pt1w
@xt12

þ rt1w g2

� �
ð50Þ

D ¼ rt1w
cw

ft1

cw

St1r;w _p
t1
w þ rt1w

ft1

cw

St1r;w

Dt
þ rt1w

ft1

cw

@St1r;w
@pt1

_pt1w

þ rt1w
cw

ft1 _S
t1
r;w þ rt1w

ft1

Dt

@St1r;w
@pt1w

þ rt1w
cw

St1r;w

_W
t1

Wt1

þ rt1w
@St1r;w
@pt1w

_W
t1

Wt1 ð51Þ

G ¼ �rt1mix þ rs � St1r;wr
t1
w

� �
1� ft1� 	

ð52Þ

Matrices KWW
BE and KMW

BE contain all the terms appearing
because of the dependence of the total boundary flow qt

with displacement and hydraulic field. These stiffness
matrices of the boundary element are detailed hereafter.

KBE
WW t1

3�3ð Þ
¼

0 0 0

0 0 0

0 0 Z

2
66664

3
77775 ð53Þ

KBE
MW t1

3�6ð Þ
¼

0 0 0 0 0 0

0 0 0 0 0 0

qt1 0 0 qt1 0 0

2
66664

3
77775 ð54Þ

with

Z ¼

a
rv;0Mv

RTrt1w
hf ;t1 � hcav;t1
� 	

þ 2b p f ;t1
w � pcav;t1w

� 	� �

if p f
w � pcavw and p f

w � patm

a
rv;0Mv

RTrt1w
h f ;t1 � hcav;t1
� 	� �

if p f
w < pcavw or p f

w < patm

8>>>>>>>>>><
>>>>>>>>>>:

ð55Þ

ð45Þ

ð46Þ
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In equation (33), the residual terms Rt1 and Wt1 are
computed for each element thanks to the following
relationship:

�Rt1 �W t1 ¼ Pt

e � U

2D;

node

h iT Z 1

�1

Z 1

�1

B½ �T T t½ �T s2D;t
� �

det J tdxdh

þ U
BE;

node

� �T Z 1

�1

C½ �T St½ �T sBE;t
� �

detLtdz

� U
2D;

node

h i
f
2D;t
HE

h i
þ U

BE;

node

� �
f
BE;t
HE

� �
ð56Þ

s2D;t1� �T¼ st1
11 ::: st1

22 � mt1
1 � mt1

2
_M
t1

h i
ð57Þ

sBE;t1� �
¼ qt1
� �

ð58Þ

where [ fHE
2D,t] and [ fHE

BE,t] are the elementary out of balance
forces respectively for the 2-D finite element and for the
boundary finite element. The external virtual power Pe

t*

contains the contributions of the body forces (for the
mechanical and the flow problems), except the term related
to gravity volume force, which is introduced in the [s2D,t1]
vector.
[38] It is worth mentioning that the integration procedure

of equations (39) and (56) uses Gauss method. In order to
avoid possible locking in the plastic range, the 2-D elements
are underintegrated, which means here that only four Gauss
points are used. Concerning the boundary finite element,
two Gauss points are considered (Figure 5). The exchange
flow qt is computed thank to equation (14), where the cavity
relative humidity is computed with the pressure of the
fourth node (N4) and the rock mass relative humidity is
evaluated at the Gauss points.
[39] The global stiffness matrix and out of balance force

can be obtained by assembling the elementary matrices
given by equations (39) and (56). After solving the resulting
auxiliary linear system, a new configuration is found and
the equilibrium is checked. A monolithic procedure is
chosen where the full stiffness matrix is computed at each
iteration of the Newton-Raphson procedure.

6. Numerical Modeling of an Excavation

[40] For the design of nuclear waste disposals in deep
geological layer, a correct numerical modeling of the
coupled processes occurring during cavities excavations is
needed. In order to evidence the influence of the hydraulic
boundary condition, the excavation of a cylindrical cavity
located in a homogeneous low-permeability formation is

modeled. The geometry and the mechanical law used in the
following are those proposed in the GdR-MoMaS bench-
mark exercise [Chavant and Fernandez, 2005]. The me-
chanical constitutive model corresponds to a highly dilatant
material. In such conditions, the coupling effects between
the mechanical law and the flow problem are enhanced.
[41] A 3 m diameter cylindrical unsupported cavity is

located in a homogeneous low- permeability formation. The
excavation process lasts for 1.5 � 106 s (around 17 days)
and is modeled by a progressive decrease of the initial total
stress and pore water pressure down to the atmospheric
pressure. An initial isotropic stress state allows one dimen-
sional axisymmetrical modeling: s0r = 7 MPa and pw =
5 MPa. Two steps are considered in the modeling: first the
excavation process (duration Tc = 1.5 � 106 s) and a second
phase during which the radial convergence of the cavity
evolves because of the water diffusion process. The final
modeling time is 300 � 106 s (about 9.5 years). At the
external boundaries of our model, the initial conditions are
assumed to be preserved in terms of total stress and pore
water pressure. The external radius is seven times the
internal one. At this distance, the external boundary con-
ditions have a small influence on the cavity convergence. At
the inner wall, the boundary conditions are the following:

for 0 � t � Tc : sr ¼ s0
r � Sr;wpw ¼ s0 1� t

Tc

� �

þ 0:1MPa and pw ¼ 5 1� t

Tc

� �
þ 0:1MPa

for t > Tc : sr ¼ pw ¼ 0:1MPa

8>>>>><
>>>>>:

ð59Þ

The conditions are isothermal (T = 293�K) and gas pressure
is assumed constant (equal to the atmospheric pressure).

6.1. Mechanical Constitutive Model

[42] In order to reproduce the progressive decrease of
the material strength, the mechanical constitutive law
previously proposed for GdR-Momas benchmark exercises
[Chavant and Fernandez, 2005] is used. This constitutive
law is an elastoplastic strain-softening model using the
associated Drucker-Prager yield criterion given by the
following equation:

F �
ffiffiffi
3

2

r
IIŝ þ m Is �

3c

tan8

� �
¼ 0 ð60Þ

where IIŝ is the second deviatoric stress invariant, Is is the
first stress invariant, f is the friction angle, parameter m is a
function of f: m =

2 sin 8ð Þ
2�sin 8ð Þ, the cohesion c = c0 f (g

p) is the
softening variable, c0 is the initial cohesion and g p is the
equivalent deviatoric plastic deformation.

Table 1. Parameters of the Mechanical Model

Description Value Units

E0 Young modulus 5800 MPa
u0 Poisson ratio 0.3 -
c0 initial cohesion 1 MPa
f friction angle 25 deg
q residual cohesion 0.01 -
gR
p deviatoric strain threshold 0.015 -

Figure 5. Boundary finite element description.
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[43] Because of the associated plastic law, the behavior of
the material is highly dilatant, which increases the coupling
effects between the mechanical and the flow problem. The
evolution of the cohesion is related to the equivalent plastic
deformation through the following relationship:

f g pð Þ ¼ 1� 1� qð Þ g
p

g p

R

� �2
if 0 < g p < g p

R

f g pð Þ ¼ q2 if g p � g p
R

ð61Þ

where q is a parameter controlling the residual value of
cohesion and gR

p is the equivalent deviatoric plastic
deformation, for which the residual value of cohesion is
reached. The following modeling has been performed with
the parameters values defined in Table 1.

6.2. Hydraulic Properties

[44] The relationships describing the hydraulic behavior
have been developed in section 2.2. The following param-
eters have been used in the modeling of the cavity excava-
tion (Table 2).
[45] The retention curve of the medium [van Genuchten,

1984] and the water relative permeability function [Chavant
and Fernandez, 2005] are given by the following relation-
ships (Figure 6):

Sr;w ¼ 1þ apcð Þ
1

1�m

h i�m

and Sr;w ¼ 1 if pc < 0 ð62Þ

kr;w ¼ 1þ S�d
r;w � 1

� �rh i�1

ð63Þ

with Sr,w the water relative saturation, kr,w the water relative
permeability, pc the capillary pressure, a = 10�7 Pa�1, m =
0.412, d = 2.429 and r = 1.176.

6.3. Reference Case

[46] In this axisymmetrical modeling, we present respec-
tively the pore water pressure distribution at four different
time steps and the water outflow in the cavity (negative
values mean an injection of water in the medium). In
Figure 7a, we see that the pore water pressure remains (at
the cavity wall) at the atmospheric pressure after the
excavation phase. Because of the hydromechanical coupling
(dilatancyeffect), anegativeporewaterpressure isobserved in
the damaged zone, which implies an unphysical ‘numerical’
injection of water into the formation (Figure 7b).
[47] Figures (7c–7d) show the radial displacement distri-

bution at four different time steps and the stress path
followed in the first finite element at the wall. We see
(Figure 7d) that the behavior is first elastic before the stress
state reaches the initial yield surface. Because of the strain-
softening, the cohesion decreases with a plastic dilatancy.
At the end of the modeling, the stress state tends to zero as
no more deviatoric stresses are allowed. The radial dis-
placement (Figure 7c) is equal to 1.75 cm at the end of the
excavation and reaches 21.2 cm after 300 � 106 s. The
coupling effects between the water diffusion and the me-
chanical process are thus important.

6.4. Influence of the Hydraulic Boundary Condition

[48] If we consider that air ventilation in the cavity is
sufficiently active to maintain constant the air relative
humidity, we can imagine that after excavation, for long-
term predictions, a thermodynamical equilibrium might be
reached between the cavity air and the geological formation.
One can assume equilibrium between the pore water pres-
sure at the tunnel and the relative humidity of the cavity
atmosphere. A second case (case 2) is then considered,
where a relative humidity of 0.96 (corresponding to a
negative pore water pressure of �5 MPa) is imposed at
the cavity wall as a hydraulic boundary condition. Figure 8a
shows the resulting pore water pressure which becomes
negative at the cavity wall at the end of the excavation.
After this first phase, the pore water pressure at the cavity
wall remains negative as it is imposed by the boundary
condition and the suction diffuses into the formation. In this
case, we assist to a water outflow from the rock mass to the
cavity to reach the imposed relative humidity at the wall.
However, with other constitutive parameters, which should

Table 2. Parameters of the Flow Model

Description Value Units

k intrinsic permeability 10�19 m2

rw,0 water density 1000 kg/m3

f0 initial porosity 0.15 -
cw water bulk modulus 2000 MPa
mw water dynamic viscosity 0.001 Pa s

Figure 6. Retention and water relative permeability curves.
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be more and more dilatant, water injection could neither be
avoided.
[49] A third case (case 3) is then considered, using a

seepage boundary condition: a liquid water outflow can be
created only if the pore water pressure in the formation is
higher than the atmospheric pressure and than the water
pressure in the cavity (unilateral flow condition), as defined
by equation (7). The relative humidity of the cavity air is
decreased to 96 % during excavation and then remains
constant to reproduce HR conditions of the tunnel. The
seepage transfer coefficient b of equation (7) is assumed
equal to 10�7 s3 kg�1. In term of pore water pressure
profiles (Figure 9a), the results are similar at the end of
the excavation to those in case 2. For long-term predictions,
pore water pressure progressively increases at the wall to
reach the atmospheric pressure. Water outflows between
geological formation and the cavity are now realistic,
because only outflows are possible. But the equilibrium
between the pore water pressure at the wall and the relative
humidity in the cavity atmosphere is not reached in this
case. Indeed, Figure 9b presents the temporal evolution of
rock mass and cavity relative humidities. During excava-
tion, the cavity air relative humidity decreases and then
remains constant till the end of the modeling, considering
the sufficiently active air ventilation. In the rock mass, the
relative humidity decreases during the excavation because
of dilatancy effects. As far as the relative humidity is lower
than one, no liquid outflow occurs. Thus, for long time

predictions, the water pressure progressively increases
because of the water flows coming from the formation.
[50] These two cases highlight the need of a more

detailed expression of the water exchanges between the
cavity atmosphere and the tunnel wall. In the fourth
modeling (case 4), a mixed boundary condition with seep-
age and evaporation flows is thus used, as defined in
equation (14). The results depend on the vapor mass transfer
coefficient, defined in equation (8). Ghezzehei et al. [2004]
have estimated the boundary layer thickness for different
conditions (closed cavity, active or nonactive ventilation).
The corresponding mass transfer coefficient varies between
10�3 m s–1 for closed tunnel to 4 � 10�3 m s–1 for active
ventilation. We propose here to consider three values of
mass transfer coefficient.
[51] With a small vapor transfer coefficient (case 4-1, a =

10�4 m s–1), only seepage flows have influence on the
flow boundary condition. The pore water pressure values
(Figure 10a) tend to the atmospheric pressure at the wall.
The profiles are thus similar to those using only seepage
boundary condition (case 3, Figure 9a). Figure 10b shows
that the equilibrium between the cavity atmosphere and the
cavity wall in term of relative humidity is not reached at the
end of the modeling.
[52] Using 100 times larger mass transfer coefficient

(case 4-2, a = 10�2 m s–1), the evaporation flow becomes
preponderant on the seepage flow. Pore water pressure
remains negative and close to the imposed water pressure

Figure 7. Case 1 (reference case) (a) pore water pressure distribution, (b) outflow evolution,
(c) displacement evolution, and (d) stress path curve.
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Figure 9. Case 3 (a) pore water pressure distribution, (b) relative humidity evolution, (c) displacement
evolution, and (d) stress path curve.

Figure 8. Case 2 (a) pore water pressure distribution, (b) outflow evolution, (c) displacement evolution,
and (d) stress path curve.
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Figure 10. Case 4-1 (a) pore water pressure distribution, (b) relative humidity evolution,
(c) displacement evolution, and (d) stress path curve.

Figure 11. Case 4-2 (a) pore water pressure distribution, (b) relative humidity evolution,
(c) displacement evolution, and (d) stress path curve.
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in the cavity atmosphere (Figure 11a). The equilibrium
between the relative humidity at the tunnel wall and in the
cavity atmosphere is then quickly reached, as shown In
Figure 11b. The pore water pressure profiles in the forma-
tion are quite similar to those obtained when a relative
humidity (corresponding to a negative pore water pressure
of �5 MPa) is imposed at the cavity wall as a boundary
condition (case 2, Figure 8a).
[53] With an intermediate value of vapor mass transfer

coefficient a equal to 10�3 m s–1 (case 4-3), seepage and
evaporation flows are both influent. Pore water pressures at
the wall (Figure 12d) are stabilized around �3 MPa. This
pressure is an intermediate value between those obtained in
case 4-1 and case 4-2.
[54] These different pore water pressure distributionshave

a direct influence on the predicted convergence. Table 3
presents the cavity convergence in the four cases. At the
end of the excavation, the convergences are more or less
the same. But as far as the long-term response is concerned,
the predicted displacements are rather different. Indeed in
case 2 (imposed humidity at the wall), the remaining suction
near the tunnel ensures an additional strength and limits the
material deformations. The case 4-2 (mixed flow condition
with high vapor transfer coefficient) is quite similar to
case 2. The stress paths followed in the first finite element
near the wall confirm these results. Indeed, Figures 8d and
11d present more or less the same stress states at the end of
the excavation and after 300 � 106 s. The geological
formation recovers an elastic behavior at the end of the

modeling and the high final value of the deviatoric stress is
an indicator of the low plastic deformations. It is also
interesting to note that the stress state does not evolve after
the excavation when suction is imposed at the wall.
[55] With the seepage flowcondition (case 3) ormixed flow

condition with small vapor transfer coefficient (case 4-1), the
stress paths are similar and the convergences obtained too.
Figures 9d and 10d show that the residual value of cohesion
is reached and the behavior is still plastic at the end of the
modeling. The final value of the deviatoric stress is slightly
higher than in case 1, so that the convergence is higher. It is
also interesting to note that the stress paths become purely
deviatoric (constant mean stress) during excavation when
atmosphere in the tunnel begins to be unsaturated. Indeed,
in this case, the seepage flows vanish and the flow boundary
condition becomes undrained.
[56] In the case 4-3 (mixed flow condition with an

intermediate mass transfer coefficient), the deviatoric stress
decreases after the end of the excavation and the final stress
state is located in the elastic domain (Figure 12d). Figure 13
presents the temporal evolution of the total, seepage and

Figure 12. Case 4-3 (a) pore water pressure distribution, (b) relative humidity evolution, (c) displacement
evolution, and (d) stress path curve.

Table 3. Cavity Convergence for Different Cases

Case 1,
cm

Case 2,
cm

Case 3,
cm

Case 4-1,
cm

Case 4-2,
cm

Case 4-3,
cm

1.5 � 106 s 1.75 1.34 1.50 1.50 1.41 1.48
300 � 106 s 21.2 1.49 6.69 5.28 1.47 1.73
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evaporation outflows, and the pore water pressure evolution
at the wall of the tunnel as well. During the first part of the
excavation, only seepage flow is active. When the atmo-
sphere in the tunnel begins to be desaturated, the stress path
evolves with constant mean stress, as shown previously in
case 4-1. As a consequence, pore water pressure near the
tunnel stabilizes. When the initial yield surface is reached,
the pore water pressures decrease because of the highly
dilatant behavior of the material. Seepage flow vanishes and
evaporation flow becomes thus predominant.
[57] In the reference case (case 1), the excavated damage

zone (EDZ) extends on 2.1 times the internal radius. With
the mixed flow condition (case 4-1/3), the modeling predicts
a rather narrow EDZ in comparison with case 1. However,
the EDZ in cases 4-1, 4-2 and 4-3 are quite similar (between
1.71 and 1.74 times the internal radius), which means that
the mass transfer coefficient has a small influence on the
extent of the EDZ. The intensity of the plastic deformations
within the EDZ is not the same for the three cases; the
corresponding cavity convergences are thus different.

7. Discussions and Conclusions

[58] For the design of nuclear waste disposals in deep
geological layer, a correct numerical prediction of the
coupled processes occurring during theses excavations is
needed. With the strain-softening constitutive model used,
the coupling effects between water diffusion and the me-
chanical aspects are enhanced. After the description of the
equations used in the finite element code, the modeling has
shown that the flow boundary condition at the cavity wall
deeply influences the cavity convergence.
[59] Four different kinds of boundary conditions are

considered: wall pressure decreased down to the atmospher-
ic pressure, suction imposed at the wall of the tunnel,
seepage condition and a new boundary condition mixing
seepage and evaporation flows. In low-permeability and

highly dilatant medium, the case 1 leads to unphysical
phenomenon, as the model predicts a massive injection of
water into the formation. The case 2 predicts a small radial
displacement as the suction is imposed as soon as the
excavation is achieved. This hypothesis is very optimistic.
With the seepage condition (case 3), the water may only
flow into the cavity when pore water pressure is larger than
the atmospheric pressure. This means that the equilibrium is
never reached between the air humidity and the pore water
pressure at the cavity wall. The conclusions for these three
kinds of boundary conditions highlight the need of this
fourth boundary condition, mixing two modes of exchange:
seepage flow and vapor flow. Depending on the vapor
transfer coefficient, the modeling predicts cavity conver-
gences, from a small value (for high mass transfer coeffi-
cient) to large one (for small mass transfer coefficient). The
modeling has shown that the proposed non classical bound-
ary condition is able to predict the water exchanges occur-
ring at the cavity wall under air ventilation. The coupled
hydromechanical computations have also evidenced the
influence of this flow boundary condition on the damage
around the cavity.

Notation

c cohesion (Pa).
E vapor exchange flow (kg m�2 s�1).
E0 Young modulus (Pa).
g gravity acceleration (m s2).
h relative humidity (-).
Is first stress invariant (Pa).
IIŝ second deviatoric stress invariant (Pa).
kr,w water relative permeability (-).
m mass flow (kg m�2 s�1).
M mass of the liquid water phase (kg m�3).
Mv vapor molar mass (kg mol�1).
patm atmospheric pressure (Pa).

Figure 13. Case 4-3 temporal evolution of outflows and pore water pressure at the wall evolution (line
with one asterisk, rock mass desaturation; line with two asterisks, entry in plasticity).
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pc capillary pressure (Pa).
pv,0 saturated vapor pressure (Pa).
pw pore water pressure (Pa).
q water mass flow imposed on a boundary surface

(kg m�2 s�1).
Q sink term (kg s�1 m�3).
R molar gas constant (J mol�1 kg�1).
S seepage flow (kg m�2 s�1).

Sr,w water relative saturation (-).
t time (s).
t stress imposed on a boundary surface (Pa).

Tc drilling time (s).
T absolute temperature (�K).
ui kinematically admissible virtual displacement (m).
a vapor mass transfer coefficient (m s�1).
b seepage transfer coefficient (s3 kg�1).
g p equivalent deviatoric plastic deformation (-).
gR
p equivalent deviatoric plastic deformation threshold (-).
eij strain tensor (-).
q parameter controlling the residual value of cohesion (-).
k intrinsic permeability (m2).

mw water dynamic viscosity (Pa s).
n0 Poisson ratio (-)
rs solid grain density (kg m�3).
rv vapor density (kg m�3).

rv,0 saturated vapor density (kg m�3).
rw water density (kg m�3).
sij stress tensor (Pa).
s0ij effective stress tensor (Pa).
G boundary of a volume (m).
8 friction angle (�).
f porosity (-).

cw water bulk modulus (Pa).
W total volume (m3).
Wv porous volume (m3).
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