
Chapter 12

Algorithms for Mathematical Morphology

12.1. Introduction

In this chapter, we deal with the very important problem of implementing the
various image analysis operators, filters and methods seen in previous chapters.

In general, researchers like to present a novel operator through a mathematical
description. However, this may not always be a simple task to translate this description
into computer code. Yet, if such an operator is of any interest at all, we should expect
to be able to use it in practice. To get there, we need to go beyond pure mathematics
into the realm of programming. We have to express the mathematical operator in an
applicable algorithm.

Note that although a mathematical description is useful for understanding, an im-
plementation often deviates from the mathematical description. This usually explains
why we often see more than one implementation, with varying characteristics, for most
proposed operators. Also, the evolution of computer architectures and programming
techniques imply that new implementations have sometimes been proposed decades
after the initial definition of some operators.

Rather than attempting to build a comprehensive database of all algorithms and
data structures that have ever been used for implementing morphological operators, an
undertaking that would be enormous and not very interesting to read, we concentrate
on the purer algorithmic aspects of mathematical morphology in this chapter. We

Chapter written by Thierry GÉRAUD, Hugues TALBOT and Marc VAN DROOGENBROECK.

323

324 Mathematical Morphology

therefore ignore some specific implementation aspects dealing with both software and
hardware.

Since the Babylonians and more recently since Lovelace [STU 87], an algorithm
has been formally defined as a series operations sequenced to solve a problem by a
calculation. morphology, filters or operators usually operate on sets or functions and
are defined in formal mathematical terms.

An algorithm is therefore the expression of an efficient solution leading to the
same result as the mathematical operator applied to input data. This translation
process in a mathematical algorithm aims to facilitate the implementation of an
operator on a computer as a program regardless of the chosen programming language.
Consequently, the algorithmic description should be expressed in general and abstract
terms in order to allow implementations in any environment (platform, language,
toolbox, library, etc.).

Computer scientists are familiar with the formalization of the concept of an
algorithm and computation on a real computer with the Turing machine [TUR 36].
This formalization enables any correct algorithm to be implemented, although not in a
tractable form. Rather than describing algorithms with this formalism, we use a more
intuitive notation that, in particular, relies on non-trivial data structures.

This chapter is organized as follows. In section 12.2, we first discuss the translation
process of data structures and mathematical morphology definitions in computational
terms. In section 12.3, we deal with different aspects related to algorithms in the scope
of mathematical morphology. In particular, we propose a taxonomy, discuss possible
tradeoffs, and present algorithmic classes. These aspects are put into perspective
for the particular case of the morphological reconstruction operator in section 12.4.
Finally, historical perspectives and bibliographic notes are presented in section 12.5.

12.2. Translation of definitions and algorithms

12.2.1. Data structures

Before discussing an algorithm, we have to describe the data to be processed and
how they materialize once they are no longer pure mathematical objects.

An image f is a function from a space E to a space V . Since infinite spaces
cannot be stored or handled appropriately, these two spaces are always sampled (or
discretized) to provide E ⊂ E and V ⊂ V :

f :

{
E −→ V
p $−→ f(p).

Algorithms for Mathematical Morphology 325

For convenience, a discrete topology with the notion of neighborhood is often
associated with E. Let us denote an element of E by p (which stands for ‘point’)
and a neighboring point of p by n. In the terms of graph theory, a subset of E is a
mesh with nodes (the points p) and a collection of edges that connect points to their
neighbors. The most common situation is given by a regular sampling of a subpart
of E. The resulting mesh is then regular and points belong to a grid. Such a classical
topology for a 2D image defined on a squared grid is depicted in Figure 12.1.

i

j

Figure 12.1. Illustration of locations defined by a discrete squared grid and a pixel

A point p of such an image is easily described by two integer indices (i, j). An
image f , which links a point to a value, can be represented in memory by a 2D array
of values: f(p) is then equivalent to f [i, j]. This common representation of an image
has the advantage that point values can be stored and modified independently. In the
following, the allocation procedure for a given image f of a value v ∈ V at point
p ∈ E is denoted in the abstract terms f(p) := v although, from a practical point of
view, the underlying mechanism is described by f [i, j] := v.

From the implementation perspective, f is not a mathematical function but a
variable (or a memory) that represents a function at a given time t during the execution
process of an algorithm. Formally, an algorithm generates a series of ft functions,
and each allocation changes a function ft to the next function ft+1. In computational
terms, the f variable hides the existence of all the successive functions; it is similar to
a function that evolves over time. The algorithm begins to deviate from mathematics.

12.2.2. Shape and size of the function domain

In the field of computer science, the representation of an image by an array
assumes that the underlying function f is defined on a finite domain. In practice, the
function domain is generally a rectangular subset of Z2 or of N2 for 2D images. A
process that iterates on all points of such an image then accesses all the array elements
with two loops is shown on the left-hand side of the following pseudocode.

for i := 1 to nraws

for j := 1 to ncolumns

... // use f[i,j]
for_all p ∈ E

... // use f(p)

326 Mathematical Morphology

However, the abstract right-hand side code is to be preferred as it relates less to a
specific implementation and more to the mathematics of the algorithm. In addition, it
does not exhibit any restrictive underlying assumption about f : the function domain
can have a non-rectangular shape and its domain does not necessarily have to be
2D. An abstract expression of an algorithm is suitable to hide the details of the
representation of the data and to focus on the functionalities of the algorithm. On the
other hand, we also have to provide all the details about the underlying data structure
because performance and complexity issues are closely related to the basic operations
on the data. If browsing all the points of a set of N points has a O(N) complexity, the
complexity of a random access to the value of a point p has a complexity dependent
on the data structure in use.

A program accesses values of an image whose data are organized in memory as
an array in constant time: the reading and writing of image values at a point p has a
complexity of O(1), regardless of the access order. The representation of an image
as an array is practical and widely used. In addition, this representation is compact
as it has a negligible overhead to describe the structure itself compared to the data
associated with the image.

It might not always be the optimal solution, however. Consider for example the
case of an image that describes the contour of an object. Coding contours of an object
by a 2D array guarantees a constant-time access to any point of a discrete grid to
determine if it belongs to the contour. However, this coding is inappropriate with
regards to two other aspects. First of all, the required memory size expands from the
size of the contour to the size to the smallest rectangle that encloses the object. Next,
the access to any contour point requires searching in an array: we have to search for
the first contour point by scanning the image line by line and then in the neighborhood
to find the next contour point. For algorithms that operate on the contour of an object
directly, for example a morphological dilation, it might be advisable to use a more
appropriate data structure such as a list of contour points.

The conclusion is that any data structure used by an algorithm impacts on the
complexity of the algorithm.

12.2.3. Structure of a set of points

The classical representation of a function as an array is flexible enough to be able
to define a set of points. Indeed, if the destination space of f is the set of Booleans
(V = B), f can be interpreted as the characteristic function of a set of points: formally,
F = { p ∈ E | f(p) = true }. f is then a binary image. The set F ⊂ E encodes an
object while its complementary E \ F denotes the image background. To scan all the
points of F , it is then sufficient to look for points p in the domain E satisfying f(p) =
true. In the following, we make no notational difference between a set (F ⊆ E) and
its characteristic function (F : E → B).

Algorithms for Mathematical Morphology 327

12.2.4. Notation abbreviations

For convenience, we use the notation abbreviations listed in Table 12.1 to describe
algorithms.

Extensive notation Abbreviation

Scans all the points of a set F ⊆
E

for_all p ∈ E, if F (p) =
true, . . .

for_all p ∈ F ,
. . .

Allocates a constant c to all the
points of an image f

for_all p ∈ E, f(p) := c f := c !

Copies the content of an image
f1 to an image f2

for_all p ∈ E, f2(p) :=
f1(p)

f2 := f1

Table 12.1. List of notations and abbreviations used in this chapter

As explained before, with this kind of abstract formulation it is possible to bypass
some practical difficulties. For example, there is no need for a 2D image to be
rectangular (its domain may be arbitrarily shaped). One problem occurs when dealing
with the neighbors of points located on the border of the image. Again, we define the
following abstract formulation to operate on all the neighboring points of a point p in
turn, regardless of the shape of the neighborhood:

for_all n ∈ N (p)
. . .

With this notation, we can focus on the description of the algorithm and ignore
some less-important implementation details.

Finally, we use the symbol " to denote the conventional video order to scan all the
points of an image (from the upper left corner to the bottom right corner, line by line).
A reverse video order (from the bottom right corner to the upper left corner, line by
line) is denoted by #.

12.2.5. From a definition to an implementation

As written previously, if morphological operators are often described in mathe-
matical terms, their translation in algorithmic terms is not always straightforward.
Experience also shows that, in the event that such a translation is possible, its effi-
ciency is often questionable (sometimes, it is even the worst possible implementation).
This should not come as a surprise as the purpose of a mathematical definition is to
ensure the correctness of an algorithm rather than to provide hints for an appropriate
algorithm.

328 Mathematical Morphology

To discuss the suitability of algorithms, we consider a binary dilation. There are
several equivalent ways to define the dilation of a set X by a set B:

X ⊕ B =
⋃

b∈B

Xb (12.1)

= { x + b ∈ E | x ∈ X, b ∈ B } (12.2)

= { p ∈ E | ∃ b ∈ B, p − b ∈ X }. (12.3)

Definition (12.1) leads to a so-called trivial algorithm given as algorithm (1) in
Figure 12.2 (from line 1 to line 16). In computational terms, the main procedure is
SETDILATION, which uses a function TRANSLATE. In algorithmic terms, it is easy
to see that the method is derived directly from the definition, which justifies the
soundness of the algorithm.

For a processor, access to memory accounts for a significant computational cost
in reading mode but even more in writing mode. For simplicity, let us count only the
number of memory allocations (that is, in the writing mode) to true. We can see that
the trivial algorithm requires |B|×|X |×2 allocations, where |.| denotes the cardinality
of a set.

A second version, derived from equation (12.2), reduces the number of allocations
by half. It is detailed in Figure 12.2 by the DILDIRECT procedure (from line 32 to 44).
The best approach, however, is given by the algorithm derived from relation (12.3).
It improves significantly on the previous algorithms as the number of allocations is
reduced to |X ⊕ B|. Note that the multiplication of the sizes of X and B has been
replaced by a summation on their sizes. The corresponding algorithm is detailed in
Figure 12.2 by the procedure named DILREVERSE (from line 45 to line 60). This is
the classical implementation of a set dilation, which can be found in several image
processing software packages.

Even with such a simple morphological operator, it appears that there is a major
difference between a concise mathematical definition and the transcription of it in an
algorithm.

The case of the dilation is representative of some of the issues raised during
the transcription of a definition to an algorithm. Next we consider a more complex
algorithm to highlight algorithmic strategies for a single operator.

Most algorithms in mathematical morphology show a pseudo-polynomial com-
plexity. For example, the trivial algorithm of dilation has a complexity of O(N × |B|)
where N and |B| denote the number of points of the image and of the structuring
element, respectively.

Algorithms for Mathematical Morphology 329

1 // algorithm (1)
2

3 SETDILATION(X : Image of B,
4 B : Set of Point)
5 → Image of B
6 begin

7 data Xb, U : Image of B
8 // initialization to the empty set
9 U := false !

10 for_all b ∈ B
11 // computes Xb

12 Xb := TRANSLATE(X, b)
13 // updates U
14 U := UNION(U, Xb)
15 return U
16 end

17

18 TRANSLATE(X : Image of B,
19 b : Point)
20 → Image of B
21 begin

22 data O : Image of B
23 // initialization to the empty set
24 O := false !
25 // computes the set
26 for_all p ∈ X
27 if p + b ∈ E
28 O(p + b) := true

29 return O
30 end

31

32 // algorithm (2)
33 DILDIRECT(X : Image of B,
34 B : Set of Point)
35 → Image of B
36 begin

37 data O : Image of B
38 O := false ! // initialization
39 for_all p ∈ E
40 for_all b ∈ B
41 if X(p) = true and p + b ∈ E
42 O(p + b) := true

43 return O
44 end

45 // algorithm (3)
46 DILREVERSE(X : Image of B,
47 B : Set of Point)
48 → Image of B
49 begin

50 data O : Image of B
51 for_all p ∈ E
52 for_all b ∈ B
53 if p − b ∈ E and X(p − b) = true

54 // existence of a point b
55 O(p) := true

56 goto next
57 O(p) := false // there is no candidate b
58 label next
59 return O
60 end

Figure 12.2. Dilation of a set X by B

12.3. Taxonomy of algorithms

For different reasons, drawing up a taxonomy of algorithms used in mathematical
morphology is a difficult task. First of all, several pages would not be sufficient to cite
all existing algorithms; scientists have been continuing to propose new algorithms for
operators that have been known for several decades! Also, we need a descriptive and
complete set of criteria to propose a taxonomy that encompasses a large collection
of algorithms. Finally, it has to be noted that there is no universal algorithm valid
for any morphological operator. Algorithmic strategies are as diverse as the operators
themselves with specific characteristics, tradeoffs, underlying data structures, etc.

330 Mathematical Morphology

12.3.1. Criteria for a taxonomy

Taxonomy criteria as applicable to mathematical morphology algorithms are
numerous. As an illustration, a non-exhaustive list of criteria runs as follows:

– type of auxiliary or intermediate data structure (file, tree, etc.);

– order or strategy to browse points in the image;

– complexity of the algorithm;

– required memory size;

– algorithmic properties;

– operating conditions (and thus limitations) of an algorithm;

– concerned classes of operators or filters;

– universality of the algorithm;

– purpose of the algorithm; and

– processed data types.

Application constraints lead to additional possible taxonomy criteria: domain of
applicability, data range and precision, application objectives, etc.

It would take too long to analyze algorithms with respect to all these criteria. Note,
however, that some criteria lead to a classification of algorithms and that other criteria
only allow them to be distinguished. Table 12.2 lists some criteria for both cases.

Table 12.3 elaborates on criteria useful to discriminate between algorithms.

12.3.2. Tradeoffs

An image processing chain is a particular case of the transcription of a scientific
calculus by a processing unit. When part of this chain relates to a morphological
operator, it is constrained by a general framework. In particular, a typical constraint is
the need to find an appropriate balance between three antagonistic notions, described
as follows:

– Expected computational time or speed: some applications need to be run in real
time; others are less severe on the processing delay. The absolute execution time is
only one part of the discussion related to the implementation of an algorithm. It is also
important to analyze the variability of the running time. A hardware implementation
will favor a constant execution time, even at the cost of an increased execution time.

– Storage space: resources proper to the algorithm in terms of disk space or
memory usage are generally limited. Likewise, the amount of data handled by an
application can be bounded. Therefore available storage capacity plays a crucial role
in the choice of an algorithm and adequate auxiliary data structures.

Algorithms for Mathematical Morphology 331

Criterion: universality of the algorithm
restricted large

Decomposition of the structuring element
(to speed up computations of dilations and
erosions);

Dijkstra’s algorithm (for the computation
of a distance function); Viterbi’s algorithm
(for the pruning filter as described in
Chapter 7); Prim’s or Kruskal’s algorithm
(for a segmentation process based on the
computation of the minimum spanning tree
as described in Chapter 9).

Criterion: algorithmic properties
parallel sequential

Classical dilation or erosion algorithm by a
structuring element (version (3) as described
in section 12.2.5); detection of simple points

chamfer distance (see section 2.4.3); alter-
nate sequential filters (see section 1.2.7)

Criterion: data range and precision
small quantization step (of the values) large quantization step

distribution sort or radix sort; use of tree
representations (see section 7.2)

fast sorting, heapsort

Criterion: browsing order
propagation of a front all points on turn

distance based dilation; most algorithms to
compute the watershed (see section 1.5 and
Chapter 3)

trivial dilation; hit-or-miss transform (see
section 1.1.4)

Table 12.2. Criteria for a taxonomy of algorithms, with examples

Criterion: auxiliary structures
arrays, files, priority queues, trees, graphs, etc.

Criterion: purpose
data simplification, resulting transform, computations/estimations of the data, partitioning,
etc.

Criterion: processed data type
pixels, textures, objects, regions, contours, etc.

Table 12.3. Discriminative criteria for morphological algorithms

– The results of a computation have a given level of precision: they could be exact
or approximated, which then requires elaboration on the expected level of precision.
Many practical situations do not intrinsically require an exact calculation, or at least
not for all points.

332 Mathematical Morphology

Practitioners are motivated by application requirements when they implement a
morphological operator but they are constrained by the tradeoff triangle comprising
three antagonistic notions, as illustrated on Figure 12.3. If execution speed is favored,
then precision is lowered or computational resources are increased. Note however that
modern architectures are capable of performing many morphological operations in
real time so that questions about precision become meaningless.

speed
(processing time)

(memory, disk usage)

precision

approximation level)

storage
(correctness or

Figure 12.3. Tradeoff triangle

12.3.3. Classes of algorithms and canvases

Any algorithm running on images usually relies on the following features:

– one or several ways of browsing pixels;

– auxiliary data structures (images and/or any other kind of structures, classical or
not);

– a processing rationale composed of several steps, mostly ‘initialization, loops
and finalization’; and

– a definition of neighborhood, crucial in mathematical morphology to inspect data
around each pixel.

Let us consider the large set of algorithms dedicated to morphological operators.
We observe that it can be split into several different groups of algorithms sharing the
same algorithmic scheme, i.e. the same sequence of operations, the same use of control
structures (such as loops) and the same auxiliary structures. This leads us to algorithm
classes.

In the following we use the term canvas to describe a class of algorithms. Such
a description looks like an algorithm template with some blank parts corresponding
to the variability of algorithms belonging to this class. This canvas, or algorithmic
scheme, is comparable to using a pattern to make clothes where the choice of fabric,
color and ornaments remains to be defined.

Algorithms for Mathematical Morphology 333

1 POINTWISE(f : Image,
2 h : Function)
3 → o : Image
4

5 begin

6 for_all p ∈ E
7 o(p) := h(f(p))
8 end

1 SLIDING_WINDOW(f : Image,
2 w : Window,
3 h : Function)
4 → o : Image
5 begin

6 for_all p ∈ E
7 o(p) = h({ f(q) | q ∈ w(p) })
8 end

Figure 12.4. Left: pointwise canvas (left) and right: sliding window canvas

Figure 12.4 depicts a couple of canvases that are very common in image process-
ing. The left is a pointwise operator on image values; the value at the point p in the
output image o is obtained by applying a function h to the value of p in the input
image f : o(p) := h(f(p)). With h = C (complementation function), this canvas
becomes the complementation operator; with h = lum (luminance function), it is
then a conversion of a color image into a grayscale image.

The canvas on the right-hand side of Figure 12.4 computes o(p) from the set of
values belonging to a window w centered at p in the input image. It is therefore the
canvas of convolutions ψ(f) = f ∗g when h({f(q) | q ∈ w(p)}) =

∑
q g(p− q)f(q),

and of dilations ψ(f) = δw(f) when h = ∨ (supremum).

Algorithmic canvases are interesting for many reasons:

– Firstly, they are general. Each canvas is not specifically dedicated to a single
particular operator. On the contrary, a canvas has the ability to be adapted to handle
several operators; to that aim, we just have to define its variable parts (h in the previous
examples).

– Secondly, they are intrinsically abstract. Their expression does not introduce any
constraint that would restrict their use to a limited set of input data. For instance,
having a double loop over the coordinates of points in the canvases of Figure 12.4
would implicitly state that they are only applicable on 2D images, which is clearly
limitative.

– Lastly, they are helpful for educational purpose. Each canvas translates a
meta-algorithm; understanding it from an algorithmic point of view allows us to
comprehend any operator that can be derived from this canvas.

334 Mathematical Morphology

12.4. Geodesic reconstruction example

The different classes of algorithms presented in the following did not appear at the
same time in the literature. They belong to a historical perspective, which is discussed
in section 12.5.

To illustrate these classes, we present different algorithms that map the same
morphological operator: the geodesic reconstruction by dilation of a function (e.g.
a grayscale image) [VIN 93b].

This example (Figure 12.5), taking the form of an exercise of style, nicely illus-
trates different algorithmic schemes used by many other operators in mathematical
morphology.

12.4.1. The mathematical version: parallel algorithm

As a first step, we can start by implementing the geodesic reconstruction by
dilation from its mathematical definition:

Rδ
g(f) = lim

n→∞
δn
g (f) = δ∞g (f) (12.4)

where

δ1
g(f) = δ(f)

∧
g,

δn+1
g (f) = δ(δn

g (f))
∧

g.
(12.5)

This reconstruction definition is close to that given in section 1.2.2; more precisely,
it is its generalization to functions. Here δ is the geodesic dilation: δ(f) = f⊕B where
B = N (0) ∪ {0} where N is the considered neighborhood and 0 is the spatial origin.

An implicit but compulsory assumption for this operator to be valid is that f ≤ g.
In other words, the marker function f to be dilated shall be ‘under’ the mask function
g. As in the case of sets, the reconstruction of functions aims to reconstruct some
details of g from a simplified image f .

The definition of this reconstruction is itself an algorithm: it is the result of
iterations repeated until convergence of a geodesic dilation followed by a pointwise
condition.

Such a recursion is implemented with a loop and the algorithm terminates when
the result is stable (when no modification has been noted during the last iteration). The
convergence of this algorithm is mathematically ensured, yet it is very slow in practice.
Indeed, consecutive passes reconsider parts of the image where local convergence
has been reached during previous steps. This algorithm is illustrated by the routine
RD_PARALLEL in Figure 12.5.

Algorithms for Mathematical Morphology 335

1 RD_PARALLEL(f : Image,
2 g : Image)
3 → o : Image
4 begin

5

6 data

7 o′ : Image
8 stability : B
9

10 // initialization
11 o := f
12

13 // iterations
14 repeat

15 o′ := o // swap
16

17 // dilation\ldots
18 for_all p ∈ E
19 o(p) := max{ o′(q) |
20 q ∈ N (p) ∪ {p} }
21

22

23 // \ldotsunder condition
24 for_all p ∈ E
25 o(p) := min{ o(p), g(p)}
26

27 stability := (o = o′)
28 until stability

29 return o
30

31 end

33 RD_SEQUENTIAL(f : Image,
34 g : Image)
35 → o : Image
36 begin

37

38 data

39 o′ : Image
40 stability : B
41

42 // initialization
43 o := f
44

45 // iterations
46 repeat

47 o′ := o // memorization
48

49 // first pass (forward)
50 for_all p ∈ E "
51 o(p) := min{ max{ o(q) |
52 q ∈ N−(p) ∪ {p} }, g(p) }
53

54 // second pass (backward)
55 for_all p ∈ E #
56 o(p) := min{ max{ o(q) |
57 q ∈ N+(p) ∪ {p} }, g(p) }
58

59 stability := (o = o′)
60 until stability

61 return o
62

63 end

Figure 12.5. Reconstruction canvases (part 1/2): parallel algorithm (left) and sequential
algorithm (right), described in sections 12.4.1 and 12.4.2, respectively

12.4.1.1. Similar algorithms

The ‘repeat modifications until stability’ type of algorithm does not belong
exclusively to the area of mathematical morphology; it is also used, for instance, to
compute diffusions.

The complexity of one-pass is pseudo-polynomial with respect to the number N
of image points and to the connectivity M . In the worst case (as for a Peano curve
image), this algorithm has a complexity of O(M ×N2). Practically, no one should be
using this algorithm except perhaps on some strictly parallel computing architectures.

336 Mathematical Morphology

A point in favor of this algorithm is that it is easily parallelizable. We observe that
the computations performed at every point within both loops only depend on the image
obtained at the end of the previous iteration. Those loops can therefore be split into
several independent tasks, each task running on a single part of an image partition.
From this point of view, this algorithm contrasts with the alternative algorithms
presented. With the present parallel version, there is no dependence between the
computation at point p and the computation of its neighbors during the same iteration.

12.4.2. Sequential algorithm

Obtaining an acceptable complexity for the reconstruction can be achieved by
noting that this filter can be expressed in a sequential way. However, we will see that
this is not sufficient.

In the parallel version (lines 18 and 20 of Figure 12.5), each dilation is performed
independently from those of previous iterations. The current image o is obtained by
dilation of the image o′ resulting from the previous iteration.

In the sequential version, the auxiliary image o′ is no longer used during the
dilation step; each dilation is performed in-place (see lines 51 to 57 of Figure 12.5).
At a given point p, the local dilation value is computed from the neighboring values
of p in o and immediately written in the work image o. Consequently, a modification
of o appearing at point p can propagate to other points during the same pass.

In order to ease the comparison between the parallel and the sequential algorithms,
we keep a copy o′ of o to test the stability condition. Note that we can get rid of o′ if
we count the number of modifications in o during the forward-backward pair of passes
to test stability.

Despite the propagation mechanism, the complexity of the sequential algorithm
is not improved with respect to the parallel algorithm! Again, in the particular
unfavorable case of an image representing a Peano curve, the reconstruction requires
a number of passes proportional to the number of pixels. However, for convex objects,
a forward step and a backward step are sufficient to obtain the result. In practice,
natural images have a lot of such locally convex parts; these parts are processed
efficiently. This explains why we the sequential algorithm usually outperforms the
parallel version.

12.4.2.1. Similar algorithms

The class corresponding to this sequential algorithm is large. In particular, it
includes discrete distance map computation, such as chamfer distances, and the
pseudo-Euclidean distance of Danielsson [DAN 80].

Algorithms for Mathematical Morphology 337

65 RD_QUEUE_BASED(f : Image,
66 g : Image)
67 → o : Image
68 begin

69 data

70 q : Queue of Point
71 M : Image
72

73 // initialization
74 M := REGIONAL_MAXIMA(f)
75 for_all p ∈ M
76 for_all n ∈ N (p)
77 if n %∈ M
78 q.PUSH(p)
79 o := f
80

81

82

83

84

85

86

87 // propagation
88 while not q.EMPTY()
89 p := q.FIRST()
90 for_all n ∈ N (p)
91 if o(n) < o(p) and o(n) %= g(n)
92 o(n) := min{o(p), g(n)}
93 q.PUSH(n)
94

95 return o
96 end

98 RD_HYBRID(f : Image,
99 g : Image)

100 → o : Image
101 begin

102 data

103 q : Queue of Point
104

105 // initialization
106 o := f
107

108 // two−pass sequence\ldots
109 for_all p ∈ E "
110 o(p) := min{ max{ o(q) |
111 q ∈ N−(p) ∪ {p} }, g(p) }
112 for_all p ∈ E #
113 o(p) := min{ max{ o(q) |
114 q ∈ N+(p) ∪ {p} }, g(p) }
115 // \ldotswith enqueuing
116 for_all n ∈ N+(p)
117 if o(n) < o(p) and o(n) < g(n)
118 q.PUSH(p)
119

120 // propagation
121 while not q.EMPTY()
122 p := q.FIRST()
123 for_all n ∈ N (p)
124 if o(n) < o(p) and o(n) %= g(n)
125 o(n) := min{o(p), g(n)}
126 q.PUSH(n)
127

128 return o
129 end

Figure 12.6. Reconstruction canvases (part 2/2): queue-based algorithm (left) and hybrid
algorithm (right) are described in sections 12.4.4 and 12.4.3, respectively

12.4.3. Queue-based algorithm

In a queue-based algorithm version of the reconstruction (Figure 12.6), another
data structure is used: a First-In-First-Out (FIFO) queue structure. The general idea is
to dilate through a front that propagates into the whole image while remaining under
the condition imposed by g (line 92).

The two main advantages of this approach are its very simple formulation and the
one-pass dilation. Contrary to the previous versions, the need to scan the image pixels

338 Mathematical Morphology

several times is avoided, thus meaning that useless operations (repeatedly accessing
stable regions) are avoided and that complexity is significantly lowered.

Most queue-based algorithms rely on the same scheme:

– the queue is initialized with some particular points;

– while the queue is not empty do:
1) remove the point at the front of the queue;
2) perform a given computation at that point; and
3) add some neighbors of that point at the back of the queue.

This scheme is in technical terms a breadth-first traversal of the neighborhood
graph of the image starting from the points pushed in the queue during the initial-
ization step. Other types of browsing are possible; for instance, we get a depth-first
traversal if we swap steps 1 and 3.

In the case of the reconstruction, the initialization starts from the detection of
regional maxima and the points of their external contour are pushed in the queue.
Those maxima are then propagated by the queue. The operation managed by the queue
is not really a ‘common’ dilation, in the sense that the propagation does not perform
a dilation with a structuring element or a geodesic element. Only maximal values of
f are dilated. However, it is an algebraic dilation (see Chapter 2). Since the dilation
is only effective under the condition imposed by the mask g, we obtain the expected
reconstruction by dilation as defined previously [VIN 93b].

The core of the algorithm, given in the left column of Figure 12.6, lies in the
propagation process (lines 87 to 93). We can easily note that every point p is only
inspected once, which contrasts with the previously given algorithms. This part of the
algorithm therefore has a linear complexity.

There is a price to pay for this reduced complexity:, the initialization step requires
the computation of the regional maxima of f (line 74), which can be as costly as the
propagation step. Such an operation is equivalent to a connected component labeling,
the complexity of which is quasi-linear due to the union-find algorithm [TAR 75].

More generally, using a random-access structure such as a queue or a stack is
efficient if the initialization stage extracts adequate information. We can relate that
issue to the notion of redundancy of information. In a dilation process, relevant
information is the localization and the value of local maxima. Algorithms can
either ignore such information (those are content-blind algorithms), or rely on this
information and propagate it. Amongst the fastest (and also the most complex)
algorithmic approaches, we have those that detect relevant information and propagate
it while scanning image points.

Algorithms for Mathematical Morphology 339

To understand how detection and propagation can be merged into a single step, we
can refer to the algorithm proposed in [VAN 05] for the morphological opening. The
queue-based reconstruction given in this section does not feature such an elaborate
scheme; in the following, we see that it is possible to obtain a more efficient
reconstruction than the current version.

12.4.3.1. Remarks

12.4.3.1.1. Similar algorithms

Algorithms similar to the queue-based reconstruction include:

– for the breadth-first traversal: distance functions [RAG 93], SKIZ, skeletoniza-
tion [VIN 91a] and ordered dilations [ZAM 80]; and

– for the depth-first traversal: the component tree computation given in [SAL 92].

12.4.3.1.2. Stacks instead of queues

Using a stack (either a simple Last-In-First-Out structure or a pushdown automa-
ton) instead of a queue can be relevant when combined with the storage of some
information related to data. It should be avoided, however, when the behavior of the
algorithm is recursive. Indeed, in such cases, computation calls are stacked so that they
can be executed later. Even if the algorithm is theoretically correct, it may become
inefficient when the size of the stack grows too much (note that its size may be as
large as the image).

12.4.3.1.3. Priority queue

A simple queue ensures only one property of the contained elements: they are
ordered as they were pushed in the queue. This ordering usually corresponds to a
particular spatial ordering of the image domain. It is sometimes useful to obtain a
more general property of the element ordering in the queue. For instance, we may
want points to be sorted first by their values and then by their introduction order in the
queue.

To that aim, a particular structure was proposed by Meyer in the context of a
watershed transform algorithm: the hierarchical queue [MEY 91]. This is an array
of queues of size as large as the number of values; it is therefore efficient if and only
if the values are encoded with a small number of bits (typically less than 12). Note,
however, that it is a particular case of the more general and very common priority
queue structure, that can be implemented using a heap or a self-balancing binary
search tree.

12.4.3.1.4. Complexity

Some data structures are more appropriate than others depending on the algo-
rithms, on the nature of input images and on the operations that rely on those

340 Mathematical Morphology

structures. The most classical data structures that we can find in morphology have been
studied by Breen and Monro [BRE 94]; furthermore they also emphasized the distance
existing between theory and practical results, related to the use of those structures.

In particular, Fibonacci heaps [FRE 87] (although theoretically efficient) are rather
slow when involved in effective algorithms. When an efficient priority queue is
required, maintaining a stable sort (i.e. with the insertion order of elements always
preserved in the queue) regardless of the data type used for priorities, splay-queues
are often an appropriate choice [SLE 85].

12.4.4. Hybrid algorithm

In the hybrid algorithm, given in the right-hand column of Figure 12.6, we first
note a sequential part, that is limited to a couple of passes. During these passes, the
reconstruction is performed in convex regions of the input image. In the second part
of the algorithm, we have the propagation of the queue-based algorithm. This last part
completes the reconstruction until convergence is achieved.

The advantage of this method over the previous one is manifold. The computation
of regional maxima is avoided since the queue is initialized with the frontier obtained
after the sequential passes. Furthermore, in the case of non-pathological images, most
of the reconstruction is actually achieved during this sequential part and the final
propagation, much more costly, is only performed on a small part of the image domain.

Note that hybrid algorithms, where an actual synergy exists between the different
approaches that they combine, are rather rare in the literature.

12.4.4.1. Remarks

As before, the worst case scenario for this algorithm is again images representing
fractal patterns. In these cases, the queue size remains small but many loops are
required for the algorithm to converge.

A method of obtaining better performances from this algorithm is to use a queue
implemented by a circular array (more compact in memory and faster when inserting
and suppressing elements).

This hybrid version highlights the important relationship between the algorithm
itself and the data structures it relies on. Authors usually study the complexity
of the algorithms they propose with respect to the number of manipulations of
image data, that is the number of input/output (reading/writing) performed on points.
Unfortunately many authors forget to take into account the effective cost of the
auxiliary structures involved in those algorithms. The simplest form of such structures
is a data buffer in memory, where even a writing operation is not negligible (dependent

Algorithms for Mathematical Morphology 341

130 MAKE_SET(p : Point)
131 begin // creates singleton { p }
132 parent(p) := p
133 end

134

135 IS_ROOT(p : Point) → B
136 begin // tests if p is root
137 return parent(p) = p
138 end

139

140 FIND_ROOT(p : Point) → Point
141 begin // finds the root of p
142 if IS_ROOT(p)
143 return p
144 else

145 parent(p) := FIND_ROOT(parent(p))
146 return parent(p)
147 end

148

149 DO_UNION(n : Point, p : Point)
150 begin // merges two trees
151 r := FIND_ROOT(n)
152 if r %= p
153 if g(r) = g(p) or g(p) ≥ o(r)
154 parent(r) := p
155 o(p) := max(o(r), o(p))
156 else

157 o(p) := MAX
158 end

159 RD_UNION_FIND(f : Image,
160 g : Image)
161 → o : Image
162 begin

163 data

164 parent : Image of Point
165 S : Array of Point
166

167 // initialization
168 o := f
169 S := SORT(g) // w.r.t. " and g(p) ↓
170

171 // first pass
172 for_all p ∈ S
173 MAKE_SET(p)
174 for_all n ∈ N (p) if DEJA_VU(n)
175 DO_UNION(n, p)
176

177 // second pass
178 for_all p ∈ S−1

179 if is_root(p)
180 begin

181 if o(p) = MAX, o(p) := g(p)
182 end

183 else

184 o(p) := o(parent(p))
185

186 return o
187 end

Figure 12.7. Reconstruction by dilation with union-find, described in section 12.4.5

upon the buffer size and the amount of RAM available). On the other hand, being able
to precisely characterize the cost of an algorithm including its auxiliary structures is a
tricky task, since it is also highly dependent on machine hardware.

12.4.5. Algorithm based on union-find

The union-find algorithm (Figure 12.7) is an identification of the equivalence
classes of a graph. This algorithm is relatively complex; we therefore only present
a rough guide here. It is composed of three steps: an initialization, a union stage and a
labeling stage (find).

342 Mathematical Morphology

12.4.5.1. Rough sketch of the algorithm

The cornerstone of this algorithm lies in a change of representation for images: we
move from the notion of pixels, with no connectivity information except purely local,
to the structure of a tree, where a node can represent a large connected component of
an image. In this tree, the root node maps the whole image domain whereas leaves
relate to local components.

During the initialization, the points of image g are sorted by decreasing value of
gray levels and stored in the array S (line 169).

During the union stage, points are scanned and stored in S. The current point can
be isolated in the sense that its neighbors have not yet been inspected; it therefore
belongs to a regional maxima. This point then forms a singleton set. If not isolated,
it is connected to a regional maximum of g; it is then merged with the corresponding
tree and becomes its new root. A key property to understand this algorithm is to realize
that this regional maximum of g is related to a regional maximum of f . During the
process of browsing S, a forest of trees is created that progressively spans the image
domain.

In the final phase (find), we handle the points where g > f differently. Those
in the connected component containing the local regional maximum of g receive the
maximum value of f , and the value of points where g = f are kept unchanged.

Eventually f has been dilated under the constraint of g and the result is the
expected reconstruction.

12.4.5.2. Details

During the union stage, the output image o is used as auxiliary data to store the
state of all components/trees: either max(f) when dilating is effective (f < g locally)
or MAX when the constraint applies. o only takes its final values during the last step
of the algorithm.

For every flat zone where it is guaranteed that we will obtain o = g, no tree is
computed and the flat zone points are all singletons.

The DEJA_VU function can be evaluated on the fly so this auxiliary structure can
be saved.

If g is an image with low-quantized values (for instance an 8-bit image), we can
sort points in linear time due to a radix sort (a distributed sort based on histogram
computation).

Algorithms for Mathematical Morphology 343

12.4.5.3. Complexity

In this chapter, a very particular version of the union-find based algorithm is
presented (Figure 12.7). It relies on a path compression technique, embedded in the
FIND_ROOT routine (line 145), so that the number of recursive calls to this routine is
reduced. It is not however sufficient to obtain the best complexity of the union-find
algorithm. To minimize the number of recursive calls, it is also necessary to keep all
trees as balanced as possible. For that, we have to add to the version presented here
the ‘union-by-rank’ technique. We have intentionally omitted this technique to make
this algorithm more readable.

Actually, the union-find based reconstruction is quasi-linear in the case of g
being a low-quantized image [TAR 75]; otherwise, for floating data for instance, the
complexity is O(N log(N)) due to the sorting step.

12.4.5.4. Comparison with previous versions

Although the union-find algorithm is more efficient in theory than the other
presented versions, in practice it is not always faster than the hybrid algorithm. How-
ever it is emblematic of modern implementations of connected operators: algebraic
attribute openings and closings, levelings, watershed transforms [BRE 96, GÉR 05,
JON 99, MEI 02]. The representation of image contents as a tree forest allows for an
exceptionally rich theoretical description of connected operators [FAL 04, NAJ 06].
See also Chapters 7 and 9.

With the parallel and sequential approaches, the limiting factor with respect to
complexity was the number of passes to perform to reach convergence. With the
queue-based and the hybrid approaches, the risk came from the queue structure
becoming too huge. In the case of the union-find algorithm, the bottleneck is located
in the tree root search.

12.4.6. Algorithm comparison

In order to compare the five algorithms described here, we shall reuse some of the
criteria presented in section 12.3.1. Table 12.4 below illustrates the large diversity of
algorithms available to translate a single operator and the difficulty in using the criteria
effectively. Indeed, some of these algorithms are not monolithic: they correspond to
several criteria at once. The hybrid algorithm, for instance, is only half-sequential: it
uses both video passes on the image and a propagation front. Regarding the union-find
algorithm, we could classify it as sequential as between the initialization (the sorting
pass) and the two other passes, every image pixel is considered exactly three times.
However, the order in which they are considered are not the usual video and anti-video
sequences.

344 Mathematical Morphology

Algorithm name Algorithm class Pixel order Data structures
Parallel Parallel Video passes None extra
Sequential Sequential Video passes None extra
Queue-based Queue-based Front Standard queue
Hybrid 1/2 sequential 2 Passes + front Standard queue
Union-find Pseudo-sequential 3 Passes Array and tree

Table 12.4. Characteristics of the various reconstruction algorithms presented in the text

To compare the performance of these five algorithms for the geodesic recon-
struction by dilation (Table 12.5), we took for g the standard lena 512×512 pixels
gray-level image and for f the pixelwise maximum of g and g rotated 90 degrees
clockwise. The neighborhood relation is the 4-connectivity. As we seek a comparison
between algorithms, we did not perform any compiler-level optimization or used
particular techniques such as pointer arithmetic (although they could have resulted in
significantly improved running times). The algorithm performance order would have
remained the same, however.

Algorithm Running time (sec)
Parallel 25.28
Sequential 3.18
Queue-based 0.65
Hybrid 0.34
Union-find 0.34

Table 12.5. Relative performance of the reconstruction algorithms presented in the text

Table 12.5 illustrates, with performance ranging within a rough factor of 100 to
1, that translating a mathematical operator into actual code can in practice result in
widely different results. Producing a ‘good’ algorithm with properties in accordance
with what the practitioner expects is indeed an art and a science in itself.

12.5. Historical perspectives and bibliography notes

The history of various algorithms and their links to mathematical morphology as
well as other related disciplines would require a book by itself. We provide in this
section a few (hopefully) useful notes.

Algorithms for Mathematical Morphology 345

12.5.1. Before and around morphology

Like all scientific endeavors, mathematical morphology was not born and neither
did it evolve in a scientific vacuum. It represents a step towards a better understanding
of spatial representations pertaining to physical or virtual objects. Before Matheron
and Serra named their discipline in 1962 [MAT 02], image analysis already existed
and many algorithms had already been developed in comparable disciplines. Mor-
phology also continued to evolve in a moving context. It is perhaps useful to specify
some algorithmic markers in this creative broth.

12.5.1.1. Graph-based algorithms

Images are most often represented on regular graphs. As such it is not really
surprising that so many mathematical morphology algorithms derive from clas-
sical graph algorithms. We may mention Dijkstra’s minimal paths [DIJ 59], the
minimum spanning tree problem [JOS 56, PRI 57], and the classical union-find
algorithm [TAR 75]. A good source in many important algorithms is the book by
Cormen et al. [COR 09].

It is more than likely that not all the classical or recent literature on algorithms
on graphs has been fully exploited in the context of mathematical morphology. It is
probably a very good source of future results.

12.5.1.2. Discrete geometry and discrete topology algorithms

Discrete geometry is an active field of research very closely linked to mathematical
morphology. The goal of discrete geometry is to redefine and algorithmically exploit
the objects and operators of classical geometry, in a purely discrete framework. For
instance lines, planes, intersections, vectors and so on have been partially redefined in
such a way [REV 91]. Properties of these new objects, although obviously related to
the classical objects, are markedly different and usually much more amenable to their
use in an algorithmic setting. A recent book on the topic is [GOO 04].

Among the most useful algorithms in discrete geometry, also used in mathematical
morphology, we can mention distance transforms [BOR 84, ROS 66, SHI 92] that are
very useful by themselves, but can also be used to implement binary erosions and
dilations [RAG 92].

Discrete topology is a discipline that seeks to define topological operators in
discrete spaces such as images, but also on arbitrary graphs, on discrete manifolds
such as triangulated surfaces or on complexes [BER 07a, KON 89]. The link with
morphology is very strong especially in the areas of thinning operators [KON 95] and
skeletonization algorithms [MAN 02]. The watershed transform can also be seen as
a topological operator [COU 05]. The topological watershed, of gray-level image I ,
for instance, is the smallest image on the lattice of numerical functions with the same

346 Mathematical Morphology

topology as I . The topological watershed operator is also the most efficient watershed
algorithm (with quasi-linear complexity).

12.5.1.3. Continuous-domain algorithms

The continuum is not representable exactly on computers; however, some math-
ematical objects exists that are intrinsically continuous (such as partial derivative
equations), but that can be discretized with known properties (for instance, up to
second order accuracy using finite differences). These can be used to solve some image
analysis problems. This approach leads to some interesting algorithms.

Taking as a starting point segmentation algorithms such as active contours
[KAS 98], it is possible to find links with skeletonization [LEY 92] as well as
generalizations of the watershed transform, for instance including some curvature
constraints [NGU 03].

Fast marching algorithms [SET 96a] are in essence equivalent to a flexible
algorithm for computing the geodesic Euclidean distance transform [SOI 91]. This
applies to scalar or tensorial metrics [SET 01]. These algorithms make it possible to
propose, in some contexts, a mathematical morphology formulation in the continuous
domain [SAP 93]. It is important to note that the original Sethian algorithm is only
first-order accurate. A fast method to compute the exact geodesic Euclidean distance
transform is an open problem at the time of writing.

These methods have been used in morphology for instance in connected fil-
tering [MEY 00b], by replacing the dilation operator by a continuous propagation.
Formulation of the watershed transform in the continuous domain have been proposed
by several authors [MAR 96a, NAJ 93] and can be solved using fast marching
methods.

The principal benefit derived from a continuous formulation is to abstract away
the notion of pixel. Up to an approximation, it is possible to define a dilation of
arbitrary, and not only integer, radius. It is also possible to propose morphological
operators on arbitrary manifolds, for instance on triangulated surfaces, although
discrete formulations have also been proposed in this context.

We will explore other links with the continuous domain through algorithms
inspired by linear theories.

12.5.1.4. Discrete and continuous optimization for segmentation

Active-contour [KAS 98] or level-set [OSH 88, MER 94, SET 96b] types of
algorithms are comparable in their approach to segmentation. The idea is to propose
a gradient-descent optimization procedure, under some constraints. Common con-
straints include the necessity of closed contours, the inclusion and/or exclusion of

Algorithms for Mathematical Morphology 347

certain zones and topology preservation. These algorithms work in 2D or 3D and are
fairly flexible with respect to the kind of cost function they can optimize. For instance,
it is possible to affect costs to region content, motion analysis, regularity, etc. However,
the more complex formulations most often cannot be optimized globally.

More recently, the image analysis and computer vision communities have found
a renewed interest in simpler formulation, which can be optimized globally, for
instance using graph cuts [BOY 04], continuous maximum flows [APP 06] or random
walks [GRA 06]. Indeed these formulations are less flexible, but are more reliable and
less sensitive to noise. There are some strong links between these techniques and the
watershed transform [ALL 07, COU 09a].

12.5.1.5. Linear analysis algorithms

Here linear analysis means the domain of operators linked to linear integral
transforms, such as the Fourier, Radon and wavelet transforms. These were historically
adapted to images from signal processing. In this domain, the basic structure is
the classical group with addition as base operator. For signals and some types of
images (X-ray or tomography) this makes perfect sense as superposition of signals
is a reasonable hypothesis. For some types of problems this is also a perfectly
suitable structure. For instance, many sources of noise such as sampling noise are
approximated by Gaussian additive white noise, for which there exists an optimal
deconvolution in the least-square sense.

Mathematical morphology is not linear, and the basic structure is the complete
lattice with infimum and supremum as operators. However there are some links
between the two approaches. This is of course true at the level of applications, but
some tools and approaches are also similar. As an example we can cite several works
on multiresolution [HEI 00] and scale space [JAC 96, VAC 01b].

To complete this section, we present a curiosity: it is possible to define the dilation
from a convolution operator

δB[I] = (I # B) > 0, (12.6)

where I is a binary image and B an arbitrary structuring element. Using the FFT,
this algorithm can be implemented in constant time with respect to B; this is the only
known implementation with this characteristic.

12.5.2. History of mathematical morphology algorithmic developments

From the very beginning, the development of mathematical morphology as both a
practical and theoretical area was linked to software and hardware developments. The
texture analyzer was the first machine implementing morphological operators, and was

348 Mathematical Morphology

developed at the École des Mines in Paris [MAT 02]. Following this, many advances
in this field were the result of a constant synergy between applications, theory and
algorithmic and hardware developments.

In the early days, dedicated architectures for image processing were a necessity
due to the relatively weak computing power of general-purpose architectures. On
dedicated hardware, access to data could (most often) only be realized in an ordered
sequential manner using video passes on the image. This also drove the development
of corresponding algorithmic techniques.

12.5.2.1. Parallel algorithms

The use of video passes on the images and the limited memory of early architec-
tures (typically only three lines could be loaded in main memory at any given time)
is a limitation that is still found today, for instance in embedded architectures such as
mobile phones. These limitations, amongst others, force the use of parallel algorithms.
Here this term means a type of processing such that the result on any arbitrary pixel
is independent of the result on other pixels. This implies order-independence. It also
implies that it is relatively easy to implement such algorithms on massively parallel
architectures, but the actual architecture the algorithm runs on is not so important.

An illustration of this type of algorithm is given in Figure 12.5 on the left-hand
side, and is also described in section 12.4.1. In hardware terms, these algorithms
are well-suited to SIMD single instruction multiple data and to the limit case
of the so-called artificial retina, where each pixel is equipped with its own little
processor [MAN 00]. Among hardware developments that were known to use parallel
morphological algorithms are the Morpho-Pericolor [BIL 92] and the Cambridge In-
strument Quantimet 570 [KLE 90] as well as the ASIC (application-specific integrated
circuit) PIMM1 [KLE 89].

The first algorithms implementing the watershed transform, the skeletonization
and morphological filters were described and implemented in a parallel fashion. See
for instance [BEU 79a, MON 68].

12.5.2.2. Sequential algorithms

Some (but not all) algorithms can be expressed in a sequential manner, which here
designates an implementation that uses the current result to derive the next one, most
often adopting a particular pixel scanning order. This is illustrated in Figure 12.5 on
the right-hand side and is described in section 12.4.2.

Sequential algorithms, sometimes also incorrectly called recursive algorithms
are often more efficient than parallel algorithms at least on most general-purpose
computers. This is the case because they can make use of the local redundancy in
many natural images. A typical sequential algorithm is the classical distance transform

Algorithms for Mathematical Morphology 349

of Rosenfeld et al. [ROS 66], which computes the distance transform in two passes
over the image: one in the video scanning order and the second in the anti-video
order. At the hardware level, few sequential algorithms have been implemented, but
Lemonnier [LEM 96], among others, has proposed a sequential watershed transform
algorithm.

12.5.2.3. Breadth-first algorithms

As general-purpose computers became more powerful, the idea of exploring
pixels from the border of objects without necessarily following a scanning order
imposed by the hardware (in particular the memory wiring) became more popular.
This is achieved using a suitable data structure. Among this family of algorithms,
we mention those using boundary paths [SCH 89], queues [VIN 90] and priority
queues [MEY 90a]. A classical algorithm belonging to that class is the watershed
transform from flooding [MEY 90b, VIN 91c]. This kind of algorithm is not well
suited to hardware implementations, mostly because the underlying data structure
imposes that memory bandwidth be the limiting factor (and not computation speed).

12.5.2.4. Graph-inspired algorithms

Breadth-first algorithms are a classical approach in graph-based problems. The
idea of continuing in this direction and adapting other classes of graph algorithms to
image data was therefore natural. Among graph-inspired morphological algorithm, we
can cite the Image Foresting Transform (IFT) [FAL 04], which is used in segmentation
and classification.

More recently, the idea of considering an image truly as a graph and also to
assign values to edges took hold. This makes it possible to define a discrete gradient
in a natural way: simply by the numerical difference between two vertices linked
by an edge [COU 07d]. This had already been proposed earlier by the graph-cut
community [BOY 01, BOY 04]. This notion defines a border between regions as a
series of edge cuts and not a path of vertices, which solves numerous topological
problems. It also paved the way for a unifying framework encompassing many
segmentation methods [COU 09a].

12.5.2.5. Topological algorithms

Beyond the essential notion of simple point, which is the starting point for many
efficient topology-preserving algorithms, many works have considered the essential
notion of image topology. An important notion is the component tree (section 12.4.5.1
and Chapter 7). The component tree, through its efficient representation of regions and
catchment basins, can be used in many interesting algorithms involving for instance
hierarchical segmentation, levelings and other filters [NAJ 06].

The staple of morphological algorithms, the watershed transform, can also be
seen as a topological transform [BER 05, COU 05]. For details on the topological
watershed, see Chapter 3.

350 Mathematical Morphology

12.5.2.6. Morphological filtering algorithms

Morphological filtering algorithms form an interesting class by themselves. As a
starting point, useful literature on morphological filtering includes the two books by
Serra [SER 82, SER 88b], an article on the theory of morphological filtering by Serra
and Vincent [SER 92c] and the articles by Heijmans and Ronse [HEI 90, RON 91].
A more introductory article by Heijmans is [HEI 96]. None of these articles discuss
algorithmic aspects, which are nonetheless essential. The following is an incomplete
but illustrative list of some problems studied in mathematical morphology.

12.5.2.6.1. Fast erosions and dilations

The topic of fast implementations of basic morphological operators has been
studied by many authors. In spite of this, many libraries of mathematical morphology
software (including well-known and expensive ones) compute a min or max filter
on a window using O(MN) comparisons, with M the number of pixels in the
image and N the number of pixels in the window. It is often possible to decompose
structuring elements (SE) into more readily computable subparts [XU 91]. Among the
most commonly used SE are the regular convex polygons in 2D. These can easily be
decomposed into operations using line segments.

A significant achievement by the community has been to propose increasingly effi-
cient algorithms to compute the basic morphological operators in arbitrary 1D segment
windows, including arbitrary orientation [BRE 93, GIL 02, HER 92, VAN 05]. As a
result, the computation of all four basic morphological operators with convex regular
polygonal windows can be achieved in constant time with respect to N in 2D. Note
that at the time of writing, an equivalent result in 3D or more is still an open problem,
except for some particular cases.

Regarding arbitrary structuring elements in n dimensions, there exists an algorithm
with complexity O(n

√
Nn−1M) [VAN 96]. A faster algorithm for 2D but extendable

to more has been proposed [URB 08]. Several algorithms have been proposed in the
binary case [JI 89, VIN 91b], with complexity asymptotically linear with respect to
M . The FFT-based algorithm mentioned in section 12.5.1.5 has complexity M log M .

12.5.2.6.2. Algebraic openings and thinnings

Filtering in mathematical morphology tends to rely more on openings and closings
than erosions and dilations. It is common to define a notion of opening or closing that
is not directly related to that of structuring element, but is rather based on the concepts
of attribute and connectivity [CRE 93b, CRE 97b, HEI 99]. These ideas are close to
the notion of reconstruction seen in this chapter, and were also presented in Chapter 1.

Due to connected and attribute filtering, many very effective operators were
proposed in the last decade. Historically, from the algorithmic point of view, the first
implementation of a connected filter is due to Vincent [VIN 92, VIN 93a, VIN 94]

Algorithms for Mathematical Morphology 351

with the area filter. The general notion was extended to attributes [BRE 96] that are not
necessarily increasing, leading to operators that were no longer openings or closings
but algebraic thinnings (using very similar principles). An efficient implementation
was proposed in [MEI 02], followed by a generalization using the component tree and
the union-find in [GÉR 05]. More recently, the notion of connectivity was extended to
hyper-connectivity [WIL 06] to account for overlaps.

Path connectivity is also both a topological and a connectivity notion. By adding
constraints to acceptable paths, from straight line segments [SOI 01] to more flexible
paths [HEI 05, TAL 07], it is possible to enable the filtering of notoriously difficult
thin objects in various applications [VAL 09a, VAL 09b].

12.5.2.6.3. Spatially variant filtering

More recently, efficient operators using filtering by non-translation-invariant (or
spatially variant) filters have been proposed. From the theoretical point of view,
these operators have been known since Serra [SER 82], but were recently given more
theoretical treatment [CHA 94, BOU 08a, BOU 08b]. This kind of filtering method
is adaptive in the sense that a different structuring element is used at each point,
depending on the local content of the image (for instance depending on the orientation,
perspective or texture) [LER 06b, VER 08]. These filters can be effective in the context
of inverse filtering for thin feature extrapolation [TAN 09a, TAN 09b].

12.5.2.6.4. Extension to n dimensions

Mathematical morphology is, from the theoretical point of view, largely dimension-
al-agnostic, meaning most operators can be defined irrespective of the dimension
of the underlying space [GES 90, GRA 93]. However, there are some practical
difficulties as dimension increases. For instance, from the geometrical and topological
point of view, while the hexagonal grid is a useful vertice arrangement in 2D that
is naturally relatively isotropic and self-dual with respect to connectivity, no such
arrangement exists in 3D and little is known of higher dimensions.

From the direction sampling point of view, which is often used in orientation-
based filtering, it is possible to sample the 2D plane directionally in such a way that
is both regular and of arbitrary resolution (say every degree or more or less). This is
impossible in 3D and more: a result known since Platon and Euclid [HEA 56]. 3D
(and more) filtering requires more resources of course but, thanks to recent advances
in sensors, instruments and computers, it has become increasingly common and
important. Application fields include medical imaging, materials science, biological
and bio-molecular imaging.

352 Mathematical Morphology

12.6. Conclusions

In this chapter, we have sought to express the distance that exists between the
mathematical formulation of an operator and its actual algorithmic translation. From a
simple but representative example, we have also shown that in general there does not
exist a single best way to express the implementation of an operator but several (for
which characteristics can be markedly different).

Algorithmic research, whether dedicated to mathematical morphology or not,
remains a wide open field. As time progresses, increasingly sophisticated operators
are being proposed, with correspondingly demanding computational loads together
with the ever-increasing size and complexity of the data itself. This can only mean
that it will become increasingly important to devote sufficient time and resources to
the development of efficient implementations of image analysis operators, whether
this implementation be in hardware or software.

We can also anticipate a few fresh challenges on the algorithmic frontier.

First, external and internal observers (for instance users but also article reviewers)
have noticed increasing difficulties in reproducing methods and results presented in
the scientific community. From a scientific article, the way leading to an actual piece
of working code can be very long. To the understanding of the proposed operators
and algorithms can be added the difficult and painful programming and debugging
tasks. As a direct consequence, a loss of information capital and of knowledge is
observed. Many, if not most, solutions proposed in the literature are simply abandoned
or ignored; few articles propose a comparison with a significant number of solutions.
In our opinion, the morphological community should make the effort to endow the
public at large with a working library of computer code implementing its efforts. This
could take the form of a mutual, open platform for code repository.

A second challenge concerns the implementation of algorithms. Algorithms are
by their nature abstract. Indeed, in this chapter we have kept an abstract presentation
as much as possible. This reflects the fact that they might work just as well on a
1D signal as on 3D volume data, irrespective of sampling, grid and topology issues,
unless specified. Unfortunately, the actual translation of algorithms to code is almost
inevitably accompanied by a loss of generality: such a library of code will only
work on 2D, gray-level, square grid images. Another will be devoted to satellite
images, yet another to 3D medical volumes, and so on. Most libraries do not accept
arbitrary-shaped structuring elements, for instance. Even a ‘simple’ dilation as given
by algorithm (3) in Figure 12.2 becomes, once implemented, a dilation restricted to
a limited number of cases. We note, however, that generic solutions exist, allowing
users to apply algorithms to vastly different datasets without necessarily sacrificing
efficiency [LEV 09].

Algorithms for Mathematical Morphology 353

A third challenge concerns community effort. It is increasingly understood that
to be acceptable during and after publication, to be reviewed effectively and to be
cited, an algorithm description should be accompanied by an implementation, freely
accessible to the researcher or individual user. Indeed, re-implementation efforts
are usually simply duplicated work. In other communities such as computer vision,
discrete geometry or computational geometry, active repositories of code exist. This is
not yet the case with mathematical morphology, although various attempts have been
made. It is the personal belief of the authors of this chapter that this has hindered
the adoption of many effective algorithms in the larger community of researchers and
users of image analysis. Of course, making code freely available does not always sit
nicely with intellectual property demands of funding agencies and institutions. This is
yet another challenge for which solutions have been proposed, such as dual licensing.

Finally, a last challenge is in the evolution of computer architectures. We are now
in the era of generalized multiprocessors and cheaply available massively parallel co-
processors and clusters. This means that the tools of image analysis and, in particular,
algorithms, must yet again adapt themselves to this changing environment.

