Cost Effectiveness and Complexity Assessment in Ship Design

within a Concurrent Engineering and "Design for X" Framework

Jean-David Caprace

Naval Architecture and Transport System Analysis – ANAST University of Liège, Belgium jd.caprace@ulg.ac.be

February 26, 2010

Summary

- Introduction
- 2 Methodology
- 3 Analysis, developments and results
- 4 Conclusion and recommendations

Summary

- Introduction
 - Boundaries Where, What, How and Why?
 - Shipbuilding A non-conventional industry
 - Challenge of cost and complexity assessment
- Methodology
- 3 Analysis, developments and results
- 4 Conclusion and recommendations

Where? - ANAST - University of Liège

- University of Liège
 - ARGENCO ARchitecture, Geology, ENvironment and COnstruction department
 - ANAST Naval Architecture and Transport System Analysis research team
- With the financial support of Belgian National Funds of Scientific Research (FNRS)

Where? - ANAST - University of Liège

- University of Liège
 - ARGENCO ARchitecture, Geology, ENvironment and COnstruction department
 - ANAST Naval Architecture and Transport System Analysis research team
- With the financial support of Belgian National Funds of Scientific Research (FNRS)

What? - Selection of the best design alternative

- ullet Ship designer problem \Rightarrow selection of the best design alternative
- Evaluation of design alternatives
 ← many attributes (economic, technical, environmental, safety)
- Every design change ⇒ impact on how much producing/maintaining the ship will cost
- Understand the impact every time the designer make a change

PhD research questions

- How much will it cost (or save) to implement this change?
- How will the complexity of the whole structure be affected?
- How will the ship's performances be affected?
- How will the productivity/maintenance of the ship be impacted?
- What risk is involved?

⇒ Apply to the shipbuilding industry

What? - Selection of the best design alternative

- ullet Ship designer problem \Rightarrow selection of the best design alternative
- Evaluation of design alternatives
 ← many attributes (economic, technical, environmental, safety)
- Every design change ⇒ impact on how much producing/maintaining the ship will cost
- Understand the impact every time the designer make a change

PhD research questions

- How much will it cost (or save) to implement this change?
- How will the complexity of the whole structure be affected?
- How will the ship's performances be affected?
- How will the productivity/maintenance of the ship be impacted?
- What risk is involved?

What? - Selection of the best design alternative

- ullet Ship designer problem \Rightarrow selection of the best design alternative
- Evaluation of design alternatives
 ← many attributes (economic, technical, environmental, safety)
- Every design change ⇒ impact on how much producing/maintaining the ship will cost
- Understand the impact every time the designer make a change

PhD research questions

- How much will it cost (or save) to implement this change?
- How will the complexity of the whole structure be affected?
- How will the ship's performances be affected?
- How will the productivity/maintenance of the ship be impacted?
- What risk is involved?

⇒ Apply to the shipbuilding industry

How? - Reduction of costs and complexities

- Product design stage influences nearly 70% of the final product costs even if only a small amount of expenditure is incurred
- Design is the primary driver of quality, time and cost
- Main promising track to increase competitiveness
 - Better assessment of cos and production delays
 - Better assessment of complexity

How? - Reduction of costs and complexities

- Product design stage influences nearly 70% of the final product costs even if only a small amount of expenditure is incurred
- Design is the primary driver of quality, time and cost
- Main promising track to increase competitiveness
 - Better assessment of cos and production delays
 - Better assessment of complexity

How? - Reduction of costs and complexities

- Product design stage influences nearly 70% of the final product costs even if only a small amount of expenditure is incurred
- Design is the primary driver of quality, time and cost
- Main promising track to increase competitiveness
 - Better assessment of cost and production delays
 - Better assessment of complexity

- Shipbuilding = Industry of labour ⇒ Problem for EU shipyards
 - Relocation of ship manufacturers
 - High added value ships or/and high technology ships
- Need to improve the shipyard competitiveness
- Solutions are the optimisation of:
 - The industrial layout automation, mechanization, etc.
 - The **industrial process** quality management, 6σ , lean manufacturing, CAD/CAM, scheduling, sequencing, etc.
 - The product design design for production, standardisation, modularization, etc.

- Shipbuilding = Industry of labour ⇒ Problem for EU shipyards
 - Relocation of ship manufacturers
 - High added value ships or/and high technology ships
- Need to improve the shipyard competitiveness
- Solutions are the optimisation of:
 - The **industrial layout** automation, mechanization, etc.
 - The **industrial process** quality management, 6σ , lean manufacturing, CAD/CAM, scheduling, sequencing, etc.
 - The product design design for production, standardisation, modularization, etc.

- Shipbuilding = Industry of labour ⇒ Problem for EU shipyards
 - Relocation of ship manufacturers
 - High added value ships or/and high technology ships
- Need to improve the shipyard competitiveness
- Solutions are the optimisation of:
 - The **industrial layout** automation, mechanization, etc.
 - The **industrial process** quality management, 6σ , lean manufacturing, CAD/CAM, scheduling, sequencing, etc.
 - The product design design for production, standardisation, modularization, etc.

- Shipbuilding = Industry of labour ⇒ Problem for EU shipyards
 - Relocation of ship manufacturers
 - High added value ships or/and high technology ships
- Need to improve the shipyard competitiveness
- Solutions are the optimisation of:
 - The industrial layout automation, mechanization, etc.
 - The **industrial process** quality management, 6σ , lean manufacturing, CAD/CAM, scheduling, sequencing, etc.
 - The product design design for production, standardisation, modularization, etc.

Shipbuilding industry \neq other repetitive manufacturing industries

Small series

- Short time to market
- High complexity
- Tripartite collaboration
- Bad working conditions
- Low standardisation
- Confined space and bad accessibility
- Increase of ship size

- Small series
- Short time to market
- High complexity
- Tripartite collaboration
- Bad working conditions
- Low standardisation
- Confined space and bad accessibility
- Increase of ship size

- Small series
- Short time to market
- High complexity
- Tripartite collaboration
- Bad working conditions
- Low standardisation
- Confined space and bad accessibility
- Increase of ship size

- Small series
- Short time to market
- High complexity
- Tripartite collaboration
- Bad working condition
- Low standardisation
- Confined space and bad accessibility
- Increase of ship size

- Small series
- Short time to market
- High complexity
- Tripartite collaboration
- Bad working conditions
- Low standardisation
- Confined space and bad accessibility
- Increase of ship size

- Small series
- Short time to market
- High complexity
- Tripartite collaboration
- Bad working conditions
- Low standardisation
- Confined space and bad accessibility
- Increase of ship size

- Small series
- Short time to market
- High complexity
- Tripartite collaboration
- Bad working conditions
- Low standardisation
- Confined space and bad accessibility
- Increase of ship size

- Small series
- Short time to market
- High complexity
- Tripartite collaboration
- Bad working conditions
- Low standardisation
- Confined space and bad accessibility
- Increase of ship size

- Secondary consideration for engineers
- Concentrating on delivering the technical aspects
- Cost evaluation ⇒ only after technical details
- Possible update of design

- Secondary consideration for engineers
- Concentrating on delivering the technical aspects
- Cost evaluation ⇒ only after technical details
- Possible update of design

- Secondary consideration for engineers
- Concentrating on delivering the technical aspects
- Cost evaluation ⇒ only after technical details
- Possible update of design

- Secondary consideration for engineers
- Concentrating on delivering the technical aspects
- Cost evaluation ⇒ only after technical details
- Possible update of design

Cost and complexity variation factors

- Tracking of the cost during all the stage of the project
- Input factors are always changing
 - Regulation new rules
 - Labour rates different for each shipyard, effect of learning, unpredictable
 - Technology change new process, new material, new design

Cost and complexity variation factors

- Tracking of the cost during all the stage of the project
- Input factors are always changing
 - Regulation new rules
 - Labour rates different for each shipyard, effect of learning, unpredictable
 - Technology change new process, new material, new design

Data and database management problems

Lack of available data

- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

Data and database management problems

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

Data and database management problems

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

Data and database management problems

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

Data and database management problems

- Lack of available data
- Insufficient data definition
- Inconvenient data format
- Unknown validity of data
- Inaccessibility of data
- Quality of the data
- High quantity of data
- Data integrity
- Data temporal heterogeneity

DB problems \Rightarrow very **cumbersome**, **tedious** and **time consuming** to solve

Methodology

Summary

- Introduction
- 2 Methodology
 - Paradigm
 - Selection of cost estimation methods
- 3 Analysis, developments and results
- 4 Conclusion and recommendations

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits
 - Design for production
 - Design for assembly
 - Design to cost
 - Design for simplicity
 - Design for safety
 - Design for environment
 - Design for maintenance

Designing for sustainability

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits

Paradigm

Good assessment of LCC during all design stages lead to the improvement of the sustainability and competitivity \Rightarrow Need to improve cost evaluation tools

Designing for sustainability

- Sustainability of technologies ⇒ central focus
- Early technical requirements ⇒ impact on the entire ship life cycle
- Design for X ⇒ optimise total benefits

Paradigm

Good assessment of LCC during all design stages lead to the improvement of the sustainability and competitivity \Rightarrow Need to improve cost evaluation tools

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 \Rightarrow Survey

- Definition of 17 criterion in 5 families
 - Design Applicability (#6)
 - Accuracy (#3)
 - Data Needs (#2)
 - Usability (#4)
 - Cost (#2)

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 ⇒ Survey

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 ⇒ Survey

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 ⇒ Survey

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 ⇒ Survey

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 ⇒ Survey

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 ⇒ Survey

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 \Rightarrow Survey

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 \Rightarrow Survey

- Selection of the appropriate cost method (#7)
 - Intuitive method (IM)
 - Case based reasoning (CBR)
 - Parametric method (PM)
 - Feature-Based Costing (FBC)
 - Fuzzy logic method (FLM)
 - Neural networks method (NNM)
 - Simulation method (SM)
- Multiple Criteria Decision Making
 - PROMETHEE
 - Absolute ranking of the alternatives
 - Weighting factors scenarios (#5)
 - W5 \Rightarrow Survey

Analysis, developments and results

Summary

- Introduction
- 2 Methodology
- 3 Analysis, developments and results
 - Presentation of the developments
 - Two cost evaluation method for straightening operation
 - Feature Based Costing prototype
 - Complexity evaluation
- 4 Conclusion and recommendations

Presentation of the developments

The holistic ship design optimisation strategy

Concept optimisation

- Few degree of freedom
- impact on LCC
- Need for a subjective complexity metric

Presentation of the developments

The holistic ship design optimisation strategy

Concept complexity assessment

Hull shape optimisation

- \bullet Fuel savings = cost
- Very efficient solution are already available

Structural optimisation chain

Presentation of the developments

The holistic ship design optimisation strategy

Amidships scantling opt.

- LBR5
- Need to assess straightening cost

The holistic ship design optimisation strategy

Block splitting opt.

- Strategic decisions for production
- Many constraints
- Need to minimize assembly costs

The holistic ship design optimisation strategy

Block sequencing opt.

- Strong link with block splitting
- Beyond the scope of this work

The holistic ship design optimisation strategy

Section scantling opt.

- Many different goals and constraints
- Many participants
- Need of design quality measurement

The holistic ship design optimisation strategy

Scheduling optimisation

- Space allocation and production flow problems
- Needs of budget assessment modules

The holistic ship design optimisation strategy

Developments

- Concept complexity assessment
- Straightening cost assessment
 - ANN
 - Fuzzy logic
- Feature Based Costing
- Section complexity assessment
- Statistical cost assessment
- DES cost assessment

The holistic ship design optimisation strategy

Developments

- Concept complexity assessment
- Straightening cost assessment
 - ANN
 - Fuzzy logic
- Feature Based Costing
- Section complexity assessment
- Statistical cost assessment
- DES cost assessment

Why straightening operation is required?

- Shipbuilding production
 - Uses of thin plates
 - Decrease the structural weight
 - Cruise vessels, fast ships
- Assembly of elements
 - Welding ⇒ Temperature gradient
 - Distortions into the steel structure

Why straightening operation is required?

- Shipbuilding production
 - Uses of thin plates
 - Decrease the structural weight
 - Cruise vessels, fast ships
- Assembly of elements
 - Welding ⇒ Temperature gradient
 - Distortions into the steel structure

- Straightening operation
 - Remove distortions ⇒ Flatness
 - Esthetical reasons
 - Service reasons
 - Blowtorch or induction coil
 - Energy consumption
 - Take a lot of time
- Issue ⇒ mainly manual work
 - Non negligible workload (3-10%)
 - Workload impact on production cost
 - Impact on time schedule
 - Requires skilled workers
- Development of 2 different approaches
 - Artificial Neural Network
 - Fuzzy Metric

- Straightening operation
 - Remove distortions ⇒ Flatness
 - Esthetical reasons
 - Service reasons
 - Blowtorch or induction coil
 - Energy consumption
 - Take a lot of time
- Issue ⇒ mainly manual work
 - Non negligible workload (3-10%)
 - Workload impact on production cost
 - Impact on time schedule
 - Requires skilled workers
- Development of 2 different approaches
 - Artificial Neural Network
 - Fuzzy Metric

- Straightening operation
 - Remove distortions ⇒ Flatness
 - Esthetical reasons
 - Service reasons
 - Blowtorch or induction coil
 - Energy consumption
 - Take a lot of time
- Issue ⇒ mainly manual work
 - Non negligible workload (3-10%)
 - Workload impact on production cost
 - Impact on time schedule
 - Requires skilled workers
- Development of 2 different approaches
 - Artificial Neural Network
 - Fuzzy Metric

- Straightening operation
 - Remove distortions ⇒ Flatness
 - Esthetical reasons
 - Service reasons
 - Blowtorch or induction coil
 - Energy consumption
 - Take a lot of time
- Issue ⇒ mainly manual work
 - Non negligible workload (3-10%)
 - Workload impact on production cost
 - Impact on time schedule
 - Requires skilled workers
- Development of 2 different approaches
 - Artificial Neural Network
 - Fuzzy Metric

Risk to use fuzzy logic

- Fuzzy rules based on human expertise and know-how
 - Different experts ⇒ Different opinions ⇒ Different rules
 - Expert know-how ≠ The real system behavior
 - Very difficult to model complex system
 - Very good interpretability ⇒ Never black box

- Development of a fuzzy metric to assess straightening cost
- Compare and optimize the fuzzy output with real data

Risk to use fuzzy logic

- Fuzzy rules based on human expertise and know-how
 - Different experts ⇒ Different opinions ⇒ Different rules
 - ullet Expert know-how eq The real system behavior
 - Very difficult to model complex system
 - Very good interpretability ⇒ Never black box

- Development of a fuzzy metric to assess straightening cost
- Compare and optimize the fuzzy output with real data

Risk to use fuzzy logic

- Fuzzy rules based on human expertise and know-how
 - Different experts ⇒ Different opinions ⇒ Different rules
 - ullet Expert know-how eq The real system behavior
 - Very difficult to model complex system
 - Very good interpretability ⇒ Never black box

- Development of a fuzzy metric to assess straightening cost
- Compare and optimize the fuzzy output with real data

Risk to use fuzzy logic

- Fuzzy rules based on human expertise and know-how
 - Different experts ⇒ Different opinions ⇒ Different rules
 - Expert know-how ≠ The real system behavior
 - Very difficult to model complex system
 - Very good interpretability ⇒ Never black box

- Development of a fuzzy metric to assess straightening cost
- Compare and optimize the fuzzy output with real data

Risk to use fuzzy logic

- Fuzzy rules based on human expertise and know-how
 - Different experts ⇒ Different opinions ⇒ Different rules
 - ullet Expert know-how eq The real system behavior
 - Very difficult to model complex system
 - Very good interpretability ⇒ Never black box

- Development of a fuzzy metric to assess straightening cost
- Compare and optimize the fuzzy output with real data

Fuzzy sets and membership function

- Various expert's opinion from different EU shipyards
- 2 inputs
 - Plate thickness (5-25 mm)
 - Stiffener spacing (500-900 mm)
- 1 output
 - Straightening cost (0-1 h/m²)

Fuzzy sets and membership function

- Various expert's opinion from different EU shipyards
- 2 inputs
 - Plate thickness (5-25 mm)
 - Stiffener spacing (500-900 mm)
- 1 output
 - Straightening cost (0-1 h/m²)

Fuzzy rule matrix and fuzzy output surface

- 49 rules with linguistic form
- Defined by various expert opinion of EU shipyards

 $\begin{array}{l} \mathsf{IF}\;\mathsf{Plate}\;\mathsf{thickness} = \mathsf{LOW}\\ \mathsf{AND}\;\mathsf{Stiffener}\;\mathsf{spacing} = \mathsf{HIGH} \end{array}$

THEN Straightening cost = VERY HIGH

		Stiffener spacing						
		VL	L	ML	МН	Н	VH	VVH
Plate Thickness	VL	VH	VH	VH	VH	VVH	VVH	VVH
	L	Н	Н	Н	Н	VH	VVH	VVH
	ML	МН	Н	MH	MH	Н	VH	VVH
	МН	ML	МН	ML	ML	MH	Н	VH
	Н	L	ML	L	ML	MH	MH	Н
	VH	VL	L	L	L	MH	MH	MH
	VVH	VL	VL	L	L	ML	ML	ML

- Human expertise and know-how
 - Define membership functions
 - Define fuzzy linguistic rules
- Output does not fit completely with reality
- Comparison with real data
 - \sim \simeq 1000 measures
 - 15 passenger ships
 - ~150 combinations between stiffener spacing and plate thickness
- Definition of an error function

$$error = \sqrt{\sum_{i=1}^{n} \left(S_{fuzzy} - S_{real}\right)^2}$$

- Human expertise and know-how
 - Define membership functions
 - Define fuzzy linguistic rules
- Output does not fit completely with reality
- Comparison with real data
 - \simeq 1000 measures
 - 15 passenger ships
 - ~150 combinations betweer stiffener spacing and plate thickness
- Definition of an error function

$$error = \sqrt{\sum_{i=1}^{n} (S_{fuzzy} - S_{real})^2}$$

- Human expertise and know-how
 - Define membership functions
 - Define fuzzy linguistic rules
- Output does not fit completely with reality
- Comparison with real data
 - $\simeq 1000$ measures
 - 15 passenger ships
 - ~ ≥150 combinations between stiffener spacing and plate thickness
- Definition of an error function

$$error = \sqrt{\sum_{i=1}^{n} (S_{fuzzy} - S_{real})^2}$$

- Human expertise and know-how
 - Define membership functions
 - Define fuzzy linguistic rules
- Output does not fit completely with reality
- Comparison with real data
 - $\simeq 1000$ measures
 - 15 passenger ships
- Definition of an error function

$$error = \sqrt{\sum_{i=1}^{n} \left(S_{fuzzy} - S_{real}\right)^2}$$

Optimization of the fuzzy outputs

- Objective function ⇒ Minimize the error function
- Optimization algorithm ⇒ Jump (better than gradient descent)
- Design variable ⇒ Weighting factor [0,1]

 $\begin{array}{ll} \text{IF Plate thickness} = \text{LOW} \\ \text{AND Stiffener spacing} = \text{HIGH} \\ \text{THEN Straightening cost} = \text{VERY HIGH} \\ \end{array}$

- Reduction of 26%
- Output surface fits better with the measurements

Optimization of the fuzzy outputs

- Objective function ⇒ Minimize the error function
- Optimization algorithm ⇒ Jump (better than gradient descent)
- Design variable ⇒ Weighting factor [0,1]

 $\begin{array}{ll} \text{IF Plate thickness} = \text{LOW} \\ \text{AND Stiffener spacing} = \text{HIGH} \\ \text{THEN Straightening cost} = \text{VERY HIGH} \\ \end{array}$

- Reduction of 26%
- Output surface fits better with the measurements

Optimization of the fuzzy outputs

- Objective function ⇒ Minimize the error function
- Optimization algorithm ⇒ Jump (better than gradient descent)
- Design variable ⇒ Weighting factor [0,1]

```
 \begin{array}{c} \text{IF Plate thickness} = \text{LOW} \\ \text{AND Stiffener spacing} = \text{HIGH} \\ \text{THEN Straightening cost} = \text{VERY HIGH} \\ \end{array}
```

- Reduction of 26%
- Output surface fits better with the measurements

Optimization of the fuzzy outputs

- Objective function ⇒ Minimize the error function
- Optimization algorithm ⇒ Jump (better than gradient descent)
- Design variable ⇒ Weighting factor [0,1]

 $\begin{array}{ll} \text{IF Plate thickness} = \text{LOW} \\ \text{AND Stiffener spacing} = \text{HIGH} \\ \text{THEN Straightening cost} = \text{VERY HIGH} \\ \end{array}$

WITH 0.456

 Output surface fits better with the measurements

Optimization of the fuzzy outputs

- Objective function ⇒ Minimize the error function
- Optimization algorithm ⇒ Jump (better than gradient descent)
- Design variable ⇒ Weighting factor [0,1]

 $\begin{array}{c} \text{IF Plate thickness} = \text{LOW} \\ \text{AND Stiffener spacing} = \text{HIGH} \\ \text{THEN Straightening cost} = \text{VERY HIGH} \\ \end{array}$

- Reduction of 26%
- Output surface fits better with the measurements

Introduction

- Many approaches to cost assessment are
 - Mysterious and not formally validates
 - Complicated
 - Difficult to use
 - Too simplistic
- Thus, typical cost estimation techniques become
 - Increasingly inefficient and ineffective
 - Taking days to generate cost estimates
 - Instantly out-of-date every time design change

- FBC prototype provides
 - Assesses production cost for ship steel structure
 - Assesses cost by product and/or process
 - Offers electronic imports, aggregates, and stores return cost data
 - Reduces the time and increases the accuracy
 - Identifies cost drivers
 - Provide information for production process improvement

Introduction

- Many approaches to cost assessment are
 - Mysterious and not formally validates
 - Complicated
 - Difficult to use
 - Too simplistic
- Thus, typical cost estimation techniques become
 - Increasingly inefficient and ineffective
 - Taking days to generate cost estimates
 - Instantly out-of-date every time design change

- FBC prototype provides
 - Assesses production cost for ship steel structure
 - Assesses cost by product and/or process
 - Offers electronic imports, aggregates, and stores return cost data
 - Reduces the time and increases the accuracy
 - Identifies cost drivers
 - Provide information for production process improvement

Introduction

- Many approaches to cost assessment are
 - Mysterious and not formally validates
 - Complicated
 - Difficult to use
 - Too simplistic
- Thus, typical cost estimation techniques become
 - Increasingly inefficient and ineffective
 - Taking days to generate cost estimates
 - Instantly out-of-date every time design change

- FBC prototype provides
 - Assesses production cost for ship steel structure
 - Assesses cost by product and/or process
 - Offers electronic imports, aggregates, and stores return cost data
 - Reduces the time and increases the accuracy
 - Identifies cost drivers
 - Provide information for production process improvement

Cost Evaluation Relationships (CERs)

$$CO = CQ \times CU \times CK \times CA \times CW$$

- CO Labour cost (man-hours)
- CQ Quantity (welding length, number of brackets, etc.)
- CU Unitary costs (cost-per-unit)
- CK Corrective coefficient used to calibrate the unitary costs
- CA Accessibility/Complexity coefficient
- CW Workshop coefficient

Cost Evaluation Relationships (CERs)

$$CO = CQ \times CU \times CK \times CA \times CW$$

- CQ Quantity (welding length, number of brackets, etc.)
- CU Unitary costs (cost-per-unit)
- *CK* Corrective coefficient used to calibrate the unitary costs
- CA Accessibility/Complexity coefficient
- CW Workshop coefficient

Cost Evaluation Relationships (CERs)

$$CO = CQ \times CU \times CK \times CA \times CW$$

- CO Labour cost (man-hours)
- CQ Quantity (welding length, number of brackets, etc.)
- CU Unitary costs (cost-per-unit)
- CK Corrective coefficient used to calibrate the unitary costs
- CA Accessibility/Complexity coefficient
- CW Workshop coefficient

Learning curve

Inflation

Cost Evaluation Relationships (CERs)

$$CO = CQ \times CU \times CK \times CA \times CW$$

- CO Labour cost (man-hours)
- CQ Quantity (welding length, number of brackets, etc.)
- CU Unitary costs (cost-per-unit)
- CK Corrective coefficient used to calibrate the unitary costs
- CA Accessibility/Complexity coefficient
- CW Workshop coefficient

Cost Evaluation Relationships (CERs)

$$CO = CQ \times CU \times CK \times CA \times CW$$

- CO Labour cost (man-hours)
- CQ Quantity (welding length, number of brackets, etc.)
- CU Unitary costs (cost-per-unit)
- CK Corrective coefficient used to calibrate the unitary costs
- CA Accessibility/Complexity coefficient
- CW Workshop coefficient

Workflow architecture

Main frame of the ViewCost module

Analysis and results

	Number of	Average error	
	Section	Before data correction	After data correction
Complex	16	-22.3%	-1.6%
Medium	8	-9.2%	-0.8%
Simple	13	1.7%	1.7%

Medium

Simple

Analysis and results

	Number of	Average error	
	Section	Before data correction	After data correction
Complex	16	-22.3%	-1.6%
Medium	8	-9.2%	-0.8%
Simple	13	1.7%	1.7%

Double welds

Missing weld

Missing weld

How to measure the ship complexity?

- Very hard to find a formal definition of a complex system
- Complexity often implies
 - Many parts with a lot of redundancy
 - Many relationships/interactions among the parts
 - Combination effects that are not easily predicted
 - A form of a hierarchy
- If ship complexity $\nearrow \Rightarrow LCC \nearrow$

- To find an alternative to the cost evaluation methods
- To define a quantitative and objective complexity metric
 - Macroscopic complexity
 - Microscopic complexity

How to measure the ship complexity?

- Very hard to find a formal definition of a complex system
- Complexity often implies
 - Many parts with a lot of redundancy
 - Many relationships/interactions among the parts
 - Combination effects that are not easily predicted
 - A form of a hierarchy

- To find an alternative to the cost evaluation methods
- To define a quantitative and objective complexity metrical
 - Macroscopic complexity
 - Microscopic complexity

How to measure the ship complexity?

- Very hard to find a formal definition of a complex system
- Complexity often implies
 - Many parts with a lot of redundancy
 - Many relationships/interactions among the parts
 - Combination effects that are not easily predicted
 - A form of a hierarchy
- If ship complexity $\nearrow \Rightarrow LCC \nearrow$

- To find an alternative to the cost evaluation methods
- To define a quantitative and objective complexity metric
 - Macroscopic complexity
 - Microscopic complexity

How to measure the ship complexity?

- Very hard to find a formal definition of a complex system
- Complexity often implies
 - Many parts with a lot of redundancy
 - Many relationships/interactions among the parts
 - Combination effects that are not easily predicted
 - A form of a hierarchy
- If ship complexity $\nearrow \Rightarrow LCC \nearrow$

- To find an alternative to the cost evaluation methods
- To define a quantitative and objective complexity metric
 - Macroscopic complexity
 - Microscopic complexity

How to measure the ship complexity?

- Very hard to find a formal definition of a complex system
- Complexity often implies
 - Many parts with a lot of redundancy
 - Many relationships/interactions among the parts
 - Combination effects that are not easily predicted
 - A form of a hierarchy
- If ship complexity $\nearrow \Rightarrow LCC \nearrow$

- To find an alternative to the cost evaluation methods
- To define a quantitative and objective complexity metric
 - Macroscopic complexity
 - Microscopic complexity

Definition of the micro complexity

- Micro complexity = combination of
 - Shape complexity (Csh)
 Ability to perform the manufacturing of individual parts of the products
 - Assembly complexity (Cas)
 Ability to easily assemble the components of a product
 - Material complexity (Cmt)
 Ability to use different types of material in a product

• Based on *sphericity* of the product components - ψ

$$\mathcal{C}_{\mathsf{sh}} = 1 - \psi$$

$$\psi = \frac{A_s}{A} = \frac{\pi^{1/3} (6V)^{2/3}}{A}$$

Definition of the micro complexity

- Micro complexity = combination of
 - Shape complexity (Csh)
 Ability to perform the manufacturing of individual parts of the products
 - Assembly complexity (Cas)
 Ability to easily assemble the components of a product
 - Material complexity (Cmt)
 Ability to use different types of material in a product

 Based on a recursive formulation similar to the Shanon entropy

$$C_{as} = \sum_{i=1}^{n} C(T_i) + N_T \log_2(2^{k_T} - 1)$$

Definition of the micro complexity

- Micro complexity = combination of
 - Shape complexity (Csh)
 Ability to perform the manufacturing of individual parts of the products
 - Assembly complexity (Cas)
 Ability to easily assemble the components of a product
 - Material complexity (Cmt)
 Ability to use different types of material in a product

 Based on the number of different material and scantling used in the product

Definition of the micro complexity

- Micro complexity = combination of
 - Shape complexity (Csh)
 Ability to perform the manufacturing of individual parts of the products
 - Assembly complexity (Cas)
 Ability to easily assemble the components of a product
 - Material complexity (Cmt)
 Ability to use different types of material in a product

$$C_T = \frac{w_1 C_{sh} + w_2 C_{as} + w_3 C_{mt}}{w_1 + w_2 + w_3}$$

Production time vs Complexity

Results on a passenger ship

Global complexity

Summary

- Introduction
- Methodology
- 3 Analysis, developments and results
- 4 Conclusion and recommendations
 - Main contribution
 - SWOT analysis

Main contributions

- Various cost and complexity assessment methods has been presented and tested
- This methodology provides:
 - An aid for designers ⇒ compare different design alternative based on cost and complexity
 - An environment which supports strategic decisions AEAP
 - A monitoring of the sources of complexity and cost which helps to determine the consequences of decision making
 - A spotting of the sources of complexity and cost which helps to reduce design effort
 - An objective, quantifiable, unambiguous metrics of cost and complexity

Results

- Reduction of lead time and Life Cycle Cost
- Increase the competitiveness of shipyards

Main contributions

- Various cost and complexity assessment methods has been presented and tested
- This methodology provides:
 - An aid for designers ⇒ compare different design alternative based on cost and complexity
 - An environment which supports strategic decisions AEAP
 - A monitoring of the sources of complexity and cost which helps to determine the consequences of decision making
 - A spotting of the sources of complexity and cost which helps to reduce design effort
 - An objective, quantifiable, unambiguous metrics of cost and complexity

Results

- Reduction of lead time and Life Cycle Cost
- Increase the competitiveness of shipyards

Main contributions

- Various cost and complexity assessment methods has been presented and tested
- This methodology provides:
 - An aid for designers ⇒ compare different design alternative based on cost and complexity
 - An environment which supports strategic decisions AEAP
 - A monitoring of the sources of complexity and cost which helps to determine the consequences of decision making
 - A spotting of the sources of complexity and cost which helps to reduce design effort
 - An objective, quantifiable, unambiguous metrics of cost and complexity

Results

- Reduction of lead time and Life Cycle Cost
- Increase the competitiveness of shipyards

SWOT analysis

Strength, Weaknesses, Opportunities and Threats analysis – SWOT

Strengths

- Provides innovative solution enhancing the *Design for X* concept
- Places the developments in a holistic optimization strategy
- Real-time complexity assessment ⇒ requires less time than cost evaluation
- PhD has highlighted limitation of ANN and production simulation to handle innovative design

Weaknesses

- Life Cycle Cost cannot modelling all design criteria (i.e. safety)
- Research is confined on ship structure (not outfitting)
- Applications are mainly focused on labour cost
- Majority of developments are applied on large passenger ships

Strength, Weaknesses, Opportunities and Threats analysis – SWOT

Strengths

- Provides innovative solution enhancing the *Design for X* concept
- Places the developments in a holistic optimization strategy
- Real-time complexity assessment ⇒ requires less time than cost evaluation
- PhD has highlighted limitation of ANN and production simulation to handle innovative design

Weaknesses

- Life Cycle Cost cannot modelling all design criteria (i.e. safety)
- Research is confined on ship structure (not outfitting)
- Applications are mainly focused on labour cost
- Majority of developments are applied on large passenger ships

Strength, Weaknesses, Opportunities and Threats analysis - SWOT

Opportunities

- Maintenance part of the Life Cycle Cost should be investigated more deeply
- PhD can lead to the implementation of the cost and complexity assessment in a commercial CAD/CAM tool
- PhD may be used as an education and training guide for industry

Threats

- The availability of historical data for small shipyards is often compromised
- If the maintenance cost rises rapidly in the near future compared to the initial cost, current development becomes minor

Strength, Weaknesses, Opportunities and Threats analysis - SWOT

Opportunities

- Maintenance part of the Life Cycle Cost should be investigated more deeply
- PhD can lead to the implementation of the cost and complexity assessment in a commercial CAD/CAM tool
- PhD may be used as an education and training guide for industry

Threats

- The availability of historical data for small shipyards is often compromised
- If the maintenance cost rises rapidly in the near future compared to the initial cost, current development becomes minor

Thank you for your attention

Ship with low complexity and very efficient cost

Procrastination

Hard work often pays off after time, but laziness always pays off now.