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Abstract - This paper deals with the evaluation of bounds
on voltage and thermal security margins with respect to con-
tingencies. A margin is the maximal pre-contingency power
transfer between either a generation and a load area or two
generation areas, such that specified contingencies do not
overload lines or make the system voltage unstable. The min-
imum and maximum margins are computed for given inter-
vals of variations of bus injections. Each bound is the solu-
tion of a constrained L1-norm minimization (or maximiza-
tion) problem, for which specific algorithms are given. Ther-
mal overloads are handled through linearization, while for
voltage stability, fast time simulation and instability mode
analysis are used. Nonlinear situations of branch overloads
are also considered. The method is illustrated on an 80-bus
test system.

Keywords - security assessment, voltage stability,
thermal overload, available transfer capability, load
power margin

1 INTRODUCTION

INSTABILITY of voltages and thermal overload of
transmission equipments (with the associated risk of

cascade line tripping) are two significant threats of power
systems. While thermal overload has been receiving at-
tention for a long time [1, 2], voltage stability has become
in the last two decades a major aspect of power system se-
curity [3, 4]. Very often, these two security aspects are an-
alyzed separately, thermal overloads through linear tech-
niques (DC load flow approximation [2, 5]) and voltage
instability through nonlinear ones [4]. In some systems,
the two aspects can be coupled.

In this paper, we concentrate on security margins de-
fined as the maximum power transfer (between either a
load and a generation area or between two generation ar-
eas) that can be applied to the system in its current con-
figuration, such that specified contingencies do not cause
branch overloads nor voltage instability. There are mature
techniques to compute such margins for a given source-
sink pattern, defined by the participations of the various
bus injections.

In practice, however, the system evolution may be
somewhat different from the one assumed in the above
calculation. For instance, there is some uncertainty con-
cerning the load increase pattern. Similarly, there is some
uncertainty in how generators from external systems will
participate to a transaction. This is the case when market
rules (still) do not require to disclose such transactions,

or with the present-day practice of reserving contractual
rather than physical power paths. As security margin com-
putations are reliant on the choice of the source-sink pat-
tern, they are to some extent sensitive to uncertainty on the
underlying bus participations.

Therefore, it may be of interest in both operational
planning and real time to provide not only the security
margin with respect to contingency but also, as a comple-
mentary information, the (lower and upper) bounds on this
margin for specified ranges of bus injection values. This
paper presents methods to compute bounds corresponding
to, respectively, the worst and the best source-sink pattern
for the contingency(ies) of concern.

Several works have been devoted to determining the
minimum distance to the boundary of a feasible space.
One of the first method to calculate the closest infeasibility
to a given operating point was proposed in the early ref-
erence [6]. The feasible region of the injection space was
defined as the set of all injections for which the load flow
has a solution. A minimum margin was defined and com-
puted using the constrained Fletcher-Powell minimization.

In [7] an iterative and a direct method were proposed
to compute the locally closest saddle-node bifurcation to
the current operating point in the load power parameter
space. The L2-norm (Euclidian distance) was used to
compute the worst-case load increase causing the system
to lose equilibrium. More extensive tests with the iterative
method were reported in [8], where a Monte-Carlo tech-
nique allowed to identify multiple closest bifurcations in
some of the test systems. A drawback of the formulation
was the independent and unbounded behaviour of the bus
active and reactive powers.

The dual problem of maximizing the power transfer
between generators and loads was presented in [9], tak-
ing into account either voltage stability or voltage quality.
Under the assumption that individual loads evolve along a
specified direction, the active power generations are varied
so as to maximize the power transferred to loads. This L1-
norm maximization problem was solved using a gradient
search algorithm.

Insight into the geometry of the bifurcation surface
may be found in the above references as well as in [10].

In the meantime, solutions have been proposed to the
related problem of optimally changing parameters so as
to maximize the distance to saddle-node bifurcation, in
the L2 sense [11, 12]. They are based on the sensitivi-
ties of margins to parameters for a given direction of load
increase [7, 8, 11].



The case where the feasible region is bounded by in-
equality constraints (instead of bifurcations as for voltage
instability) was considered in [9], for minimum voltage
constraints. More recently, [13] proposed a method to find
the thermal-constrained interface maximum transfer capa-
bility under the worst scenario in generation-load space.
The min-max interface transfer is obtained as a bi-level
optimization problem whose constrains are derived from
the DC load flow equations.

The main contributions of this paper are as follows:
• emphasis is put on contingencies: as indicated above,
margins refer to maximum pre-contingency power trans-
fers, such that the system can withstand contingencies;
• minimum and maximum margins are defined with re-
spect to L1-norm, which (unlike the L2 one) is directly
related to the total power transfer;
• as far as voltage stability is concerned, a fast time-
domain method is used to simulate contingencies and ob-
tain the information to adjust the source-sink pattern;
• both thermal overload and voltage instability aspects are
considered;
• both generation and load patterns can be varied, though
within realistic bounds.

2 STATEMENT OF THE PROBLEM

2.1 System stress

Security margins rely upon the definition of a system
stress. The latter consists of changes in bus power injec-
tions which make the system weaker by increasing power
transfer over relatively long distances and/or drawing on
reactive power reserves.

Let us denote with Pi the active power injection at the
i-th bus (i = 1, . . . , n), which we decompose into:

Pi = P o
i + ∆P+

i − ∆P−
i ∆P+

i , ∆P−
i ≥ 0 (1)

where P o
i is the base case value of the injection, ∆P +

i is
the additional power injected into the network, and ∆P −

i

the one drawn from the network, all relative to bus i.
In the sequel, we distinguish between:

(i) a power transfer from a generation to a load area, char-
acterized by:

∆P+
i = αi S i ∈ G+ (2)

∆P−
i = βi S i ∈ L (3)

(ii) a power transfer between two generation areas, char-
acterized by:

∆P+
i = αi S i ∈ G+ (4)

∆P−
i = βi S i ∈ G− (5)

where S is the total amount of transferred power, (α i, βi)
are positive real numbers, defining the “direction of
stress”, G+ (resp. G−) is the set of increased (resp. de-
creased) generators and L the set of increased loads.

With this notation, ∆P +
i corresponds to a generation

increase only, while ∆P −
i corresponds to either a load in-

crease (case (i) above) or a generation decrease (case (ii)).

The participation factors are normalized according to:∑
i∈L or G−

βi = 1 and
∑

i∈G+

αi = 1 + δ (6)

where δ accounts for losses. The latter are thus assumed
to vary linearly with S, for simplicity. With this choice, S
represented the total power received by the “sinks”. In the
sequel, it will be referred to as the system stress.

Clearly, there are similar expressions for each load re-
active power, but we do not make them appear explicitly.
In the whole paper, loads are assumed to vary under con-
stant power factor in the pre-contingency configuration. If
reactive loads would be considered independent, the corre-
sponding equations would be added and straightforwardly
handled by the methods described in this paper.

2.2 “Conventional” margins

In usual margin calculations, participation factors
(αi, βi) are chosen in accordance to (6) and the margin
is obtained as the maximum value of the pre-contingency
stress S such that the system responds to the contingency
in an acceptable way.

Formally, the margin is thus the solution of the opti-
mization problem:

max S

subject to f(x, P1, . . . , Pn) = 0 (7)

Pi = P o
i + ∆P+

i − ∆P−
i (i = 1, . . . , n)

∆P+
i = αi S i ∈ G+

∆P−
i = βi S i ∈ L (or G−)

and starting from state x, the system has an ac-
ceptable response to the contingency.

where (7) stands for the pre-contingency load flow equa-
tions, and x is the pre-contingency operating state.

The above problem can be restated in more mathemat-
ical terms, as follows. Consider the space of the ∆P +

i and
∆P−

i variables, as sketched in Fig. 1. At point P , the cor-
responding values of ∆P +

i and ∆P−
i are used in (1), the

load flow equations (7) are solved and the corresponding
state x is used as the initial point of the contingency sim-
ulation. According to the system response, P is labelled
“secure” or “insecure” for the contingency of concern. Let
S be the sub-space of all points labelled secure.

∆P1

insecure

secure
S

0

B

6
5

4
3

2

1

P

∆P2

Figure 1: secure region and binary search of margin in a given direction
(note: ∆Pi is used indifferently for ∆P+

i or ∆P−
i )

This sub-space is bounded by a surface B, which we
assume smooth, and describe - at least formally - by:

h(∆P+
1 , . . . , ∆P+

i , ∆P−
i , . . . , ∆P−

n ) = 0 (8)



For a given direction of stress, the margin corresponds
to the intersection between B and the straight line corre-
sponding to (2 - 5), as shown in Fig. 1.

A direct computation of this intersection is possible if
(8) can be derived explicitly. This is the case when B cor-
responds to branch current constraints under the DC load
flow approximation. On the contrary, when a time-domain
method is used to simulate the contingency, we can at the
most identify on which side of B a given point is located.
In this case, a binary search can be used to determine the
margin [4, 14]. Figure 1 shows the sequence of points
(1,2,. . . ,6) generated by this simple procedure. The latter
stops when a secure and an insecure point approach each
other by less than some tolerance (points 4 and 6 in the
figure). Note that 0 corresponds to the base case (assumed
to be secure) and 1 to a maximum stress of interest.

Let S� be the maximum stress, corresponding to the
margin. We consider now the problem of maximizing
(resp. minimizing) S� with respect to the αi’s and βi’s.

2.3 Maximum margins

We first eliminate the S and work with the ∆P +
i and

∆P−
i variables only. Summing (3) or (5) over all buses

and taking (6) into account yields:∑
i∈L or G−

∆P−
i = S (9)

which shows that it is equivalent to maximize either S or
the sum of ∆P−

i ’s. Doing the same with (2, 4, 6) yields:∑
i∈G+

∆P+
i = (1 + δ)S (10)

and the last two equations can be combined into:∑
i∈G+

∆P+
i = (1 + δ)

∑
i∈L or G−

∆P−
i (11)

The maximum margin corresponds to the point of sur-
face B which maximizes the sum of ∆P −

i ’s while satisfy-
ing (11). This leads to the optimization problem:

max
∆P+

i
,∆P−

i

∑
i∈L or G−

∆P−
i (12)

s. t. h(∆P+
1 , . . . , ∆P+

i , ∆P−
i , . . . , ∆P−

n ) = 0 (13)∑
i∈G+

∆P+
i = (1 + δ)

∑
i∈L or G−

∆P−
i (14)

0 ≤ ∆P+
i ≤ B+

i i ∈ G+ (15)

0 ≤ ∆P−
i ≤ B−

i i ∈ L (or G−) (16)

where the “box” constraints (15,16) have been added
to avoid reaching unrealistic load patterns or generation
schemes. For loads, the bound B−

i may be taken as a frac-
tion of the base case power P o

i . For generators, B−
i and

B+
i relate to the generation capacity.

2.4 Minimum margins

Similarly, the minimum margin corresponds to the
point of surface B which minimizes the sum of ∆P −

i ’s

while satisfying the same constraints:

min
∆P+

i
,∆P−

i

∑
i∈L or G−

∆P−
i (17)

s. t. h(∆P+
1 , . . . , ∆P+

i , ∆P−
i , . . . , ∆P−

n ) = 0 (18)∑
i∈G+

∆P+
i = (1 + δ)

∑
i∈L or G−

∆P−
i (19)

0 ≤ ∆P+
i ≤ B+

i i ∈ G+ (20)

0 ≤ ∆P−
i ≤ B−

i i ∈ L (or G−) (21)

3 BOUNDS ON THERMAL SECURITY MARGINS

3.1 Secure sub-space

When thermal overloads are of concern, the secure
sub-space S is the set of points such that no branch current
is above its limit in the post-contingency configuration:

Ipost
k ≤ Imax

k k = 1, . . . , b (22)

where b is the number of branches, I post
k the post-

contingency current in the k-th branch and I max
k the cor-

responding threshold value.

It is well known that (pre- or post-contingency) branch
currents vary almost linearly with bus power injections.
The inequality (22) can thus be linearized into:

Ipost
k, o +

∑
i

∂Ipost
k

∂Pi
(∆P+

i −∆P−
i ) ≤ Imax

k k = 1, . . . , b

(23)
where Ipost

k, o is the post-contingency branch current for the
base case value of the injections (Pi = P o

i ). The par-
tial derivatives are the sensitivities of the post-contingency
branch currents to the pre-contingency injections. They
can be determined using the DC load flow approximation
[5], or from a well-known sensitivity formula involving
the Jacobian of the steady state equations (standard AC
load flow or long-term equilibrium equations [4]).

Thus, the boundary B of the secure region is no longer
a smooth function but rather a piece-wise linear one, each
linear part of B corresponding to one of the constraints
(23) being active (≤ replaced by =). Therefore, the for-
mal, smooth equation (8) will have to be replaced by a
more appropriate characterization of B.

This is depicted in Figure 2, relative to our previous
two-dimensional example. The box constraints (15,16)
are shown with thin lines and the boundary B with heavy
lines. The secure area S is tinted in grey.

With reference to (9), we assume that the objective
function is ∆P1 + ∆P2 (shown with dashed lines). Con-
sidering that the optimum must lie on B while obeying
the box constraints, one easily verifies that the solution to
the max max and min max problems are the two points
shown in the figure.
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∆P1

Figure 2: secure sub-space in the linear case

3.2 Maximum margins

As suggested by Fig. 2, the maximum margin is ob-
tained by replacing (8) by the set of inequalities (23) into
(12-16), which yields the optimization problem:

max
∆P+

i
,∆P−

i

∑
i∈L or G−

∆P−
i (24)

s. t. Ipost
k, o +

∑
i

∂Ipost
k

∂Pi
(∆P+

i − ∆P−
i )

≤ Imax
k k = 1, . . . , b (25)∑

i∈G+

∆P+
i = (1 + δ)

∑
i∈L or G−

∆P−
i (26)

0 ≤ ∆P+
i ≤ B+

i i ∈ G+ (27)

0 ≤ ∆P−
i ≤ B−

i i ∈ L (or G−) (28)

The maximum margin is thus obtained by solving a
single Linear Programming (LP) problem. As usual, spar-
sity programming techniques must be used to preserve
computational efficiency. In this respect, small sensitiv-
ities may be set to zero.

3.3 Minimum margins

As already mentioned, B is the union of several lin-
ear parts, each relative to a different branch. Denoting one
of them by Bj , the minimum of the objective function (9)
over the set B is the smallest among the minima obtained
over each subset Bj separately:

min
B

∑
i

∆P−
i = min

j

[
min
Bj

∑
i

∆P−
i

]

Now, the expression within brackets is the solution of:

min
∆P+

i
,∆P−

i

∑
i∈L or G−

∆P−
i (29)

s. t. Ipost
j, o +

∑
i

∂Ipost
j

∂Pi
(∆P+

i − ∆P−
i )=Imax

j (30)

∑
i∈G+

∆P+
i = (1 + δ)

∑
i∈L or G−

∆P−
i (31)

0 ≤ ∆P+
i ≤ B+

i i ∈ G+ (32)

0 ≤ ∆P−
i ≤ B−

i i ∈ L (or G−) (33)

(Note that (30) involves a single equality while (25) in-
volved b inequalities.)

The procedure is thus the following: for each branch
j, solve the above problem to find the minimum margin
over the subset Bj , and finally take the smallest among all
so found minima.

Note that the above LP problem is very simple (in fact
it can be solved without resorting to an LP program, as
explained in Section 4.2). For some branches, it may be
infeasible. This would correspond, in Fig. 2, to a branch
constraint not intersecting the box relative to the B1 and
B2 bounds. Such a branch can be merely ignored and the
enumeration proceeds with the next one. Finally, branches
with Ipost

k, o � Imax
k may be also skipped.

3.4 Handling of multiple contingencies

The secure sub-space can be defined with respect to a
set of contingencies and minimum (resp. maximum) mar-
gins can be computed over this sub-space.

For the maximum margin computation, the set of in-
equalities (25) is extended to all contingencies, which in-
creases the size of the maximization problem (24-28).

For the minimum margin computation, the size of
the minimization problem (29-33) remains unchanged but
a different equality (30) has to be considered for all
branches and all contingencies, successively.

3.5 Accounting for nonlinear effects

If the min max and max max points computed from
the linear approximations are checked with a more ac-
curate model, it is possible that some branches are over-
loaded due to the neglected nonlinearities. The latter of-
ten result from the voltage drops caused by the increased
power transfer.

In such a situation, the sensitivities used in (25) or (30)
are corrected. For the k-th branch, the sensitivities are

multiplied by
Ireal
k − Ipost

k, o

Imax
k − Ipost

k, o

where Ireal
k is the current ob-

tained from the AC load flow calculation. A single new
optimization based on the corrected sensitivities is usually
enough.

4 BOUNDS ON VOLTAGE SECURITY MARGINS

4.1 Secure sub-space

When voltage instability is of concern, sub-space S
becomes the set of points such that the system responds
in a stable way to the contingency. In this case, we build
linear approximations of the B surface, as explained here-
after.

We use Quasi Steady-State (QSS) simulation to de-
termine the system response to contingencies. This well-
documented time-domain method [4, 14] is fast and takes
into account dynamic effects such as controls acting in the
post-contingency configuration.

Moreover, when coupled with small-disturbance anal-
ysis, it can extract useful information from unstable cases.
Consider, as in Fig. 3, a point U located outside the secu-
rity region. By definition, when the system initially oper-
ates at this point, the post-contingency evolution is voltage



unstable. From the analysis of this evolution one can ob-
tain a reasonably good estimate of the vector n normal to
the B surface at some point located near U (see Fig. 3).
The technique uses sensitivity analysis to detect the criti-
cal point, at which the eigenvector relative to the real dom-
inant eigenvalue is computed and therefrom, vector n [11].
Further details and examples can be found in [15].

insecure

∆P2

n

U

∆P1

B

S
secure

Figure 3: normal vector to boundary surface B

4.2 Minimum margin in the case of a linear B surface

We show hereafter that in the case of a linear B sur-
face, the minimum margin can be determined from the
components of n directly.

Consider thus the simple problem, illustrated in Fig. 4,
of finding the minimum of ∆P1+∆P2 over a single linear
boundary B, taking into account the box constraints. Let
n1 and n2 be the components of the vector normal to B.

∆P2

∆P1 + ∆P2

D

C
B

A

B2

B1

B

∆P1

n

Figure 4: a case of linear B surface

If the only constraints were ∆P1, ∆P2 ≥ 0, the so-
lution would be at point A if |n2| > |n1|, at point B if
|n1| > |n2| and at any point of B is |n2| = |n1|. In the
sequel, we ignore this last case.

If we further impose ∆P1 ≤ B1 and ∆P2 ≤ B2, the
solution is either C or D, depending again on the relative
magnitude of n1 and n2.

In the general, n-dimensional case, it can be easily
shown that the minimum is such that:
• ∆Pi = Bi for k variables corresponding to the largest
(absolute) components of n
• ∆Pi = 0 for n − k − 1 variables corresponding to the
smallest components of n. k may vary from 0 to n − 1.

4.3 Minimum margins

In Section 2.2 we have described the binary search
used to determine the voltage security margin in a given
direction (see Fig. 1). We now present a method using the
information provided by normal vectors n to “redirect the
stress” in the course of the binary search, with the objec-
tive of converging towards the minimum margin. The pro-
cedure will be illustrated step-by-step on the simple exam-
ple of Fig. 5, in which the minimum margin corresponds
to point M.

M

= 0.75Smax

∆P1 + ∆P2

= Smax

∆P1 + ∆P2

∆P1 + ∆P2
= 0.5Smax

B2

B1

B

∆P2

∆P1

5

4

3

2

2’

1

Figure 5: search of the minimum voltage margin

We start by choosing a direction and a maximum stress
Smax. The corresponding point must fall outside S, in or-
der the system to be unstable and a first normal vector n
to be obtained from the analysis of the unstable evolution.
Figure 5 illustrates the case where all ∆Pi’s are set to their
upper bound Bi.

In a standard binary search the next point to be tested
would be 2’, corresponding to half stress along the same
direction. However, in order to converge to the minimum
margin, we change the direction of stress. To this purpose,
we approximate B by a linear surface and apply the result
of Section 4.2. Thus, we first sort the various ∆Pi’s by
decreasing order of their corresponding components of n.
Then, following this order, we set the successive ∆Pi’s to
their bound Bi until their sum exceeds the current level
of stress Smax/2. We adjust the last ∆Pi so that the sum
matches Smax/2 exactly. This leads to point 2 in Fig. 5.
At this point we simulate the contingency. The system is
stable. No new normal vector is obtained.

We proceed with the 0.75Smax stress. In the absence
of a new normal vector, we keep the previous ranking of
the ∆Pi’s. Again, we successively set the ranked ∆Pi’s
to their bounds Bi and adjust the last one so that the sum
equals 0.75Smax. This leads to point 3. At this point,
the system is unstable. A new normal vector is obtained,
corresponding to a new linear approximation of B and pro-
viding a new ranking of the ∆Pi’s.

The procedure continues in the same way, passing
through points 4 and 5 in Fig. 5, until the difference
between two successive stresses falls below a tolerance.
(Note that the fact that points 2 to 5 all lie on the same
line, is a limitation of the two-dimensional example used.)

The following remarks are noteworthy:
• the computational effort is exactly that of a conventional
margin computation, for a fixed direction of stress;
• all what matters in this procedure is the ranking of the
∆Pi’s. In some systems, we have obtained very good re-
sults by simply ranking buses according to the values of
their voltages. The latter are picked up from one point of
the unstable evolution provided by QSS simulation;
• since the method implicitly relies on successive lin-
earizations of the B surface, the latter should be “smooth
enough”. On the other hand, changes in n have no impact
as long the ranking of its components is unchanged. This
“robustness” is an advantage of the L1 norm over the L2

one used in previous works on the subject;
• as already mentioned, loads are changed under constant



power factor. Thus, for each change in active power, there
is a change in reactive power. The corresponding compo-
nents of the n vectors are combined into a single number,
used for ranking. Similarly, we correct the component rel-
ative to active power generation to take into account the
resulting change in reactive power capability;
• the minimum margin with respect to several contingen-
cies can be obtained by treating each of them separately
and taking the lowest among the so found minima.

4.4 Maximum margins

The procedure to obtain maximum margins is similar,
except that the ∆Pi’s corresponding to the smallest com-
ponents of n are the first to be changed. The handling
of several contingencies is not detailed here due to space
limitations.

5 ILLUSTRATIVE EXAMPLES

5.1 System and power transfers

We consider the 80-bus system shown in Fig. 6, a vari-
ant of the “Nordic 32” system used e.g. by CIGRE Task
Force 32.02.08 on Long-Term Dynamics (1995). A rather
heavy power transfer takes place from the “North” to the
“South” areas (see figure).
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Figure 6: the (slightly modified) “Nordic 32” system

The QSS long-term simulation reproduces the dynam-
ics of load tap changers and overexcitation limiters[4].
Generators respond to a disturbance according to gover-
nor control. The Southern generators having infinite speed
droops, any power imbalance is covered by Northern gen-
erators, which adds to the North-South power flow.

We consider two power transfers:
I. Generation to Load (denoted GL in the sequel): a
load increased in the South area (Smax = 600 MW/
180 MVAr) is covered by a generation increase in the
North one (Smax = 630 MW, accounting for losses). The
initial direction of stress is such that each of the 22 loads
has the same participation factor (both for active and reac-
tive power) and each Northern generator participates ac-
cording to speed droop;
II. Generation to Generation (denoted GG in the sequel):
active power generation is shifted from the North (Smax =
630 MW) to the South area (Smax = −600 MW), all
loads remaining unchanged. The initial direction of stress
is such that Northern generators participate according to
speed droop while all Southern generators have the same
participation factor.

Not all αi’s and βi’s need to be treated as variables.
Table 1 lists the six possible variants. For instance, in
variants (a) and (c) a load power margin is determined.
In variant (a), the generators’ individual participations are
fixed, while in variant (b) the loads’ individual participa-
tions are fixed. In variant (c) both are allowed to vary. Ob-
viously, the choice depends on the particular application.
In this paper, all combinations are considered, except (a)
and (c) when maximizing margins, as these variants seem
less meaningful.

Table 1: margin variants

variant transfer αi βi i ∈ L βi i ∈ G−

(a) GL fixed variable = 0
(b) GL variable fixed = 0
(c) GL variable variable = 0
(d) GG fixed = 0 variable
(e) GG variable = 0 fixed
(f) GG variable = 0 variable

The bounds B+
i on load power increase have been set

to 10 % of the base case load. For generators, B+
i and B−

i

correspond to the turbine capacity.
The results shown hereafter deal with the loss of the

line between buses 4011 and 4021. For a large enough
North-South power transfer, this contingency causes volt-
age instability. If the transfer is somewhat decreased the
system survives but with an overloaded line.

Thermal and voltage problems are thus strongly cou-
pled in this example. For instance, at the thermal overload
limit, some voltages are as low as 0.9 pu.

5.2 Voltage security margins

5.2.1 GL power transfer

For the initial direction of stress, the margin with re-
spect to the selected contingency is 595 MW.

The results when optimizing the αi’s and βi’s are
given in Table 2.

Table 2: bounds (MW) on voltage stability margin (GL power transfer)

variant (a) (b) (c)
min margin 393 484 340
max margin - 599 -



In variant (c), the load consumption concentrates on
buses 1044, 1045, 4043, 4046, 4061 and 4051 which have
the highest components of the normal vector. This load in-
crease is covered by generators g4 and g2, whose electrical
distance to the load center is higher. This corresponds to
the worst direction of stress.

If only loads are varied, the generators’ participations
being set as indicated in the previous section, a larger min-
imum margin is found, as expected. Two more loads par-
ticipate, at buses 4047 and 4042. If only generators are
varied, the load increase is covered by g4, g2 and g3.

Note that, for voltage security analysis purposes, the
identification of buses participating to the minimum load
power margin carries as much information as the value of
the margin itself. It points out the weak area for the con-
tingency of concern, more precisely the smallest area in
which a bounded load increase would make the system in-
secure with respect to the contingency.

It must be emphasized that, with the L1-norm formu-
lation used in this paper, if no bound B−

i was specified
on individual load increases (see (15)), the whole effort
would unrealistically concentrate on a single bus. The
lower the B−

i bound, the wider the area of load increase.
In variant (c), for instance, the number of loaded buses and
the margin vary as follows:
- for B−

i = 15 % of base case load: 4 buses, 330 MW ;
- for B−

i = 10 % of base case load: 6 buses, 340 MW ;
- for B−

i = 5 % of base case load: 21 buses, 394 MW.
Table 3 shows the ranking of load buses at 4 succes-

sive (unstable) steps of the binary search. The components
of the normal vector have been scaled so that the largest
one becomes equal to 1. The rows of the table are or-
dered according to the first normal vector obtained, while
the stars point out changes with respect to this initial rank-
ing. As can be seen, the normal vector does not change
significantly from one iteration to the next. Only permuta-
tions of two successive buses are observed. Since the first
ranked buses are loaded at their upper bounds B−

i and the
last ranked are not loaded at all (see Section 4.2), these
permutations lead, at most, to loading one bus instead of
another. The margin is little affected. Also, it is quite ac-
ceptable to use the very first vector throughout the whole
procedure, which further saves computing time.

Table 3: load ranking at various steps of the binary search

stress 600MW 450MW 412MW 394MW
1044 1.0 1.0 1.0 1.0
1045 0.998 0.997 0.998 0.998
4043 0.974 0.984 0.977 0.977
4046 0.971 0.980 0.974 0.973
4061 0.967 0.973* 0.961* 0.960*
4051 0.961 0.976* 0.966* 0.965*
4047 0.947 0.963* 0.951 0.950
4042 0.946 0.963* 0.949 0.948
1043 0.939 0.932* 0.943 0.944
4041 0.938 0.955* 0.936 0.936

As regards the maximum margin (599 MW), the small
difference with respect to the original margin (595 MW)

is due to the small active reserve available on the most ap-
propriate generators (by decreasing order : g11, g12, g8
and g5). The next ranked generator is g9. It has enough
reserve but does not much contribute to margin increase.

5.2.2 GG power transfer

For the initial direction of stress, the margin with re-
spect to the selected contingency is 421 MW, while the
computed bounds are given in Table 4.

Table 4: bounds (MW) on voltage stability margin (GG power transfer)

variant (d) (e) (f)
min margin 391 359 336
max margin 423 449 449

When generator’s participations can vary in both ex-
porting and importing areas, the smallest (voltage stability
constrained) transfer of 336 MW takes place between g4,
g3, g2 (North) and g7, g17 (South). This minimum is ob-
tained by involving groups of generators electrically far
away from each other.

The same Northern (resp. Southern) generators keep
on participating when the Southern (resp. Northern) par-
ticipations are fixed at their original values, which leads
obviously to larger minimum margins.

With all participations free to vary, the maximum
transaction (of 449 MW) takes place between g11, g12,
g8, g5, g9 (North) and g14 alone (South). Thus, the whole
effort is put on the electrically closest generators.

The maximum margins obtained when letting a single
group of generators vary indicate that the generators of the
importing area have less influence than those of the export-
ing area. This is confirmed by the margin sensitivities to
injections: all Southern generators have almost the same
sensitivities, while significantly larger differences are ob-
served among the various Northern generators.

5.3 Thermal security margins

5.3.1 GL power transfer

For the initial direction of stress and taking into ac-
count thermal overloads, the margin is 535 MW. This
value corresponds to the overload of line 4031-4032 af-
ter the tripping of line 4011-4021. The computed bounds
are given in Table 5.

Table 5: bounds (MW) on thermal overload margin (GL power transfer)

variant (a) (b) (c)
min margin 338 448 307
max margin - 581 -

For the minimum margin of 307 MW, the load increase
concentrates on buses 1043, 1044, 1045, 4042, 4043, 4046
and 4047 and is covered by g4 and g2. This load increase
location causes a larger post-contingency current in line
4031-4032.

The lower bound of 448 MW involves g2 and g4,
while the upper bound of 581 MW involves g11, g12, g8,
g5, g21 and g22.

The lower bound of 338 MW involves the same loads
as when both generation and load participations are varied.



5.3.2 GG power transfer

For the initial direction of stress, the maximum in-
crease in power transfer is 349 MW. It is again limited
by the overload of line 4031-4032 after the tripping of line
4011-4021. The computed bounds are given in Table 6.

Table 6: bounds (MW) on thermal overload margin (GG power transfer)

variant (d) (e) (f)
min margin 329 305 298
max margin 384 414 437

The smallest margin of 298 MW corresponds to an in-
crease of g2 and g4 productions, compensated by a de-
crease of g14.

The largest margin of 437 MW is obtained by increas-
ing the output of generators g21, g22, g5, g8, g11 and g12
(located mainly in the left part of the network) and de-
creasing the output of g19. Indeed, by redirecting the pre-
contingency power flow through the (double circuit) line
4031-4041, a higher transfer can take place from North to
South, for the same post-contingency current in the con-
straining branch 4031-4032.

In this example, the limiting branch does not change
when the direction of stress is modified, but the method
can deal with cases where it would change.

6 CONCLUSION

This paper has presented methods for determining
bounds on voltage and thermal security margins under
power transfer uncertainty. These margins are defined
with respect to contingencies.

Each bound is the solution of a constrained L1-norm
optimization problem. Generation and/or load powers are
allowed to vary within specified limits.

Thermal overload margins are treated using lineariza-
tion. A simple correction technique accounts for nonlin-
earities. The computation of a thermal margin bound is
fast, the main effort being two (linear case) or three (with
correction) contingency evaluations at some stress levels.

As far as voltage stability is concerned, the fast QSS
time simulation is used to simulate contingencies and ob-
tain the information needed to adjust the direction of stress
during the bound computation. This leads to the same
computational effort as for a conventional margin.

Most often the result is not only the bound but also the
location of the corresponding load/generation increases.

For both types of margins, lower and upper bounds can
be computed with respect to several contingencies simul-
taneously.
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