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Surface pressure in solid-on-solid models
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Abstract

Microscopic models of the solid-on-solid type were considered to describe the surface pressure of monolayers and
bilayers on top of another layer in two and three dimensions. The two interfaces, above and below the film, were
studied in simultancous thermal equilibrium without imposing a fixed profile for the first fluid or solid. It is shown
that the associated mecan field approximation leads to an cxact determination of the surface pressure isotherms
revealing the possible existence of plateaux, typical of first-order phase transitions.

1. Introduction

Consider a thin liquid film which is put on top of
another liquid. It follows from Gibb's law that if this
situation is stable, the interfacial tension is lower than
that of the virgin surface. This difference in interfacial
tensions defines the surface pressure [, 2]:

y (1
where 7, is the interfacial tension of the virgin surface
and 7 is the same in the presence of the film.

In the case of very thin films such as monolayers. the
standard theories refer to two-dimensional liquid sys-
tems., absorbing the details of the underlying layer in
some clfective parameters. A typical example is given
by the van der Waals equation for a two-dimensional
fluid,

n=7,—

i dy

(2)

pIl = 5
a—da, d-

where « is the area per molecule available at the sur-
face. a, is the closed packed limit area and f is the
inverse of the temperature A, 7.

Recently, new studics have been developed to take
into account the physical and chemical structures of the
first medium [3]. This aspect ot the problem may indeed
be important for rough adsorbates.

[t is our aim in this paper to show that the solid-on-
solid (SOS) description of the interfaces reproduces at
least qualitatively the experimental results. We first
review the results which have been obtained so far using
the solid-on-solid model in two dimensions. This is
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given in Scction 2. To obtain explicit expressions for
the surface pressurc in three dimensions, we also con-
sider the corresponding mean ficld model for mono-
layers and bilayers. This aspect of the problem is pre-
sented in Section 3. Concluding remarks are presented
in Section 4.

2. Surface pressure within ¢ =2 SOS models

In two dimensions. an interface with no overhangs
may be viewed as a one-dimensional random walk /i,
indexed by i: this is the SOS model of an interface. If
three phases coexist, an interface between two of them
may be wctted by bubbles of the third phase. This is
described by two random walks /i; and /i, with the
restriction that /i, = /i}: the first phase (A) lies above /1.
the third phase (C) lies below /1;, and the intruding phase
(B) is between /1, and /1 and is present at f only if i, > /1.
The two walks have to be considered as non-crossing
and, within restricted SOS models, we impose that

hy \—hel—1.01 Do —hel =101 (3)

i i+l i

Henceforth, we only allow random walk configura-
tions satisfying all the above restrictions including eqn.
(3). This kind of model has already been studied in the
literature (sec for example refs. 4 and 5 and references
cited therein). Here, however, we consider strict mono-
layers in which the film widthis 4, =/, —/i; =0o0r | as
indicated in Fig. 1. The case of bilayers has also been
studied in ref. 3.

The couplings J, J" and J” are associated respectively
with the AB, BC and AC interfaces. The energy cost of
such interfaces is described by the different lengths of the
interfaces AB, BC and AC which characterize the
configurations. This leads to the following hamiltonian:
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Fig. 1. A typical configuration for a monolayer described by the
heights A0 i =0.1.... on top of a fluid described by the heights /1.
i=1.2.0...

N
=5 G, o oh hy) (4)
i1
where
Gh, \Jh ho b))
Sl = by ifA4, ,=4,=0
04, )+ 0A,)

= ./‘/1, A

h,—h,
71 II l]+ 2

otherwise (5)

with

J+J ifA4#£0
(1) =
(4) {J” ifA=0
and
A =h —h

i 7 i

where ( takes into account the horizontal part of the
energy cost.

We  generally take boundary conditions sctting
fi, = n: =0 outside of some finite region A of length N.
We wish to study the surface tension 7 of an insoluble
thin film of B between bulk amounts of A and C in
which the amount of B has a macroscopic surface
density fixed to some value ¢ = 0.

To study this function 7(¢), let us first consider the
surface tension as a function of the chemical potential
jt. We take

W= fu (6)

where f is the inverse temperature. We then define

Y expl —fH —wQ) (7

. 1
fr(w) = m — — log
Ny fin=hy=0

where @ is the number of particles in the film

\

Q= Z (h, =) (8)

i1

and ¢ 1s related to w by

=1 B (9)
W

fa

The sum in cqn. (7) 1s over configurations of /i, and
h.(i=0,1,2, ..., N) with the indicated constraints of
liy and 'y in addition to those we will always impose
(hjel hieZ h,—h;=0 or 1, hy=hy=0,|h; ,—h
<band |h,, =<1

Using the transfer matrix technique [3. 6], one ob-
tains explicit expressions for y(w) and c¢(w).

Defining fSI{¢) = f7(0) — fF(¢), onc then obtains

il

pri(c) = log<l + @ > (10
1 —2¢
with x given by
1
v=(1—2¢) -
€
{( I —2¢) +[(1 —2¢)" +4c(] — )] ‘3}
) (11)
2¢(1 —¢)
where
[1+2exp(—K)][1+2exp(— K — K')]
€= 5 (12)

[exp(— K) +exp(—K')]”

with K =4J, K'=fJ" and K" = fiJ".
A comparison with the perfect fluid approximation is
casily realized by expanding the function I1(¢) in pow-

ers of 1/c. The virial series is, with - = 1/¢
1 1 1 1
where
3
Uy = 3 € (14)

which may be positive or negative.

Let us point out here that there appears in this
formula only one parameter 7/5> which is to be related
to the molecular interactions at the interfaces, K. K’
and K”. This new type of equation of state for the
surface pressure has the advantage that it takes into
account the entropy of the surface of the first medium
but, as can easily be seen in Fig. 2. it does not allow a
possible phase transition to be described.

3. Surface pressure within ¢ = 3 models

Let us now consider a three-dimensional model. The
two random walks have then to be replaced by two
random surfaces. Within a lattice Z°, we may model
these two random surfaces by two sets of height ran-
dom variables, namely /1, (i € Z%) which take the values
0 or 1 and /' (i € Z*) which take values 0 or — 1. In that
case, the restriction /i; = /i is automatic. Moreover, we
can consider a strict monolayer by imposing that A, has
to be 0 or | or a bilayer model, in the absence of further
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Fig. 2. The surface pressure given by egn. (10) in units of A7 as a
function of the concentration ¢ and different values of the parameter
e: 0.1, 1.0 and 10.0. The perfect gas approximation is given by the
dashed line.

restrictions, sincc then A, may be 0, 1 or 2. These
models are of interest in that they undergo a phase
transition.

More specifically, we show below that our model of
two random surfaces leads to the existence of flat
regions in [1(¢). Such flat regions are well known exper-
imentally (sce for example ref. 7).

The hamiltonian which describes the energetic cost of
such an interface is given by

JZ|:1+; Y /1,/1,‘]+J’Z[1+% Y h,’»vh_;}
i i g

J I
+(J"—=J=J) Z‘)‘h,.()(ﬁh,[() (15)

7

Let us associate with each height /1, or A, a spin
variable which takes the value —1 or 1, by

/1,:Ui+]
2
and
. o+ 1
;= 5 (16)

With this change of variables, we obtain the equivalent
of a “two-sheeted™ Ising model in two dimensions:

J J’
A = constant — Z 7,0, == Z 0,0
AN

=L py

J —-J=J

fsz,ﬂ}

J=J=J
e N R

where in £, ,, each nearest neighbor bond is counted
only once. The corresponding free energy is thus given
by
. , 1
Bf(H. f) = lim —mlog Z (K. K',AJ. H) (18)
4172

where

Z (K, K. AJ H)

=y exp’:(K/Q) Y o0, +(K']2)Y 00,

(a.a7)
+HZ((I,+(I})~AJZ(I,G}:| (19)

where the sum is over all the configurations (g, ¢'). In
our case, when the chemical potential g =0, we have

J—J =T
H =N = (20)

A qualitative discussion of the phase diagram associ-
ated with this model has already been given in ref. 3
using the Pirogov~Sinai theory. We are here interested
in exact results for the surface pressure but this requires
some simplification of the hamiltonian. Let us then
consider the corresponding mean-field approximation
given by the Curie—Weiss model [8] associated with this
hamiltonian.

We obtain

1 .
ffue(H, ) = Iim _W log ZMY(K, K', AJ, H) (21)
422

where

ZMYK, K, AJ, H)

el efoe)

VI

with

dp, (o, 0;) =expl —AJo,o; + (o, + ;)] dv(o,) dv(a;)
(23)

where dv(o) stands for the mecasure %[(5((7 — 1)+

oo + 1)].

This expression is equivalent to

- 7

A , 1 1 1,
Bfme(H, B) = .1113}: il log 7 j d- exp(—; :~>
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where

expl®,, (u, u’)] = Jexp(ua +u'c))dpylo,a’)

=exp(Polu + H u' + H)] (25)
B (L)
I 1 1 |1
= lim — og >
AT mKK)
) 1.1 l./Z ,
X de | de'exp —|/1| % + ' @0, v)
(26)
which leads to
. et e ,
B (1 ff) = min {K e Putee )} (27)

Now, we usc in the monolaycr casc
exp[d)nmnnlu}cr(l. l'/)]
' .
I : .
=- > expl —AJos’ + H(c + )

4((,:;7):1—]_ o= Do, =D
+ro +r'o’]

1
=2 [exp( —AJ —2H — v — 1)

+ 2 exp(AJ) cosh(r — v')] (28)
and in the bilayer case

CXp[(D I])}L\} cr( U ’)]

Y oY expl—AJoc' + H(oc +0') +vo +v'a]

e T

1
=4

[exp( —AJ) cosh(r + v+ 2H)

to | —

+ exp(AJ) cosh(r — )] (29)

To introduce the concentration ¢, let us consider the
grand canonical enscmble and its partition function (¢/.
eqn. (7))

1
fr(fr) = lim ~mlog > exp[/;y/
(. < cont’

;
/“Z(rf,+0;+2):l (30)

)
we then obtain

f(fr)y = constant + fiu
: ju  K'—K—-K'
‘*"/f.f.\u-(—/j%- 4§/{> (31)

Moreover,

c=0pp07 (32)
is therefore equal to

1 Cffur Uy Dk
= o ME 33
‘ 2 ope Tk T (33)

where fy. is evaluated at the inverse temperature f§ and
the field 7/ = —B(uf2) + (K" — K —K")/4, v, and v
insures the minimum of the right-hand side of eqn.
(27), i.e. v, and v, are the appropriate solutions of

2 \ _(“'J),, o
[?l*‘ o (l*~l*)
2 by, ,
X v = P (e U5) (34)

Solving this sct of implicit equations using some fixed
point procedure, we find f;(f) and ¢(fip) out of which
we may eliminate g and represent SIT = f5(0) — fi7(c)
as a function of ¢.

Let us first present the results associated with the
monolayer. Typical graphs of fIT as a function of ¢ arc
given in Fig. 3. As a function of the couplings J”, J and
J’ we obtain isotherms which present no plateau or one
plateau corresponding to a phase transition of the first
order.

For the bilayer case, two diffcrent cascs may appear
as a function of AJ. There could be onc or no plateau
as in the preceding case for negative or small values of
AJ. or there could appear two plateaux for high values
of AJ. This corresponds to successive transitions: no
layer — monolayer and monolayer — bilayer. When J is
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Fig. 3. Isotherms of the surface pressure fiIT given by eqn. (27) in
the monolayer case as a function of the concentration ¢. Different
values of parameters K. K and AJ have been considered: curve a.
(1.0, 1.0.0.0); curve b. (3.0.3.0. —5.0). The perlect gas approxima-
tion is denoted by curve ¢ in the figure.
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different from J', a third plateau could also appear
associated with the transition between the two different
monolayers. The associated isotherms show once more
the possible appearance of first-order phase transitions
for bilayer films.

To understand the origin of these properties of 1T in
terms of ¢, it is equivalent to consider the behavior of
the free energy fuy in terms of the magnetization
—(v,./K + v /K') defined as the partial derivative of
fur (given in eqn. (27)) with respect to the external field
H. Phase transitions correspond therefore to disconti-
nuities of the magnetization. There will be three differ-
ent cases according to the value of AJ: negative, zero or
positive. In the two first cases, we know that there will
be a discontinuity in the magnetization for low enough
temperature and zero external field (this can be proved
rigorously using the Pirogov-Sinai theory [9] for in-
stance). In the antiferromagnetic case (when AJ is
positive), the numerical results indicate that when AJ is
small enough with respect to J and J', there could be a
phase transition.

4. Concluding remarks

We have shown in this paper that the solid-on-solid
class of models may be used to model the equilibrium
properties of monolayers and bilayers on top of a fluid
in two or three dimensions. Exact results have been
obtained in three dimensions using the mean field ap-
proximation which are in good agreement qualitatively
with known experimental observations.

Let us here point out that a direct comparison with the
experimental data would require some extension of this
work to take into account for instance that the molecular

couplings parallel and perpendicular to the interface
may be different. Other approximations could also be
usefully considered such as the Bethe lattice approxima-
tion. These extensions are now under consideration.
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