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Moureaux Christine. (2008) Mesure des flux de CO2 et bilan carboné d'une rotation de quatre 

cultures (thèse de doctorat). Gembloux Faculté universitaire des Sciences agronomiques.  

10p., 1 fig., 6 articles. 

Résumé   

Le bilan carboné d'une rotation culturale de quatre ans a été établi entre 2004 et 2008 sur le 

site expérimental de Lonzée, Belgique. La région se caractérise par un climat tempéré 

océanique avec une température moyenne de l'air de 10°C et des précipitations annuelles de 

l'ordre de 800 mm. Le sol de la parcelle est un Luvisol. Les cultures composant la rotation 

sont des cultures de betterave, froment d’hiver, pomme de terre et froment d’hiver.  Dans le 

but d’établir un bilan carboné, des mesures ont été effectuées à différentes échelles spatiales 

et temporelles. Un système de mesure par eddy covariance fournit une estimation par demi-

heure de l'échange net en CO2 de l'écosystème (NEE). La qualité des procédures de sélection 

et de traitement des flux de NEE a été contrôlée. A partir de ces mesures, la productivité 

primaire brute (GPP) et la respiration totale de l'écosystème (TER) sont déduites. Plusieurs 

procédures basées sur les mesures diurnes ou nocturnes de NEE sont comparées. L'intérêt 

d'utiliser un court pas de temps dans ces procédures et la température du sol comme 

température de référence a été mis en avant, ainsi que la nécessité de déterminer une valeur 

seuil de la vitesse de friction (u*) pour chaque culture et les longues inter-cultures. Pour la 

culture de froment d'hiver 2005, une estimation de la GPP déduite des mesures d'eddy 

covariance est comparée à une estimation basée sur une modélisation de mesures réalisées, 

une fois par semaine, à l'échelle de la feuille. La conception initiale de l'appareil de mesure a 

permis de réaliser les mesures sur les feuilles uniquement. Les évolutions des deux 

estimations sont proches à l'échelle de la saison et à l'échelle journalière. La mise en œuvre de 

la méthode basée sur les mesures à l’échelle de la feuille a apporté d’importantes 

informations en termes de réponse de la GPP aux facteurs climatiques et non climatiques et a 

permis une validation de l’estimation basée sur les mesures d’eddy covariance. Toutefois, dans 

le cadre de l’établissement d’un bilan carboné, la méthode basée sur les mesures d'eddy 

covariance est préférée. Des mesures de la respiration de sol, réalisées à l'échelle de la mini-

parcelle de sol, et des mesures du contenu en carbone des plantes sont aussi réalisées. 

Combinées aux mesures d'eddy covariance, ces mesures permettent de déduire les parts auto- 

et hétérotrophiques de la respiration. Sur l'ensemble de la rotation, la parcelle apparait être 

une source significative de carbone de 0.17 (+/- 0.14) kg C m-2.  Cela suggère que, durant la 

rotation, le contenu en carbone du sol a diminué. Ceci peut s’expliquer par l’absence 

d’apport de fertilisation organique durant les 10 dernières années ainsi que par la récolte 

systématique des pailles des céréales. 



 



Moureaux Christine. (2008) CO2 fluxes measurements and carbon balance of a rotational 

cycle of four crops (thèse de doctorat in French). Gembloux, Belgium Gembloux Agricultural 

University. 10p., 1 fig., 6 articles. 

Summary 

The carbon balance of a full rotational crop cycle of four years was established between 2004 

and 2008 on the Lonzée site, Belgium. The climate is temperate maritime. The mean annual 

temperature is about 10°C and the annual precipitation is about 800 mm. The soil is a 

Luvisol. The studied crops were sugar beet, winter wheat, potato and winter wheat crops. In 

order to assess the carbon balance, measurements were carried out at different spatial and 

temporal scales. An eddy covariance system measured the CO2 net ecosystem exchange 

(NEE) every half-hour. The selection and treatment procedures quality was checked. The 

gross primary productivity (GPP) and the total ecosystem respiration (TER) were deduced 

from the eddy covariance measurements. Several procedures based on night-time or daytime 

NEE measurements were compared. The importance of a narrow window to fit the NEE to 

climate relationship was brought to the fore, like the importance of the soil temperature as 

reference temperature and the necessity of evaluating a friction velocity (u*) threshold value 

for each crop and for long inter-crops. For the winter wheat crop of 2005, a GPP assessment 

based on eddy covariance measurements was compared to an estimation based on 

measurements carried out once a week at the leaf scale. Measurements were carried out only 

on leaves because of the initial conception of the porometer. The evolutions of both 

estimations were in good agreement at both the crop time scale and the daily scale. The leaf 

scale model development provided important information concerning the GPP response to 

climatic and non climatic parameters. This modelled GPP also allowed validating the eddy 

covariance GPP estimation. However, in the frame of the carbon balance assessment, eddy 

covariance GPP estimation is preferred. In addition, soil respiration measurements were 

carried out at the soil mini parcel scale, and plant carbon content measurements were 

performed once a week. Combined to eddy covariance fluxes, these measurements allowed 

determining the auto- and heterotrophic respiration parts. On the whole rotational cycle, the 

site was a significant carbon source of 0.17 (+/- 0.14) kg C m-2. This suggests that the soil 

carbon content decreased during the studied period. This could be explained by the crop 

management, as neither farmyard manure nor slurry was applied on the crop since more 

than 10 years and as cereal straw was systematically exported. 
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Introduction et discussion 

 

La compréhension du cycle du carbone et de sa dynamique constitue un défi majeur pour la 

communauté scientifique. En effet, les activités humaines provoquent d'importantes 

émissions de gaz qui modifient la composition de l'atmosphère. En particulier, les émissions 

de dioxyde de carbone (CO2), d'hémioxyde d'azote (N2O) et de méthane (CH4) renforcent 

l'effet de serre et participent donc aux changements climatiques globaux. Il importe donc de 

mieux comprendre et quantifier le cycle du carbone et plus particulièrement de quantifier les 

quantités de carbone contenu dans les écosystèmes, terrestres ou océaniques, et de 

comprendre les mécanismes régissant les échanges au sein des écosystèmes et entre les 

écosystèmes et l'atmosphère. Effectivement, ce sont là les composantes du cycle du carbone 

qui présentent les plus grandes incertitudes.  

 

Dans le but de mieux comprendre le cycle du carbone et en particulier les échanges entre les 

écosystèmes terrestres et l'atmosphère, des réseaux régionaux se sont mis en place. En 

Europe, l'origine du réseau CarboEurope-IP remonte à 1996.  Le projet "Mesure des flux de 

CO2 et bilan carboné des grandes cultures" (Convention n°03/08-304, Communauté française 

de Belgique, Direction générale de l'Enseignement non obligatoire et de la Recherche 

scientifique, Projet "Action de Recherche Concertée"), dans le lequel le présent travail 

s’insère, a été initié dans le cadre de ce réseau européen. L'objectif général du projet est de 

quantifier et de comprendre l’évolution des échanges de CO2 d'une succession de cultures 

avec leur environnement et d'en établir le bilan carboné. Dans ce but, de nombreuses 

mesures ont été effectuées à différentes échelles spatiales et temporelles: mesures semi-

horaire à l'échelle de la parcelle (eddy covariance), mesures à l'échelle de la feuille, mesures à 

l'échelle de la mini parcelle de sol et mesures à l'échelle de la plante. Le schéma de la Figure 1 

présente les mesures effectuées et précise leurs échelles spatiales et temporelles.  

 

A l’échelle de l’écosystème, un système mesure les flux turbulents en utilisant la technique 

de covariance de turbulence (eddy covariance en anglais). Le flux mesuré chaque demi-heure 

est l’échange net en CO2 de l’écosystème (NEE pour Net Ecosystem Exchange).  Ce flux est la 

différence entre le CO2 absorbé par l’écosystème via la photosynthèse (GPP pour Gross 

Primary Productivity) et le CO2 émis suite à la respiration des plantes et du sol (TER pour Total 

Ecosystem Respiration).  
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A l’échelle de la plante, des mesures diffusives de l’assimilation nette des feuilles (An) sont 

effectuées une fois par semaine. Ce flux est la différence entre le CO2 que la plante assimile 

par photosynthèse (GPPLS) et celui qu’elle émet via la respiration de ses parties aériennes 

(Raa). 

 

 
Figure 1 : Présentation des différentes mesures réalisées sur le site de Lonzée et des flux obtenus. 

 

A l’échelle de la mini-parcelle de sol (de l’ordre du dm²) la respiration du sol (SR) est 

mesurée chaque demi-heure à l’aide d’un système automatique et une fois par semaine 

durant les périodes de culture, en utilisant un système manuel. Les premières mesures 

permettent d’obtenir une bonne représentativité temporelle de la SR. Ces mesures étant 

réalisées sur cinq mini-parcelles distantes l’une de l’autre d’un mètre, elles ne renseignent 

pas de la variabilité spatiale de la respiration du sol. C’est pourquoi des mesures 

supplémentaires sont effectuées manuellement à travers la parcelle.  

 

Afin de connaître les conditions dans lesquelles se produisent les différents échanges de CO2 

entre la parcelle agricole et l'atmosphère et dans le but d'étudier les réponses de ces flux aux 

conditions climatiques, une station météorologique fonctionne en continu dans le voisinage 

immédiat du système d'eddy covariance.  
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Le site expérimental (Lonzée) est une parcelle agricole de 11,8 ha sise dans la commune de 

Gembloux (Belgique). La région est caractérisée par un climat tempéré océanique avec une 

température moyenne de l'air de 10°C et des précipitations annuelles de l'ordre de 800 mm. 

Le sol est un Luvisol (classification FAO). La parcelle est cultivée par la même famille depuis 

1933 et, durant les dix dernières années, elle a connu une rotation de 4 ans fréquemment 

rencontrée en région limoneuse et composée de froment d’hiver, de betterave et de pomme 

de terre. 

 

Ce travail a pour objectif général d'établir le bilan carboné d'une rotation complète sur le site 

agricole de Lonzée. Pour atteindre cet objectif, les mesures précitées ont été réalisées sur les 

quatre cultures qui se sont succédé sur le site expérimental  entre 2004 et 2008 : une culture 

de betteraves sucrières en 2004, de blé d’hiver en 2005, de pommes de terre en 2006 et à 

nouveau de blé d’hiver en 2007.  

 

Le travail est composé de six articles et du présent texte. Les six articles sont classés comme 

suit 

 

Article 1 : Moureaux C., B. Bodson, M. Aubinet Mesure des flux de CO2 et bilan carboné 

de grandes cultures : état de la question et méthodologie. Accepté dans la revue BASE.  

Cet article décrit le contexte général dans lequel les recherches se déroulent et il 

détaille le projet "Mesure des flux de CO2 et bilan carboné des grandes cultures" et ses 

objectifs. 

 

Article 2 : Moureaux C., A. Debacq, B. Bodson, B. Heinesch, M. Aubinet (2006). 

Annual net ecosystem carbon exchange by a sugar beet crop. Agricultural and Forest 

Meteorology, 139, 25-39.  

La première année de mesure en continu de l'échange net de l'écosystème (NEE) et sa 

dépendance aux variables climatiques et non climatiques est présentée. Les choix 

méthodologiques faits pour calculer le flux net sont évalués. La séquestration 

annuelle est calculée ainsi que sa sensibilité à certaines hypothèses de travail. 

 

Article 3 : Moureaux C., B. Bodson, M. Aubinet.  Evaluation of different approaches to 

deduce TER and GPP from eddy covariance measurements above crops. Soumis à 

Agricultural and Forest Meteorology. 
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Différentes procédures utilisées pour séparer l'échange net de l'écosystème, mesuré 

par le système d'eddy covariance, en ses deux composantes principales : la productivité 

primaire brute (GPP) et la respiration totale de l’écosystème (TER) sont comparées et 

discutées. Les incertitudes sur la GPP et la TER résultant de ces procédures sont 

évaluées. 

 

Article 4 : Hoyaux J., C. Moureaux, D. Tourneur, B. Bodson, M. Aubinet. Extrapolating 

gross primary productivity from leaf to canopy scale in a winter wheat crop. Agricultural 

and Forest Meteorology, 148, 668-679. 

La productivité primaire brute peut être estimée à partir de mesures faites à l'échelle 

de la feuille. Les mesures réalisées lors la culture de froment d'hiver de 2005 sont 

décrites cet article ainsi que le modèle d'extrapolation mis au point pour passer de 

l'échelle spatiale de la feuille à celle de la parcelle. L'estimation de la GPP ainsi 

obtenue est comparée à la GPP obtenue à partir des mesures d'eddy covariance. 

 

Article 5 : Moureaux C., A. Debacq, J. Hoyaux, Suleau M., Tourneur D., F. 

Vancutsem, B. Bodson, M. Aubinet. Carbon balance assessment of a Belgian winter wheat 

crop (Triticum aestivum L.). Global Change Biology, doi: 10.1111/j.1365-

2486.2008.01560.x  

Sur base des différentes mesures effectuées sur le site (mesures d'eddy covariance, 

mesures à l'échelle de la feuille, mesures du contenu en carbone de la culture et 

mesures de respiration du sol), le bilan carboné complet de la culture de blé d’hiver 

2005 est établi. L'évolution des différents flux au cours de la saison est présentée et 

mise en relation avec le développement de la culture. 

 

Article 6 : Aubinet M., C. Moureaux, B. Bodson, D. Dufranne, B. Heinesch, M. Suleau, 

F. Vancutsem, A.Vilret. Carbon sequestration by a crop during a four year rotational cycle. 

Soumis à Agricultural and Forest.  

Le bilan carboné d’une rotation de 4 ans (2004 – 2008) est établi. Cette rotation est la 

succession des cultures de betterave, froment d’hiver, pomme de terre et froment 

d’hiver. Pour établir le bilan carboné, les mesures exploitées sont les mesures d’eddy 

covariance, les mesures automatiques et manuelles de respiration du sol, les mesures 

d’assimilation de la feuille et les mesures de biomasse et de contenu en carbone des 

plantes.  
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Le système d'eddy covariance et la station météorologique ont été installés dans le cadre de ce 

travail. Les procédures de traitement ont été adaptées au site et la bonne qualité des 

procédures de sélection de données et de traitement a été montrée sur la première année de 

mesure (Article 2). La robustesse de l'estimation annuelle de la NEE à certains choix 

méthodologiques a aussi été démontrée.  

 

Différentes méthodes de discrimination de la NEE en ses composantes, la TER et la GPP, ont 

été comparées à l'échelle de la saison de culture et de la journée (Article 3). En particulier 

deux approches ont été confrontées, l'une utilisant les mesures de jour, l'autre les mesures de 

nuit. De cette étude, il ressort l'importance de choisir des procédures utilisant des pas de 

temps courts (quelques jours) pour ajuster les relations entre la NEE et le climat de manière à 

reproduire des évènements particuliers comme les phases de développement intense, les 

périodes de sénescence ou de sécheresse. L'importance d'utiliser la température de sol et non 

la température de l'air comme température de référence est également mise en évidence. La 

comparaison entre les meilleures estimations des deux approches est satisfaisante : leur 

différence étant du même ordre de grandeur que les incertitudes qui leur sont associées. 

Pour notre site, l'approche utilisant les mesures de nuit est toutefois préférée car elle peut 

être utilisée lors des périodes avec peu ou pas de végétation et permet ainsi d'établir le bilan 

carboné sur l'ensemble d'une rotation.  Enfin, la nécessité de procéder à un filtrage des 

données correspondant aux périodes de faible turbulence et d’évaluer ce critère de sélection 

des données pour chaque culture et pour les longues inter-cultures est soulignée. 

 

Pour la culture de blé d’hiver 2005, une seconde estimation de la GPP a été comparée à celle 

provenant des mesures d’eddy covariance. Cette seconde estimation est le résultat d’un 

modèle basé sur des mesures effectuées à l'échelle de la feuille (Article 4). La mise au point 

du modèle d'extrapolation permet d’identifier plus finement les dépendances de la 

photosynthèse aux conditions climatiques, à la position et à l'âge des feuilles. Cependant, 

cette méthode est couteuse en temps de mesure. De plus, la conception initiale de l’appareil 

de mesure a permis de mesurer l’assimilation des feuilles uniquement. L'estimation de la 

photosynthèse des tiges et des feuilles demande une adaptation de la pince de mesure qui a 

été réalisée par la suite. L’estimation de la contribution des tiges et des épis à l’assimilation 

de la culture provient d’une comparaison avec les mesures d’eddy covariance. Même si les 

deux estimations ne sont plus entièrement indépendantes, leurs évolutions au cours de la 

saison de culture et de leurs variations journalières ont pu être comparées et sont apparues 
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en excellent accord durant la période de mesure. Nous avons ainsi pu valider l’estimation 

provenant des mesures d’eddy covariance. Malgré les informations supplémentaires apportées 

par les mesures réalisées à l’échelle de la feuille, l’estimation de la GPP basées sur les 

mesures d’eddy covariance est préférée dans le cadre de l’établissement d’un bilan carboné. 

Les raisons en sont une plus grande fiabilité et une mise en œuvre moins couteuse en temps 

de mesure. Dans le but d'améliorer un modèle basé sur des mesures à l'échelle de la feuille, il 

est important de mesurer l'assimilation nette des différents organes de la plante, pas 

seulement celle des feuilles. Il est également recommandé de débuter les mesures dès 

l'émergence de la culture et de les continuer, de manière régulière, jusqu'à la récolte de 

manière à éviter de longues extrapolations et à reproduire d'éventuels effets du 

vieillissement de la culture, voire de sa sénescence ou d’évènements climatiques particuliers 

tels, par exemple, une période de sécheresse. Il est également important, particulièrement 

dans le cas des céréales, de suivre l'évolution de la sénescence au cours de la culture et à 

travers la canopée ainsi que son impact sur l'assimilation des différents organes. 

 

L'établissement du bilan carboné complet repose donc sur les mesures d'eddy covariance, les 

mesures de respiration du sol et les mesures du contenu en carbone des plantes (Article 5). 

C'est en combinant ces dernières mesures avec les mesures d'eddy covariance que les parts 

autotrophes et hétérotrophes de la respiration sont déduites. La précision des mesures de 

NPP est donc importante dans le bilan carboné. Elles doivent être effectuées avec soin et 

répétées sur un nombre suffisant de plantes de manière à intégrer la variabilité existant entre 

plantes. L'estimation de la biomasse et du contenu en carbone des racines peut être difficile 

pour certaines cultures comme le froment d'hiver vu la profondeur d’enracinement. Dans 

cette étude, des estimations de la proportion de biomasse racinaire venant de littérature ont 

été utilisées pour les cultures de blé d’hiver.  

 

Le bilan carboné complet a été établi pour la culture de froment d'hiver 2005 (Article 5). C'est 

la première étude publiée présentant un bilan complet d'une culture à partir de mesures. De 

même, l'analyse du bilan carboné d'une rotation de quatre années telle que présentée à dans 

l’Article 6 n'a encore été accomplie pour aucun autre site européen. Seules quelques études 

présentant le bilan carboné de rotations soja-maïs dans le Midwest américain sont présentes 

dans la littérature (Baker et Griffis, 2005 ; Verma et al., 2005 ; Hollinger et al, 2005, 2006 ; 

Grant et al., 2007). Sur l’ensemble de la rotation, la parcelle de Lonzée se comporte comme 

une source de carbone et émet 0,17 kg C m-2. La quantité de carbone émise est significative, 
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l’erreur associée étant de 0,14 kg C m-2. Cela signifie donc, qu’au cours de la rotation, le 

contenu en carbone du sol de la parcelle a diminué. Cela peut être expliqué par la gestion 

particulière de la parcelle : pas de fertilisation organique appliquée depuis plus de 10 ans et 

l’exportation systématique des pailles de céréales. Notons que durant la culture de froment 

d’hiver de 2007, des conditions climatiques particulières ont été observées : températures 

particulièrement douces en hiver et sécheresse en avril. Cela a eu pour conséquence qu’une 

plus grande quantité de biomasse est retournée au sol. En conclusion, si l’année 2007 avait 

connu un climat plus proche des normales et de l’année 2005, l’intensité de la source aurait 

été plus grande et plus significative.  

 

L’analyse des quatre années de mesure (Article 6) a également permis d’observer les impacts 

des interventions culturales. En particulier, l’impact de l’émission de CO2 après les labours 

est apparu limité en intensité et en durée. Par contre, un impact significatif de la 

décomposition des résidus de betterave laissés sur le champ lors de la récolte a clairement 

été observé durant les trois semaines suivant la récolte. Cet effet s’est prolongé les mois 

suivants mais il n’a pas été possible de le séparer des autres contributions des flux mesurés. 

Une assimilation significative de CO2 a également été observée durant les inter-cultures du 

fait des repousses de cultures et d’adventices. 

 

Pour les quatre cultures, la part autotrophe de la respiration domine la respiration totale de 

l’écosystème et représente 65% ou plus de la TER. De même, une étroite corrélation entre 

cette respiration autotrophe et la GPP a été observée, démontrant que lorsque la plante est 

active d’un point de vue assimilation, elle l’est également en termes de respiration. 

 

Avec les données accumulées durant les quatre premières années de mesure sur le site de 

Lonzée, il est également possible d'étudier plus en profondeur les mécanismes régissant les 

échanges de CO2 des différentes cultures avec l’atmosphère, leurs réponses aux variables 

climatiques et leurs évolutions en fonction du développement de la culture. Ce dernier point 

a été étudié pour la culture de blé d’hiver 2007 (Article 5). L'analyse climatique des flux, 

réalisée dans ce travail, a permis de mettre en évidence que l'assimilation par la culture 

augmente lorsque la proportion de rayonnement diffus est importante, c'est-à-dire à 

rayonnement équivalent lorsque le ciel est couvert.  
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Par ailleurs, les cultures se répétant tous les 2 ou 4 ans, l'opportunité est offerte d'étudier leur 

variabilité interannuelle et leur comportement face à d’éventuelles conditions climatiques 

particulières. Par exemple, le froment d'hiver a été cultivé en 2005 et en 2007. Lors de cette 

deuxième année, l’hiver particulièrement doux et le mois d'avril très sec a influencé le 

développement de la culture et les échanges de CO2. De plus, les modèles mis au point en 

2005, pourront être validés sur les mesures de 2007. La comparaison de ces deux années de 

culture est actuellement en cours. Les mêmes analyses pourront rapidement être menées sur 

les cultures de betteraves 2004 et 2008. 

 

Dans cette étude, une première estimation des parts autotrophes et hétérotrophes de la 

respiration du sol est effectuée en combinant les mesures d'eddy covariance et les mesures de 

NPP. Une deuxième méthode a été développée sur le site qui consiste à mesurer la 

respiration du sol sur des zones cultivées et non cultivées. Dans les secondes, l'hypothèse est 

faite que seule la part hétérotrophe de la respiration est mesurée. La confrontation de ces 

résultats est en cours d'analyse. Une troisième méthode basée sur la discrimination 

isotopique permettrait de valider les deux techniques précitées. A l’heure actuelle, cette 

technique n'est pas utilisée sur le site de Lonzée, 

 

La parcelle étudiée dans ce travail se comporte comme une source de carbone et participe 

ainsi au renforcement de l’effet de serre. Ce résultat est valable sous nos conditions 

expérimentales et aurait peut-être été différent sous d’autres conditions expérimentales et 

d’autres modes de gestions culturales. En effet, les mesures d'eddy covariance ainsi que les 

autres mesures réalisées dans le cadre du bilan carboné, permettent de mesurer et de 

comprendre les échanges se produisant entre l'écosystème étudié et l'atmosphère. Elles ne 

permettent cependant pas de prédire l'évolution des flux face aux changements climatiques 

ou à une modification des pratiques culturales ni de prédire les flux d'une parcelle voisine ou 

de la région dans laquelle se font les mesures. Pour réaliser ces prédictions, il faut bâtir des 

modèles plus fondamentaux prenant en compte les mécanismes de base se produisant dans 

l'écosystème, c'est-à-dire la photosynthèse des végétaux et la respiration auto- et 

hétérotrophe. Les mesures d'eddy covariance sont idéales pour mettre au point et tester ces 

modèles. De tels modèles sont actuellement en cours de développement. Une étude récente 

(Grant et al., 2007) estime les différents termes du bilan carboné (GPP, Ra et Rh) sur une 

rotation maïs-soja à l'aide d'un modèle nommé Ecosys et la compare aux résultats de mesures 

d'eddy covariance. Quatre-vingt pourcents de la variabilité des mesures d'eddy covariance sont 
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expliqués par ce modèle. Ce modèle prédit, en plus des échanges de carbone des plantes en 

C3 et en C4, les échanges d'énergie et la fixation symbiotique de l'azote. 

 

Il a été établi par l’IPCC (2007) que l’agriculture participe pour 13,5 % aux émissions 

anthropiques en gaz à effet de serre. Elle est une des principales sources anthropiques en 

méthane et la plus importante source anthropique en N2O. Dans le but d’établir le bilan en 

gaz à effet de serre des cultures ou des exploitations dans leur ensemble, afin de mieux 

comprendre les processus régissant ces échanges et d’étudier les modes de gestion 

permettant de les réduire, il apparait donc essentiel de tenir compte, des échanges de CO2, de 

N2O et de CH4. 

 

Dans le cadre du protocole de Kyoto,  les accords de Marrakech (adoptés à Montréal lors de 

COP/MOP 1) ont autorisé que les puits et les sources biosphériques soient comptabilisées 

durant la première période 2008 – 2012. La possibilité de stocker du carbone dans les sols 

agricoles est donc proposée comme un moyen de mitigation du CO2. A l’heure actuelle, de 

grandes incertitudes concernant la capacité des agro systèmes à stocker du  carbone suite à la 

mise en place de systèmes de gestion alternatifs ressortent de la littérature scientifique (e.g. 

Smith et al. 2000; Vleeshouwers et Verhagen, 2002; Freibauer et al., 2004; Smith, 2004). 

Toutefois, il apparaît que cette stratégie ne peut être efficace que durant les premières de son 

application (Battelle, 2000; Freibauer et al., 2004). A long terme, elle n'est pas une solution 

pour réduire le taux d'enrichissement de l'atmosphère en gaz à effet de serre. Elle ne 

dispense donc pas de chercher à la fois des alternatives durables à l'utilisation d'énergie 

fossile et des approches permettant de diminuer la consommation d'énergie. Aujourd'hui, 

80% de la production globale d'énergie viennent  des combustibles fossiles et de l'énergie 

nucléaire. Par ailleurs, il est également impératif de s’assurer que les pratiques culturales 

alternatives ne présentent pas d’impacts négatifs, à court et à long terme, sur les émissions de 

N2O, sur la productivité des cultures ou sur la qualité des sols.  

 

Rappelons toutefois que le rôle premier de l’agriculture est de fournir, à une population 

croissante, nourriture, fourrage et fibres. En 1950, la population mondiale comptait 2,5 

milliards d’être humain, elle en compte aujourd’hui plus de 6,6 milliards et elle devrait 

dépasser les 9,2 milliards en 2050 (United Nations, 2007). Alors que la plupart des territoires 

de bonne qualité sont déjà dédiés à l’agriculture et qu’il n’est pas attendu que les surfaces 

agricoles augmentent, le secteur de l’agriculture se trouve sous une pression croissante.  
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Depuis la fin des années 1950, le rythme d’accroissement de la production agricole mondiale 

a fortement augmenté. Les raisons principales sont l’utilisation de variétés de culture à haut 

rendement, l’utilisation intensive d’engrais inorganiques et de pesticide et l’utilisation plus 

fréquente de l’irrigation. Dans les années 1970, suite à la crise de l’énergie et à la prise de 

conscience des conséquences environnementales à long terme, de nouvelles préoccupations 

sont apparues concernant l’érosion, la compaction et la baisse de fertilité du sol, la 

contamination des nappes souterraines et la destruction des systèmes sociaux traditionnels. 

A la suite de cela, des pratiques de gestion agricole durables et efficace en ressources ont été 

recherchées. Ensuite, durant les années 1980, une prise de conscience des changements 

climatiques s’initialise. Ces changements incluent l’accroissement de la température, 

l’élévation des teneurs en CO2, le bouleversement des régimes hydrologiques, l’allongement 

des périodes de végétation, l’occurrence d’évènements extrêmes plus grande et l’acidification 

des océans et représentent dés lors une pression supplémentaire pour l’agriculture et la 

sécurité alimentaire (FAO, 2007).  

 

Les impacts des changements climatiques sont à la fois des impacts biologiques et des 

impacts socio-économiques. Parmi les impacts biologiques, on observe des effets 

physiologiques sur les écosystèmes ; des modifications des ressources en territoires, sols et 

eau ; le développement accru d’adventices et de nuisibles ; l’augmentation du niveau des 

mers et de la salinité des océans. La diminution des rendements et de la production, la 

diminution du PIB provenant de l’agriculture, la fluctuation des prix des marchés mondiaux, 

l’augmentation du risque d’insécurité alimentaire ; les migrations et les troubles civils font 

parties des impacts socio-économiques (FAO, 2007). 

 

Différentes adaptations de l’agriculture sont envisagées pour faire face aux changements 

climatiques. Parmi celles-ci citons les modifications des dates de semis ;  l’utilisation de 

différentes variétés ou espèces ; modification du travail du sol ; promotion de 

l’agroforesterie. Alors que les adaptions de l’agriculture face aux changements climatiques 

seront rapidement réalisées dans les pays développés, il n’en sera pas de même pour les pays 

émergents disposant de faibles ressources économiques, d’un accès réduit aux technologies, 

à l’information et à la connaissance ou des institutions peu efficaces. 
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Résumé 

L'augmentation des concentrations atmosphériques en dioxyde de carbone (CO2), gaz qui 

participe au renforcement de l'effet de serre, a mis en évidence la nécessité de mieux 

comprendre le cycle du carbone et sa dynamique. En particulier, de larges incertitudes sont 

actuellement associées aux échanges entre les écosystèmes et l'atmosphère. Des réseaux 

régionaux se sont constitués afin d'étudier ces flux de CO2. En Europe, le réseau 

CarboEurope-IP étudie les échanges entre écosystèmes terrestres et atmosphère. Il regroupe 

plus de 100 sites forestiers, agricoles ou de prairie. Cet article décrit le projet "Mesures des 

flux de CO2 et bilan carboné des grandes cultures" qui s’intègre dans ce réseau et dont 

l'objectif général est de quantifier et de comprendre l'évolution des flux de CO2 d'une 

succession de cultures sur une parcelle agricole belge avec son environnement. Pour 

atteindre cet objectif, des mesures sont effectuées selon différentes techniques et à différents 

échelles spatiales et temporelles. Des mesures de l'échange net de CO2 sont effectuées à 

l'échelle spatiale de la parcelle et avec une fréquence semi-horaire. A la même fréquence, la 

respiration du sol est mesurée à l'échelle de la mini parcelle de sol. A l'échelle de la feuille, 

des mesures de son assimilation nette sont effectuées chaque semaine. Enfin, des 

échantillonnages de plantes sont effectués dans le but de déterminer le contenu en carbone 

dans la culture. Après avoir décrit les objectifs du projet, cet article présente chacune des 

techniques de mesure effectuées et les informations qu'elles fournissent. Il expose également 

comment les résultats des différentes mesures peuvent être combinés afin de déduire un 

bilan carboné complet de la parcelle agricole. 

 

Descripteurs 

Bilan carboné - Covariance de turbulence – Cultures - CarboEurope-IP – Photosynthèse – 

Respiration autotrophe – Respiration hétérotrophe. 



Abstract 

The increase of carbon dioxide (CO2) atmospheric concentration, which is a greenhouse gas, 

put in stress the need of a better understanding of the carbon cycle and its dynamic. In 

particular, the exchanges between ecosystems and atmosphere are characterized by large 

uncertainties. Regional networks were set up to study these CO2 fluxes. In Europe, the 

CarboEurope-IP network studies the exchanges between terrestrial ecosystems and the 

atmosphere. It includes more than 100 sites of forests, croplands or grasslands. This article, 

presents the project "CO2 flux measurement and carbon balance of agricultural crops" which 

was developed in this frame. The main aim of this project is to quantify the CO2 flux 

evolution of Belgian crops and understand its response to biotic and abiotic factors. In order 

to meet this goal, measurements are carried out at different spatial and temporal scales. Net 

ecosystem exchange measurements are carried out every half-hour at the parcel scale Soil 

respiration is measured at the soil plot scale with the same frequency. At the leaf scale, net 

assimilation measurements are performed once a week. Moreover, plant samplings are 

carried out to determine the crop carbon content. After presenting the objectives of the 

project, this paper presents the measurement techniques and the fluxes they allow obtaining. 

The procedures used to combine the measurements in order to assess a complete crop carbon 

balance are also detailed.   

 

Keywords 

Carbon balance – eddy covariance – crops - CarboEurope-IP – Photosynthesis –Autotrophic 

respiration – Heterotrophic respiration. 

 



1. Introduction 

Les concentrations atmosphériques en dioxyde de carbone (CO2), en hémioxyde d'azote 

(N2O) et en méthane (CH4), tous trois gaz à effet de serre, n'ont cessé d'augmenter depuis la 

révolution industrielle du fait des activités humaines. Le dioxyde de carbone est le gaz qui a 

l'impact le plus important sur l'effet de serre. Sa concentration atmosphérique ([CO2]) a 

augmenté de 280 μmol mol-1 en 1950  à 379 μmol mol-1 en 2005 (IPCC, 2007). Les mesures 

effectuées à partir de carottes glacières montrent que cette valeur est supérieure aux 

concentrations observées durant les 650 000 dernières années, lesquelles auraient oscillé 

entre 180 et 300 μmol mol-1. Durant les 10 dernières années, l'augmentation annuelle des 

[CO2] a été plus importante que l'augmentation moyenne des 45 dernières années, c'est-à-

dire la période couverte par des mesures directes de concentration atmosphérique. 

 

La composition isotopique du CO2 atmosphérique et la diminution observée de la 

concentration d'oxygène démontrent que la principale cause d’émission de CO2 est liée à la 

consommation de carburant fossile. Celle-ci est estimée à 23,5 ± 1,5 Gt CO2 par an pour les 

années '90 (valeur ± intervalle de confiance à 90%). La deuxième source anthropique par 

ordre d’importance résulte des changements d'utilisation des sols et en particulier de la 

déforestation. Elle représente le quart de la précédente, i.e. 5,9 ± 4,1 Gt CO2 par an pour les 

années '90 (IPCC, 2007). Par ailleurs, le Groupe International d'Experts pour le Climat (IPCC) 

affirme, avec une certitude de 90%, que ces émissions sont responsables du réchauffement 

climatique global. 

 

Les émissions anthropiques de CO2 constituent une des composantes du cycle global du 

carbone. Ce cycle comporte quatre grands compartiments : l'océan, l'atmosphère, les 

écosystèmes terrestres et les composés fossiles. Le carbone circule entre eux dans différentes 

proportions. Entre l’atmosphère et la biomasse terrestre se réalise un double flux : le carbone 

pénètre dans la biomasse par le processus de photosynthèse et retourne dans l'atmosphère 

par la respiration végétale et animale, par la décomposition et la respiration des 

microorganismes ainsi que par les activités humaines.  

 

Durant les années '90, les échanges nets entre l'atmosphère et les écosystèmes terrestres et les 

océans ont été estimés à, respectivement, 5,1 ± 2,6 Gt CO2 par an et 6,2 ± 1,8 Gt CO2 par an 

(Houghton et al., 2001), ces écosystèmes absorbant ainsi du CO2 et ralentissant 



l'augmentation des concentrations atmosphériques. En effet, sur la même période, les 

émissions anthropiques résultant de la combustion de fuel fossile ont été estimées à 23,1  ± 

1,5 Gt CO2 et l'augmentation de la [CO2] atmosphérique à seulement 11,7 ± 0,4 Gt CO2. 

Depuis la seconde partie des années '90, d'énormes efforts ont été fournis pour quantifier 

l'ampleur de l'absorption de carbone par les écosystèmes terrestres et les localiser. Il est 

maintenant admis que les écosystèmes terrestres extratropicaux de l'hémisphère Nord sont 

les plus actifs (Schimel et al., 2001; Brown, 1996; Pacala et al., 2001; Tans et al., 1990; Bousquet 

et al., 2000; Baker, 2000; Peylin et al., 2002; Heimann, 2001; Rayner et al., 1999;  Ciais et al., 

1995; Houghton et al., 1999; Houghton et al., 2001; Schimel et al., 2000; McGuire et al., 2001). 

Cependant, les contributions respectives de l'Europe, de l'Amérique du Nord et l'Asie sont 

très largement incertaines (Schimel et al., 2001). De la même façon, la compréhension des 

mécanismes mis en jeu et leur vulnérabilité aux changements climatiques et aux modes de 

gestion sont également incertains. 

 

L’amplitude actuelle des puits de CO2 pourrait ne pas être maintenue dans le futur (Schimel 

et al., 2001) car les processus principaux mis en jeu vont vraisemblablement diminuer. Par 

exemple, les effets de l'implantation d'une forêt sur une terre agricole peuvent décroître 

lorsque la forêt atteindra sa maturité (Gower et al., 1996). De la même façon, la séquestration 

accrue de carbone par les écosystèmes résultant des concentrations croissantes en CO2 et en 

azote vont saturer lorsque de hautes concentrations seront atteintes ou qu'une autre 

ressource deviendra limitante (Falkowski et al., 2000; Houghton et al., 2001; Canadell et al., 

2004).  

 

Les effets du changement climatiques sur les écosystèmes sont également très variables d’un 

écosystème à l’autre. Il semble que l'amplitude de la séquestration terrestre ait une grande 

variabilité annuelle en réponse aux variations climatiques (Bousquet et al., 2000; Rödenbeck 

et al., 2003) et par conséquent une grande sensibilité aux changements climatiques globaux. 

En 2003, une sécheresse exceptionnelle a été observée en Europe. Plusieurs études récentes 

en ont analysé les conséquences sur le bilan carboné d'écosystèmes terrestres européens 

(Ciais et al., 2005; Granier et al., 2007; Reichstein et al., 2007). Ce type d’étude permet en effet 

d'analyser la réponse des écosystèmes terrestres à des conditions climatiques extrêmes qui 

pourraient être représentatives de notre climat à venir (Lawlor, 1998; Saxe et al., 2001; Meehl 

et Tebaldi, 2004; Schär et al., 2004; Houghton et al., 2001). Il en ressort que de tels évènements 

climatiques peuvent significativement altérer le bilan carboné des écosystèmes européens. Ils 
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peuvent contrebalancer les effets positifs d'une saison de croissance plus longue et plus 

chaude, altérer la bonne santé et la productivité des écosystèmes, voire inverser des puits en 

sources de CO2 (Ciais et al., 2005; Granier et al., 2007; Reichstein et al., 2007). Dés lors les 

échanges par les écosystèmes terrestres accélèreraient plutôt que ralentiraient l'augmentation 

des [CO2] atmosphériques. 

 

Dans ces conditions apparaît clairement la nécessité de mieux comprendre la dynamique du 

cycle du carbone et d'estimer sa capacité à absorber une partie des émissions anthropiques 

de CO2. Face à ce défi, la communauté scientifique a mis sur pied une structure complexe 

visant à comprendre les multiples composantes du système carbone – climat – écosystèmes – 

humains et leurs interactions.  

 

Dans cet article, nous décrirons tout d’abord à la Section 2 le réseau européen CarboEurope-

IP qui fédère la plupart des groupes de recherche européens travaillant sur les échanges 

écosystèmes terrestres – atmosphère et dont le site agricole de Lonzée constitue un maillon. 

Ce réseau trouve ces origines en 1996 et s'intéressait alors exclusivement aux écosystèmes 

forestiers. L’intérêt d’étudier les interactions entre les écosystèmes agricoles et le climat n’a 

été reconnu que plus récemment. La justification de leur étude est discutée à la Section 3. La 

section 4 définit les différents échanges de CO2 pouvant se produire entre une parcelle 

agricole et l'atmosphère. Enfin, l’ensemble du projet de recherche "Mesure des flux de CO2 et 

bilan carboné des grandes cultures" (Convention n°03/08-304, Communauté française de 

Belgique, Direction générale de l'Enseignement non obligatoire et de la Recherche 

scientifique, Projet "Action de Recherche Concertée") qui est mis en œuvre sur le site 

expérimental de Lonzée sera décrit à la Section 5, les conclusions et une série de perspectives 

de recherche étant proposées à la Section 6.  

 

2. Le projet CarboEurope-IP 

L'objectif fondamental du projet européen CarboEurope-IP (contrat n° GOCE-CT-2003-

505572) est de comprendre et de quantifier, tant à l'échelle locale, régionale que continentale, 

le bilan carboné terrestre en Europe ainsi que les incertitudes qui y sont associées (e.g. 

Baldocchi et al., 2001; Baldocchi, 2003, Valentini, 2003) . Cela implique de (i) déterminer le 

bilan carboné européen, sa structure spatiale et son évolution temporelle; (ii) comprendre les 

mécanismes et les processus régissant  le cycle du carbone des écosystèmes européens et la 
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manière dont ils peuvent être affectés par la variabilité et les changements climatiques et par 

les interventions humaines et (iii) développer un système d'observation pour identifier les 

changements des [CO2] atmosphériques et des stocks de carbone dans les écosystèmes en 

conformité avec les engagements européens envers le protocole de Kyoto de réduction des 

émissions de CO2 et d'accroissement de la séquestration dans les écosystèmes. 

 

Le réseau CarboEurope-IP est un projet intégré du 6° Programme Cadre et a démarré en 

2003. Il a émergé de la fusion de plusieurs projets européens et constitue par conséquent une  

communauté interdisciplinaire et cohérente de recherche dans les domaines de la mesure et 

de la modélisation du carbone dans les écosystèmes et dans l'atmosphère. Pour atteindre ses 

nombreux objectifs, le projet intégré s'est organisé en quatre composantes: (i) mesures à 

l'échelle de l'écosystème; (ii) mesures atmosphériques à l'échelle continentale; (iii) 

expérimentation régionale dans le but de réduire les incertitudes lors des extrapolations 

spatiales; (iv) intégration européenne regroupant les différentes données en une estimation 

du bilan carboné européen.  

 

Notre projet est développé dans le cadre de la première composante qui étudie plus 

spécifiquement les processus d'échange entre les écosystèmes et l'atmosphère et mesure ces 

échanges à une échelle spatiale de l'ordre du kilomètre carré. Au total, 103 sites en Europe 

(Fig. 1) mesurent les échanges de CO2 à cette échelle spatiale au moyen de la même 

technique de mesure appelée covariance de turbulence ou, en anglais, eddy covariance. Les 

sites étudiés sont des forêts (50%), des prairies (29%) et des cultures (21%) et couvrent toute 

l'Europe : du sud de l'Espagne à la Laponie et de l'Irlande à la Hongrie.  

 

Le principe des mesures d'eddy covariance est basé sur le fait que la couche limite 

atmosphérique est caractérisée par la présence de mouvements turbulents qui sont 

responsables du transport vertical de traceurs comme, par exemple, le CO2, la vapeur d'eau 

ou la chaleur sensible. La technique d'eddy covariance échantillonne ces tourbillons de 

manière à établir le taux d'échange de traceur entre l'écosystème et l'atmosphère. Cette 

mesure requiert la mesure simultanée et à haute fréquence de la concentration du traceur et 

de la vitesse verticale du vent. Les bases théoriques de cette mesure sont décrites par Aubinet 

et al. (2000), Massman et Lee (2002), Baldocchi (2003), Lee et al. (2004). 
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Figure 1 : Carte des sites appartenant au réseau européen CarboEurope-IP. 

 

La théorie de la technique d'eddy covariance est attribuée à Sir Osborne Reynolds (Reynolds, 

1895). Toutefois, l‘application de la méthode à des mesures de flux de CO2 sur de longues 

périodes n'a été possible qu'à la suite du développement d'anémomètres soniques (Coppin et 

Taylor, 1973), d'analyseurs ouverts de gaz par absorption infrarouge à réponse rapide 

(Bingham et al., 1978; Jones et al., 1978; Brach et al., 1981; Ohtaki et Matsui, 1982) et de 

l'amélioration de la performance des systèmes d'acquisition. La première année de mesure en 

continu est accréditée à Wofsy et al. (1993). Ces mesures ayant démarré en 1990 sur une forêt 

décidue, se poursuivent encore aujourd'hui. Après 1993, plusieurs études mesurèrent les flux 

de CO2 et de vapeur d'eau au dessus de forêts nord-américaines (Greco et Baldocchi, 1996, 

Goulden et al., 1996a,b), japonaises (Yamamoto et al., 1999), amazoniennes (Grace, 1996), 

européennes (Grelle and Lindroth, 1996, Valentini et al., 1996) et boréales (Black et al., 1996 ; 

Jarvis et al., 1997). En 1996, le premier réseau européen de sites de mesures de flux de CO2 
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s'est créé. Il comportait 16 sites, tous forestiers. Au début des années 2000, l'intérêt d'étudier 

les cultures et les prairies a conduit à la création de nouveaux sites. L'importance des 

interactions entre les cultures et le climat est présentée à la Section 3. A l'heure actuelle des 

réseaux similaires se sont constitués à travers le globe (Amériflux en Amérique du Nord, 

Asiaflux en Asie du Sud-Est, Ozflux en Australie, LBA au Brésil, Chinaflux en Chine, 

CarboAfrica en Afrique sub-saharienne,…). Tous ces réseaux régionaux couvrent ainsi une 

très large variété d'écosystèmes et ils se sont fédérés en un réseau mondial dénommé 

FLUXNET qui comporte, au total, plus de 400 sites (FLUXNET, 2007)  

 

3. Interactions entre agriculture et climat 

Aujourd'hui 36 % des territoires hors glaciers sont intensivement utilisés comme cultures et 

pâturages (Desjardins et al., 2007). En Europe,  les terres arables couvrent environ un tiers du 

territoire. L'importance de l'agriculture en termes d'utilisation du territoire apparaît donc de 

manière évidente. 

 

Les interactions entre climat et agricultures sont nombreuses. D'une part, le climat influe 

l'agriculture via la longueur de la saison de végétation, la température de l'air et du sol, 

l'humidité de l'air et du sol, le rayonnement photosynthétiquement actif disponible, l'absence 

ou la présence de situation de stress, … D'autre part, l'agriculture émet des gaz à effet de 

serre qui influent le climat. En effet, l'agriculture émet vers l'atmosphère du CO2 mais aussi 

du N2O et du CH4. Elle est reconnue comme la plus importante source biosphérique de CO2 

et contribue aux émissions anthropiques de CH4 et N2O à raison de 45 – 50 % et 20 - 70 %, 

respectivement (Cole, 1996; Mosier et al., 1998; Pattey et al., 2007). Les émissions de CO2 des 

cultures vers l'atmosphère sont dues à la respiration des plantes et à la décomposition de la 

matière organique du sol. Le N2O provient majoritairement (plus de 90%) des sols cultivés à 

travers les processus de dénitrification et de nitrification de la matière organique. Les 

principales émissions de CH4 sont dues aux cultures de riz irriguées ou résultent de la 

digestion des ruminants et des déjections animales (fumier, lisier, …) stockées de manière 

anaérobie. Les incertitudes associées aux émissions de N2O et de CH4 demeurent 

actuellement importantes. 

 

La couverture du sol influence également largement le climat régional. En particulier, le type 

de végétation influence le climat local et régional du fait des variations de l'albédo, de 
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l'humidité du sol, de la rugosité de la surface et de la surface de végétation à partir de 

laquelle des échanges de chaleur latente et sensible se produisent (Bonan, 2002). Des 

modifications dans la distribution et le fonctionnement des écosystèmes influencent les 

cycles biogéochimiques et les échanges d'énergie. La plupart des interactions surface – 

atmosphère se produisant par le biais de la végétation (Raddatz, 2007), ces modifications 

peuvent dés lors contribuer aux changements climatiques. Les techniques de gestion des 

cultures peuvent aussi influencer le climat local et régional. Par exemple, le surpâturage, la 

mise en culture et la déforestation peuvent contribuer à un affaiblissement des précipitations 

(Bonan, 2002). L'irrigation peut augmenter la quantité de vapeur d'eau contenue dans 

l'atmosphère et conduire à une augmentation de la nébulosité et des précipitations. 

 

La possibilité de stocker du carbone dans les sols agricoles est proposée comme moyen 

d'atténuation dans le cadre du protocole de Kyoto. En effet, les accords de Marrakech 

(adoptés à Montréal lors de COP/MOP 1) autorisent que les puits et les sources 

biosphériques soient comptabilisées durant la première période 2008 – 2012 (Smith et al., 

2004). De nombreuses études sont menées dans le but de déterminer le potentiel de stockage 

dans les sols agricoles et les pratiques culturales capables de favoriser ce stockage (e. g. 

Smith et al. 2000; Vleeshouwers et Verhagen, 2002; Freibauer et al., 2004; Smith, 2004).  

 

Le contenu en carbone organique d'un sol dépend de la différence entre les apports de 

carbone fixé par photosynthèse et les pertes via les processus de décomposition. A l'échelle 

locale, l'érosion peut provoquer une perte ou un gain de carbone estimable alors que pour de 

grandes superficies, l'effet net de l'érosion sur les émissions de CO2 n'est pas facilement  

définissable (Smith et al., 2004). La qualité et la quantité des apports de matière organique 

dans les sols ainsi que le taux de décomposition de carbone organique du sol sont 

déterminés par les interactions entre le climat et le sol ainsi que par l'utilisation du sol et le 

régime de restitution des matières organiques. Dans les écosystèmes naturels, le climat et les 

conditions de sol sont les premiers facteurs déterminant le bilan carboné du sol car ils 

influencent à la fois la production de l'écosystème et le taux de décomposition. Par contre, 

dans les écosystèmes agricoles, l'utilisation du sol et la gestion culturale modifient d'une part 

les apports de matière organique via le choix des cultures, l'application de fertilisants, les 

modalités de récolte, la gestion des résidus et d'autre part, le taux de décomposition, les 

conditions du sol et son microclimat par la sélection de la culture, du travail du sol, d'une 

éventuelle pratique de mulching, de l'application de fertilisants, de l'irrigation, du chaulage 
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(IPCC, 1997). Les exportations de la production agricole constituent également des pertes de 

carbone pour l'écosystème. Dans nos analyse, nous considèrons que ce carbone est réémis 

très rapidement vers l'atmosphère sous forme de CO2. 

 

L'évaluation des pratiques agricoles en termes de stockage de carbone est réalisée en 

comparant les apports et les pertes de carbone organique dans le sol. Il ne faut cependant pas 

négliger le fait que ces pratiques peuvent modifier les émissions de CH4 ou de N2O qui ont 

aussi un rôle déterminant dans le bilan total des gaz à effet de serre. Par exemple, un travail 

simplifié du sol peut accroitre la quantité de carbone séquestrée dans le sol mais il peut 

également augmenter les phénomènes de dénitrification et donc provoquer des émissions 

supplémentaires de N2O (Six et al., 2004). Le travail du sol sans labour peut également 

générer ou aggraver des problèmes de compaction du sol, de prolifération d'adventices ou 

de nuisibles (Seguin et al., 2007). L'apport de matière organique peut augmenter l'émission 

d'N2O. De la même manière, l'introduction de cultures intercalaires peut accroitre la 

séquestration de carbone mais implique une utilisation accrue des réserves en eau du sol et 

nécessite pour leur installation une consommation supplémentaire de carburant (Seguin et 

al., 2007). Les impacts de ces différentes techniques sont nombreux et leurs effets à long 

terme doivent être analysés au cas par cas. 

 

La séquestration de carbone est habituellement mesurée en terme de quantité totale de 

carbone stockée dans le sol. Toutefois, la manière dont ce carbone est stocké et la durée du 

stockage dépendent d'un grand nombre de paramètres (Six et al., 2001; Gleixner et al., 2002; 

Kaiser et al., 2002; Balesdent et al., 2000). Il faut savoir que la séquestration de carbone dans 

les sols n’évolue pas de manière linéaire au cours du temps: des expériences menées à long 

terme montrent que la teneur en carbone des sols augmente rapidement après la mise en 

place d'un changement d'utilisation du sol ou d'une pratique culturale (e.g. Smith et al. 

1997a,b) mais que le taux d'accumulation diminue avec le temps. Après 20 à 100 ans, un 

nouvel équilibre est atteint ne permettant plus de nouvelles potentialités de séquestration 

(Freibauer et al., 2004). Ce phénomène est parfois décrit comme un saturation du puits de 

carbone (Watson et al., 2000). De plus, l'arrêt d'une pratique agricole permettant le stockage 

de carbone provoque une réémission de CO2  plus rapide que son accumulation (Arrouays et 

al., 20002; Smith et al. 1996).  
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La stratégie consistant à séquestrer du carbone dans les sols dans le but d'atténuer 

l'augmentation des concentrations atmosphériques en CO2 peut être efficace durant les 

premières décennies du 21e siècle (Battelle, 2000; Freibauer et al., 2004). A long terme, elle 

n'est pas une solution pour réduire le taux d'enrichissement de l'atmosphère en gaz à effet de 

serre et donc, elle ne dispense pas de chercher des alternatives durables à l'utilisation 

d'énergie fossile et des approches permettant de diminuer la consommation d'énergie. En 

effet, 80% de la production globale d'énergie viennent aujourd'hui des combustibles fossiles 

et de l'énergie nucléaire.  

 

4. Les échanges de CO2 à l’échelle d’une culture  

Afin de mieux décrire le projet "Mesures des flux de CO2 et bilan carboné des grandes 

cultures", il est nécessaire de rappeler quelques définitions concernant les échanges de CO2 

entre les écosystèmes terrestres et, en particulier, les cultures et l’atmosphère. Une culture 

absorbe le CO2 via le processus de photosynthèse. La quantité de carbone qu'elle peut ainsi 

assimiler est dénommée la production primaire brute (GPP : gross primary productivity). Par 

ailleurs, cette culture réémet du CO2 par la respiration des plantes et du sol. Ce flux est 

appelé la respiration totale de l'écosystème (TER : total ecosystem respiration). La différence 

entre ces deux flux importants et opposés est nommée échange net de l'écosystème (NEE : 

net ecosystem exchange). Ces flux sont schématisés à la Figure 2.  

 

NPP 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : Représentation des flux de CO2 échangés entre une culture et l'atmosphère. 
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La TER résulte d'une part de l'activité de la plante et des mycorhizes qui sont associées à ses 

racines (respiration couramment qualifiée dans la littérature de respiration autotrophe, Ra), 

d'autre part de la décomposition de la matière organique du sol par les microorganismes 

(respiration hétérotrophe, Rh). La TER peut aussi être décomposée en une partie résultant des 

parties aériennes de la plante (Raa) et une partie résultant de la respiration du sol (SR) qui est 

la somme de la respiration autotrophe souterraine (Rab) et de la respiration hétérotrophe (Rh) 

(Figure 2). 

 

Seule une partie du carbone assimilé par la culture est réémis vers l'atmosphère via les 

processus de respiration autotrophe. Du carbone est en effet stocké dans les tissus de la 

plante, c'est la production primaire nette (NPP : net primary productivity). 

 

En comparant l'échange net de la culture (NEE) à la quantité de carbone qui est exportée lors 

de la récolte, on peut déterminer si une culture, sur un intervalle de temps donné, se 

comporte comme une source ou un puits de carbone. Cette différence est la NBP (net biome 

productivity).  

 

5. Projet "Mesures des flux de CO2 et bilan carboné des grandes cultures" 

 Description générale du projet 

L'objectif général de ce projet est de quantifier et de comprendre l’évolution des échanges de 

CO2 d'une succession de cultures avec son environnement. Plus particulièrement, les 

objectifs sont 

• de mesurer les flux nets de CO2 échangés par une culture avec l'atmosphère et 

d'estimer la séquestration ou l'émission nette de carbone par la culture. 

• d'analyser les effets des variations climatiques inter et intra annuelles sur les flux de 

CO2 échangés par la culture et en déduire les mécanismes qui les régissent. 

• d'identifier les rôles respectifs du sol et de la plante dans ces flux et mettre en 

évidence les variables et les processus physiologiques qui contrôlent les mécanismes 

de réponse des flux au climat. 

• d'étudier l'impact des interventions culturales sur les flux de CO2 en liaison avec les 

mécanismes biologiques du sol. 
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• d'établir un bilan carboné complet de la culture et de déterminer la répartition du 

carbone séquestré/émis entre le sol et les parties récoltées et non récoltées de la 

végétation.  

 

Dans ce but, de nombreuses mesures sont effectuées à différentes échelles spatiales et 

temporelles. Lorsque c'est possible, les résultats obtenus à partir de différentes techniques 

opérées à différentes échelles sont confrontées afin de valider les mesures. Trois équipes de 

la Faculté universitaire des Sciences agronomiques de Gembloux travaillent conjointement à 

ce projet: l'Unité de Physique des Biosystèmes, l'Unité de Phytotechnie des Régions 

tempérées et le Laboratoire d'Ecologie microbienne et d'Epuration des Eaux usées. Le projet 

est financé par le Communauté française de Belgique (Projet ARC) et par la Communauté 

européenne (Projet CarboEurope). 

 

 Description du site et des mesures 

Les mesures sont réalisées sur une parcelle agricole de 11,8 ha, sise à Lonzée, commune de 

Gembloux (Belgique). Ce site est maintenu sous culture depuis plus de 70 ans et depuis près 

de 10 ans, il est cultivé selon une rotation de quatre ans, largement pratiquée dans la région 

limoneuse. Depuis le début des mesures, les cultures qui se sont succédées sont la betterave 

sucrière (Beta vulgaris, L.) (2004), le blé d’hiver (Triticum aestivum, L.) (2005), les pommes de 

terre pour plants (Solanum tuberosum, L.) (2006) et, à nouveau le blé d’hiver (2007). En 2008, 

des betteraves sucrières seront à nouveau cultivées. Le site est caractérisé par un climat 

tempéré maritime avec une température moyenne de 10°C et une pluviométrie annuelle de 

l'ordre de 800 mm. Le sol est un Luvisol (classification FAO). Le site a été décrit en détail 

dans Moureaux et al. (2006). 

 

A l'échelle de la plante, des échantillons sont prélevés une fois par quinzaine ou une fois par 

semaine, selon le rythme de développement de la culture. Quatre zones de prélèvement sont 

définies à proximité de la station météorologique et du système d'eddy covariance de manière 

telle à ne pas perturber les mesures de ce dernier. Les échantillons sont répétés dans ces 

quatre zones. La matière sèche et le contenu en carbone de ces échantillons sont mesurés et 

extrapolés à l'ensemble de la culture. Ces mesures permettent d’obtenir une estimation de la 

productivité primaire nette (NPP).  
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A l’échelle de la plante, toujours, les surfaces des feuilles et des différents organes sont 

mesurées au cours du développement des cultures. Un suivi visuel régulier est également 

mis en place dans le but de définir les stades de développement, de suivre l'ordre 

d'apparition et de disparition des différents organes, d'observer l'évolution de la sénescence 

et de détecter d'éventuelles maladies. Les dépositions d'azote sont également mesurées. 

 

A l'échelle de la mini parcelle de sol, les flux de respiration de sol (SR) sont mesurés, chaque 

demi-heure, à l'aide d'un système automatique utilisant le principe de la chambre fermée 

dynamique (Norman et al., 1992; Longdoz et al., 2000) mis au point à l'Unité de Physique des 

Biosystèmes (Suleau et al., soumis, a). Dans ce système, un collier est inséré dans le sol. 

Pendant la mesure, il est fermé par un couvercle et relié par un circuit aérodynamique à un 

analyseur de concentration de CO2 par spectrométrie infrarouge. Le circuit aérodynamique 

étant fermé, la respiration contribue à augmenter la concentration de CO2 dans le système. La 

mesure est déduite de la pente de l’évolution de la concentration de CO2 en fonction du 

temps. Ces mesures permettent d'étudier l'évolution temporelle et climatique de la 

respiration du sol. Toutefois, comme les chambres sont en nombre limité et placées en des 

positions fixes, elles ne renseignent pas de la variabilité spatiale des flux. C'est la raison pour 

laquelle, pendant les périodes cultivées et à raison d'une fois par semaine, des mesures 

additionnelles sont effectuées de manière extensive au travers de la parcelle agricole avec un 

système portatif, basé sur le même principe.  

 

Toujours à l’échelle de la mini parcelle de sol, des mesures microbiologiques sont menées 

avec l’objectif de déterminer les quantités d'azote et de carbone microbiens et les respirations 

basales et induites. Les premières permettent d'estimer l'importance des populations 

microbiennes et les secondes renseignent sur leur acticité. Ces mesures sont effectuées afin 

d’expliquer la variabilité spatiale de la SR.  

 

A l'échelle de la feuille, l'assimilation nette est mesurée à l'aide d'un poromètre (Licor 6400, 

Licor Inc, Lincoln, NE, USA). Cet appareil permet de mesurer les échanges de CO2 d'une 

feuille sous conditions contrôlées (température, déficit de pression de vapeur, rayonnement 

incident, [CO2] ambiante). Lors des mesures, une partie de feuille est insérée dans la pince de 

mesure. Les conditions de température et de déficit de pression de vapeur de la feuille et de 

[CO2] de l'air sont maintenues constantes aux valeurs que connaissait la feuille avant la 

mesure. Le rayonnement varie par palier des conditions saturantes à l'obscurité. A chaque 
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palier, l'assimilation nette de la feuille est mesurée. On obtient ainsi la réponse de 

l'assimilation nette d'une feuille au rayonnement (réponse A – Q).  

 

Enfin, à l'échelle de la parcelle, un système de mesure des flux turbulents (eddy covariance) 

fournit une mesure par demi-heure de l'échange net de CO2 par la parcelle (NEE) (cf. Section 

2). Un des principaux objectifs des mesures d'eddy covariance étant le suivi à long terme des 

échanges, les flux vont être sommés à l'échelle journalière, mensuelle, saisonnière et 

annuelle. L'ensemble de la procédure d'acquisition et de traitement des données est décrite 

dans un article méthodologique (Aubinet et al., 2000). Cette procédure standardisée est 

utilisée par l'ensemble de la communauté FLUXNET. 

 

En plus de ces différentes mesures, une station météorologique automatique est installée sur 

la parcelle afin de mesurer en continu les conditions dans lesquelles se font les échanges et 

ainsi de déterminer leur réponse au climat. Cette station fournit chaque demi-heure une 

mesure de la température et de l'humidité de l'air (RHT2, Delta-T Devices Ltd, Cambridge, 

UK) à 1.3 m du sol, de la pression atmosphérique (MPX4115A, Motorola Phoenix, AR, USA), 

des précipitations, du rayonnement global incident et réfléchi, du rayonnement infrarouge 

incident et réfléchi (CNR1, Kipp en Zonen, Delft, NL),  du rayonnement 

photosynthétiquement actif diffus et total (Sunshine Sensor type BF3, Delta-T Devices Ltd, 

Cambridge, UK), de la température (pt100, Jumo) et de l'humidité du sol (ThetaProbe, Delta-

T Devices Ltd, Cambridge, UK) à différentes profondeurs.  

 

 Exploitation des mesures 

Le schéma de la Figure 3 synthétise la procédure utilisée pour exploiter les mesures 

effectuées et représente les flux obtenus directement par mesure, les flux calculés à partir 

d’un seul type de mesures et enfin les flux obtenus par combinaison de plusieurs types de 

mesures.  

 

La mesure de NEE par eddy covariance permet d’évaluer l’importance du puits ou de la 

source de CO2 que représente une culture. La séquestration annuelle de la culture de 

betterave, sa sensibilité à certains choix méthodologiques lors de son estimation et la réponse 

des flux au climat et au développement de la culture est analysée dans Moureaux et al. 

(2006).  Toutefois, la mesure de NEE ne permet pas de prédire son évolution suite à un 
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changement du climat ou du mode de gestion de l'écosystème. En effet, l’échange net résulte 

de la différence entre la photosynthèse des feuilles (GPP) et la respiration de l’écosystème 

(TER), lesquelles répondent différemment au climat (e.g. Falge et al., 2002; Law et al., 2002). 

Une meilleure compréhension de l’évolution du flux net exige donc de pouvoir séparer ces 

deux processus et de les décrire indépendamment. La procédure que nous avons choisie est 

celle proposée par Reichstein et al. (2005). Cette méthode part du principe que les mesures 

effectuées la nuit par le système d'eddy covariance représentent la TER. La réponse de ce terme 

à la température peut donc en être déduite. Si l’on postule que la TER présente la même 

réponse à la température de jour que de nuit, elle peut dés lors être calculée pour l'ensemble 

de la journée en extrapolant aux conditions de jour la réponse établie la nuit. La GPP est alors 

calculée comme la somme de la NEE et de la TER pendant la journée et est considérée 

comme nulle pendant la nuit. L'algorithme utilisé pour établir une réponse de la TER à la 

température utilise un court pas de temps (quelques jours) de manière à pouvoir reproduire 

des évènements particuliers et limités dans le temps comme les périodes d'intense 

développement de la culture, les périodes de sénescence ou de sècheresse (Reichstein et al., 

2005; Moureaux et al., soumis).  

  

Les mesures de respiration du sol sont extrapolées à l’échelle de la culture en combinant les 

mesures automatiques et manuelles. L’extrapolation est basée sur un principe de séparation 

des dépendances climatique et spatiale : la réponse climatique de la respiration est 

caractérisée par une fonction identique en tous points de la culture laquelle est multipliée par 

un coefficient intégrant la variabilité spatiale. La réponse climatique est obtenue en 

combinant les résultats des mesures automatiques aux mesures météorologiques, le 

coefficient spatial étant déduit des mesures manuelles. De cette manière, la respiration 

mesurée à l’échelle des mini parcelles de sol peut être extrapolée aux échelles de la culture et 

de la saison entière. Un article présentant la mise au point d'un tel modèle, sa calibration et 

sa validation sur les mesures de la SR des cultures de froment d'hiver 2005 et 2007 est soumis 

(Suleau et al., soumis, b). Il analyse également la dépendance de la respiration du sol aux 

précipitations et met en évidence un comportement différencié de la respiration du sol selon 

les stades de développement de la culture. Préalablement à telles analyses, les chambres de 

respiration de sol ont été adaptées pour fournir des mesures fiables sur un site agricole.  Ces 

chambres ayant initialement été conçues pour fonctionner dans des écosystèmes forestiers et 

donc dans des conditions peu venteuses car à l'abri dans la forêt, un important problème de 
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sensibilité des mesures au vent a dû être résolu. Les adaptations apportées au système sont 

décrites dans Suleau et al. (soumis, a). 
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Figure 3 : Présentation de la méthodologie de calcul permettant d'obtenir les termes du bilan de 

carbone à partir de mesures faites à différentes échelles spatiales et temporelles. 

 

Les mesures d'assimilation nette à l'échelle de la feuille sont répétées une fois par semaine 

sur différentes feuilles dans le but d'étudier la variabilité de la réponse A – Q en fonction de 

la position de la feuille, des conditions climatiques et de la saison. A partir de cette 

description, un modèle peut être développé pour extrapoler l’assimilation nette (différence 

entre la quantité de carbone assimilée par photosynthèse, GPPLS, et la respiration des parties 

aériennes de la plante, Raa,LS ; Figure 3) à l'entièreté de la culture et à toute la saison de 

végétation. Pour ce faire, outre la description des réponses A – Q, il est nécessaire de 

connaître l’évolution et la répartition des organes verts dans la culture. Cette approche a été 

décrite et développée par Hoyaux et al. (accepté) pour la culture de froment d'hiver de 2005.  

 

En combinant ces mesures, les différents termes du bilan carboné de la culture sont déduits 

(Figure 3), en particulier la discrimination entre les parts autotrophes et hétérotrophes de la 
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respiration. Une autre technique pour décomposer la respiration du sol en ses parts auto- et 

hétérotrophes a été mise en place sur les cultures de pommes de terre (2006) et de froment 

d'hiver (2007). Elle consiste à mesurer la respiration du sol sur des parties plantées et non 

plantées. L'hypothèse est posée que les parts auto- et hétérotrophes sont présentes dans les 

premières alors que seule la part hétérotrophe est présente dans les secondes. Il faut toutefois 

tenir compte du fait que, dans les secondes, l’absence de végétation modifie les conditions 

climatiques locales et doit influer sur la part hétérotrophe. L'analyse de ces résultats est 

actuellement en cours. Ils pourront être confrontés aux estimations provenant de la 

combinaison de la NEE (ou de la GPP) et de la NPP (Figure 3). 

 

Le bilan carboné de la culture de blé d'hiver est présenté dans Moureaux et al. (accepté). Les 

évolutions des différents flux et de leurs valeurs relatives sont analysées en fonction du 

développement de la culture. Dans leur article, Hoyaux et al. (accepté) comparent les 

estimation de la GPP obtenues à partir des mesures à l'échelle de la feuille et à partir des 

mesures d'eddy covariance. Les deux estimations de la Raa sont confrontées dans Moureaux et 

al. (accepté).  

 

Notre appartenance au réseaux européens CarboEurope-IP et NitroEurope implique la mise 

en commun de mesures effectuées sur notre site. En effet, l'ensemble des mesures 

météorologiques, des mesures faites par le système d'eddy covariance, des mesures de 

matières sèches et de contenus en carbone (NPP), ainsi que le suivi du développement de la 

culture sont à la disposition des communautés de CarboEurope, de FLUXNET et de 

NitroEurope sur une base de données. Celle-ci permet d'effectuer plus aisément des analyses 

inter sites. Un article récemment publié compare des méthodes d'estimations de la GPP pour 

différents sites européens (forêts, prairies, cultures) non soumis à des épisodes de sécheresse 

(Owen et al., 2007). Plusieurs articles comparant les cultures sont en préparation. Ils sont 

coordonnés par différents groupes du réseau.  

 

La base de données fournit également les mesures effectuées à l'échelle d'un site aux groupes 

qui établissent les bilans carbonés à l'échelle régionale, européenne ou globale (e.g. Ciais et 

al., 2005 ; Granier et al., 2007; Reichstein et al., 2007,  ). 
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6. Conclusions et perspectives 

Le projet pluridisciplinaire intitulé "Mesures des flux de CO2 et bilan carboné d'une grande 

culture" a permis, à ce jour, de mieux caractériser les échanges de CO2 entre une culture et 

l’atmosphère pendant une rotation complète de quatre ans. Une évaluation de la 

séquestration nette de carbone par chaque culture et de l'ensemble de la rotation a été 

réalisée. Une comparaison de la séquestration nette entre les cultures a aussi été effectuée. Le 

développement en parallèle de différentes mesures effectuées à différentes échelles spatiales 

et temporelles (mesure de photosynthèse à l’échelle de la feuille, mesures de matière sèche, 

mesures de respiration du sol) a par ailleurs permis, d’une part de réaliser une validation 

mutuelle des méthodes, d’autre part de mieux détailler les différentes composantes du flux 

net de CO2. En particulier, les évolutions avec le climat et le développement de la culture des 

productivités primaires brute et nette, de la respiration totale de l'écosystème et de la 

respiration du sol ont pu être étudiées. La séparation entre les composantes hétérotrophe et 

autotrophe de la respiration a pu être réalisée et s’est avérée riche d’indications pour la 

compréhension de ces flux. La méthodologie permettant l’établissement du bilan carboné des 

cultures a été mise au point, les incertitudes liées à chaque méthode ont été évaluées et une 

méthode optimale a été proposée et appliquée de manière à proposer un bilan carboné des 

cultures. 

     

D’autres points restent à analyser ou à approfondir. La réponse des flux au climat et aux 

stades de développement de la végétation reste à affiner. En effet, dans la mesure où, au 

cours d’une saison de culture, la succession de ces stades est corrélée aux variables 

climatiques qui sont souvent elles-mêmes corrélées entre elles, il n’est pas toujours possible 

d’identifier la cause précise de la variation du flux. Le fait de pouvoir observer des cultures 

identiques qui se succèdent sur le site tous les deux ou quatre ans permet d’affiner cette 

description et de mieux discerner l’impact de l’une ou l’autre cause. En pratique la 

comparaison entre deux cultures identiques développées deux années différentes fournit des 

séries de données indépendantes permettant de valider et calibrer des modèles décrivant le 

comportement des flux. Ce travail est notamment en cours pour les cultures de blé en 2005 et 

2007 et est projeté pour les cultures de betteraves de 2004 et 2008. Par ailleurs cette 

comparaison permet d’évaluer la variabilité interannuelle des flux. Par exemple, la 

comparaison des flux en 2005 et 2007 va permettre d’étudier l’impact des conditions 

climatiques très particulières de 2007 (hiver exceptionnellement doux, printemps très sec) sur 
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le développement de la culture et fournira de précieuses informations quant au 

comportement d’une culture soumise à un climat plus chaud et à une période de sècheresse.  

 

Il est également nécessaire de vérifier la représentativité des mesures réalisées à l’échelle 

régionale. Les réseaux CarboEurope-IP et FLUXNET auxquels le site est rattaché offrent de 

nombreuses possibilités de comparaisons inter sites des différents flux. En particulier, une 

étude comparant les bilans carbonés de cultures ayant connu une rotation complète ou 

quatre ans de cultures continues serait souhaitable.    

 

Une meilleure compréhension des processus responsables des échanges de CO2 et une 

meilleure prédiction de l’évolution de ceux-ci suite à un changement climatique passe par 

l’élaboration de modèles. Les modèles mis au point jusqu’ici sont essentiellement de type 

empirique. Il est maintenant nécessaire de développer des modèles plus fondamentaux 

prenant en compte les mécanismes de base à l’œuvre dans la culture. S’il existe des modèles 

fondamentaux décrivant la photosynthèse (Farquhar and von Caemmerer, 1982), les modèles 

décrivant les processus de respiration à l’échelle de l’écosystème et à une échelle journalière 

restent très insuffisants. Ils sont pourtant nécessaires pour prédire notamment l’impact de 

pratiques culturales sur ces flux. Ces modèles ne pouvant pas être développés ab nihilo, il est 

nécessaire de développer en parallèle  des expériences spécifiques permettant leur 

calibration et leur validation. En particulier, les expériences mesurant les rapports 

isotopiques du CO2 émis s’avèrent prometteuses dans ce contexte, permettant notamment de 

mieux séparer la part de la respiration provenant de l'activité des plantes et celle provenant 

de la décomposition de la matière organique du sol. 

 

L’étude de l’impact des pratiques culturales sur les flux doit être approfondie. Les mesures 

décrites ici se rapportent à une culture de production gérée de manière traditionnelle. 

L’analyse des quatre années de mesure en continu de l'échange net révèle certaines 

« anomalies » qui sont liées à certaines interventions culturales (labour, épandage de résidus 

de cultures, traitement herbicide, etc.). La réponse climatique des flux ayant maintenant bien 

été décrite, une analyse de résidus des modèles de réponse climatique pourrait être 

développée afin de chiffrer l’émission de CO2 associée à ces activités. Par ailleurs, la nécessité 

d’adapter l’agriculture aux changements climatiques et la volonté de mitiger l’effet de serre 

en tentant d’accroître le stockage de carbone dans le sol mène à l’élaboration de nouveaux 

itinéraires culturaux et de nouvelles pratiques de gestion des cultures. L’impact de ces 
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pratiques sur les émissions de gaz à effet de serre, sur la productivité des cultures et sur la 

qualité des sols est le plus souvent hypothétique. Il est donc nécessaire de plus étudier et 

approfondir l’impact des pratiques agricoles sur les émissions de CO2. En particulier l’impact 

d’une modification des doses ou de la distribution de la fertilisation, l’impact d’un travail du 

sol réduit, celui de la restitution et de l'enfouissement des résidus de cultures après récolte 

doivent être analysés plus en détail. Cela nécessite, outre le développement des modèles 

fondamentaux précités, celui d’expériences particulières.  

 

Notre étude s’est jusqu’ici concentrée sur le CO2 qui est le principal gaz à effet de serre. Le 

méthane et le protoxyde d’azote sont également des gaz jouant un rôle important; leur plus 

faible concentration dans l’atmosphère étant compensée par un plus grand pouvoir de 

réchauffement potentiel (IPCC, 2007). Les sols agricoles constituent une des sources 

principales de N2O mais les modalités de cette émission, leur dépendance par rapport au 

climat et aux actions culturales restent mal connues et peu quantifiées. Ici également, des 

mesures complémentaires s’imposent afin de mieux comprendre ces phénomènes.  

 

Enfin, les études décrites ici ont analysé les échanges à l'échelle de la parcelle agricole. 

L’analyse des échanges s'effectuant à l'échelle de l'exploitation voire de l’ensemble de la 

filière de production constitue également une piste intéressante de perspectives. Une étude 

récente analyse les échanges à l'échelle d'une exploitation agricole irlandaise basée sur 

l'élevage (Byrne et al., 2007).  
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Abstract
Eddy covariance measurements of CO2 fluxes were conducted in 2004 at the agricultural site of Lonzée, Belgium, over a sugar

beet crop. Additional measurements of biomass net primary production and leaf area index (LAI) were carried out. The response of

the fluxes to climatic and non-climatic variables was analysed. Nighttime fluxes were dependent on turbulence, temperature and

high soil water content. The u* correction was determined using a statistically based algorithm. The lower u* threshold was

0.1 m s�1. Daytime fluxes during maximum canopy development depended mainly on incident radiation and its repartition between

direct and diffuse components. A limited response to saturation deficit and soil water content was also observed. The evolution of

assimilation and respiration throughout the growing season was studied. Maximum assimilation fluxes were observed in July when

canopy had not fully developed and these then decreased from the end of July to the harvest, due not only to a reduction in radiation

but also to a reduction in canopy assimilation capacity. Normalised respiration evolution presented two peaks during the year: the

first in July, when the assimilation was at its greatest, and the second after the harvest, during the crop residues decomposition. The

annual sequestration, estimated by half-hourly flux summing and measurement gap filling, was �0.61 � 0.11 kg C m�2 and the

impact of the u* correction and of the residues decomposition was estimated to be 5.3 and 3.5%, respectively.

# 2006 Elsevier B.V. All rights reserved.

Keywords: Eddy covariance; Sugar beet crop; Annual sequestration; Net ecosystem exchange; u* threshold
1. Introduction

Since the mid 1990s, continuous micrometeorolo-

gical measurements of the net exchange of carbon

dioxide, water vapour and energy among various

terrestrial ecosystems and the atmosphere have been

conducted worldwide (Baldocchi et al., 2001; Baldoc-

chi, 2003; Valentini, 2003). The main objective of these

measurements is to determine the contribution of

various ecosystems to the global carbon cycle.

Croplands cover about one-third of the land surface of

Europe (FAO Statistical Databases, 2003) and have the
* Corresponding author. Tel.: +32 81 62 24 89; fax: +32 81 62 24 39.

E-mail address: moureaux.c@fsagx.ac.be (C. Moureaux).

0168-1923/$ – see front matter # 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.agrformet.2006.05.009
potential to mitigate about 16–19 Tg C per year

(Freibauer et al., 2004). The cropland area represents a

quarter of Belgium land surface (MRW-DGA, 2005).

Most crops in the region are managed following a 4-year

rotation scheme with alternation between cereals (mainly

winter wheat) and crops such as sugar beet, potato,

chicory and silage maize. The sugar beet crop covers

more than 10% of the crop area in Belgium (INS, 2003).

The objectives of this study were: (i) to identify the

environmental or biophysical factors that control the

daytime assimilation and nighttime emission, (ii) to

determine the seasonal distribution of these fluxes and

(iii) to quantify the annual CO2 net exchange by the

crop and assess its sensitivity to management practices

and methodological choices. The effects of some

mailto:moureaux.c@fsagx.ac.be
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methodologies on the carbon sequestration estimation

were also addressed.

2. Materials and methods

2.1. Site description

The study site is cropland in Lonzée about 45 km SE

of Brussels, Belgium (5083300800N, 484404200E, 165 m

asl). The climate is temperate maritime. The mean

annual temperature is about 10 8C and the annual

precipitation is about 800 mm.

The cropland is a quadrilateral area of ca. 12 ha

located on a fairly flat plateau with a maximum slope of

1.2% in a WSW direction. The site provides a fetch of

240 m in the SW which is the main wind direction. The

farm is located 400 m WSW from the measurement

point. There are no other buildings or roads for more

than 1000 m. The second main wind direction is NE,

with a fetch of 200 m. This side of the area is bordered

by a road with very light traffic, beyond which

croplands extend more than 900 m. The soil is a

Luvisol (FAO classification). It is composed of 18–22%

clay, 5–10% sand and 68–77% silt and contained

3.7 kg m�2 total organic carbon in September 2004.

The land has been cultivated for more than 70 years.

For the past 6 years, the crops have been 50% cereal and

50% potato and sugar beet. In 2004, the soil was tilled to

a depth of 0.30 m in late February and sugar beet (Beta

vulgaris L.) was sown on 30 April. The crop was

harvested on 29 September. The yield was 1.53 kg m�2

dry matter or 0.632 kg m�2 carbon. On 1 April 2004,

156 kg ha�1 mineral N were applied. In the preceding

years, 180 kg ha�1 mineral N and 60 kg ha�1 organic N

(sugar lime) had been applied in 2003, 156 kg ha�1

mineral N, 14 kg ha�1 phosphorus and 42 kg ha�1

potassium in 2002 and 180 kg ha�1 mineral N in 2001.

No farmyard manure had been applied since 1996.

2.2. Measurement system

2.2.1. Eddy covariance and meteorological system

Fluxes of CO2, water vapour and sensible heat were

measured with an eddy covariance system placed at a

height of 2.7 m and consisting of a research-grade sonic

anemometer (model Solent Research R3, Gill Instru-

ments, Lymington, UK) and an infrared gas analyser

(IRGA) model Li-7000 (LiCor Inc., Lincoln, NE,

USA). The eddy covariance system was the standard

system used in CarboEurope-IP and Fluxnet networks

(Moncrieff et al., 1997; Grelle and Lindroth, 1996;

Aubinet et al., 2000). Air from the vicinity of the sonic
anemometer was drawn through a 12.4 m long and

4 mm i.d. PTFE into the analyser. Data from the sonic

anemometer were gathered at a sampling rate of 20 Hz

using EDDY software (Kolle, Max-Planck-Institute for

Biogeochemistry, Germany). This software was also

used to determine online and post-process flux.

Complementary measurements were made on a half-

hourly basis. They included air temperature and

humidity (RHT2, Delta-T Devices Ltd., Cambridge,

UK) at a height of 1.3 m, soil temperature (PT100) at a

depth of 3, 5.5, 9, 26 and 56 cm and soil humidity

(ThetaProbe, Delta-T Devices Ltd., Cambridge, UK) at

a depth of 5, 20 and 50 cm. Global (CM21, Kipp en

Zonen, Delft, NL), net (Q*7.1, REBS, Seattle, WA,

USA), global photosynthetically active (PAR Quantum

Sensor SKP 215, Skye Instruments Ltd., UK) and global

and diffuse photosynthetically active (Sunshine sensor

type BF3, Delta-T Devices Ltd., Cambridge, UK)

radiation were measured at a height of 2.7 m. Rainfall

and mean atmospheric pressure (MPX4115A, Motor-

ola, Phoenix, AR, USA) were also measured at the site.

2.2.2. Data treatment

Half-hourly fluxes were calculated in the post-

processing of the 20 Hz time series data. The fluxes

were rotated (2D) in order to align the streamwise

velocity component with the direction of the mean

velocity vector. High frequency losses due to the

sampling tube were corrected experimentally (Eugster

and Senn, 1995; Aubinet et al., 2001). The transfer

function was determined by comparing the CO2 and

H2O flux co-spectra with the sensible heat co-spectrum.

The transfer function was approximated by a first-order

function equivalent to that of a low pass filter composed

of a self-induction coil and a unitary resistance (Eugster

and Senn, 1995). The inductances were: LCO2
= 0.1 and

LH2O = 0.4 V s.

The fluxes were submitted to a stationary test

(Foken and Wichura, 1996). Three levels of quality

were defined: data that meet the quality test with an

allowed difference of 30%, data that meet the test with

an allowed difference of 50% and data that failed the

test. The responses of the fluxes to environmental

factors were established from data of the first category.

The impact that elimination of bad quality data had

on annual carbon sequestration was estimated in

Section 3.5.

Half-hourly changes in CO2 storage were calculated

using a single concentration measurement at a height of

2.7 m. Although this technique is questionable when

used above tall vegetation where eddy covariance

systems should be placed at great heights, it works fairly
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well above short crops and grasslands where measure-

ment height is lower. Notably, it was used by Anthoni

et al. (2003) above a winter wheat crop. Below, we will

consider the net ecosystem exchange (NEE) as the sum

of storage fluxes and turbulent fluxes.

It is recognised that during stable nighttime

conditions CO2 exchange is often underestimated by

the eddy covariance system (Goulden et al., 1996; Jarvis

et al., 1997; Aubinet et al., 2000). A criterion based on

the friction velocity (u*) value is generally used to select

valid periods. The measurements taken during stable

conditions (u* smaller than the threshold) are excluded

and replaced by a parameterisation based on an

empirically established respiration-to-temperature rela-

tionship derived from data measured during turbulent

periods. The value of the threshold is critical because it

can lead to a substantial change in the estimation of the

annual carbon exchange (Goulden et al., 1996; Lindroth

et al., 1998; Massman and Lee, 2002; Anthoni et al.,

2003) and even to a reversal in the sign of the annual net

ecosystem exchange (Goulden et al., 1997).

The u* threshold is often found by visually

examining the scatter plot of normalised nighttime

fluxes versus u*. Conceptually, it is assumed that the

threshold is located where the flux starts to level off as

u* increases. This approach has been criticised because

of the absence of any standard and because it depends

on an individual researcher’s judgement. Gu et al.

(2005) proposed an algorithm called the moving point

test (MPT), which is a reproducible, site-independent,

statically based approach that can be automated for

processing large datasets.

The MPT searches simultaneously for a lower u*

threshold (u*L) below which fluxes are potentially

underestimated and a higher u* threshold (u*H) above

which measurements are subject to a potential pressure

pumping effect. The algorithm of the MPT is an

iterative procedure with two nested loops. The

temperature response function of the nighttime fluxes

is determined in the outer loop while, in the inner loop,

the thresholds are researched. To determine a u*

threshold, two samples were compared using a

statistical t-test: a moving sample (MS) of constant

size n, and a reference sample. The reference sample

contains the normalised fluxes assumed to be indepen-

dent of u*, and its size varies at each iteration of the

inner loop. If the statistical test concludes to the equality

of the average fluxes of the two samples, a new

threshold can be defined as the median value of the MS.

The loops stop when the u* thresholds of two successive

iterations are the same (Steps 14 and 15, p. 187 and p.

189). Gu et al. (2005) recommended a MS size smaller
than one-fifteenth of the total number of data in the test

and large enough to produce meaningful statistics. In

practice, they suggest a size larger than 25. In this study,

the smallest MS size was 31, as recommended by

Dagnelie (1973) when applying a test of average

equality in the case of unequal variance.

Applied directly to the Lonzée dataset, the Gu

algorithm did not work as it did not detect any threshold,

although a plateau was clearly apparent to the eye. We

therefore modified the algorithm in order to allow such

detection. In the inner loop (step 12, p. 187), we fixed

the new u*L (u*H) threshold as the lowest (highest) u*

value of the MS rather than as its median. In addition,

the convergence criterion was modified (steps 14 and

15, p. 187): it was based on the CO2 fluxes (NEE) rather

than on the u* threshold values. Indeed, the loops

stopped when the mean NEE of the MS of the current

iteration was not significantly different from the mean

NEE of the reference sample of the following iteration.

A statistical t-test was performed for this purpose. Two

versions of the algorithm were tested, one bypassing the

higher threshold research, the other not.

In order to estimate the annual NEE, missing

measurements resulting from system failures, power

cuts or data removal because of their bad quality or

because they corresponded to stable periods had to be

estimated. Daytime gaps were filled using NEE–

photosynthetically active photon flux density (PPFD)

relationship based on 10-day periods, and nighttime

gaps were filled using an NEE–temperature function

estimated from the non-affected turbulence data for the

whole year except October 2004 (cf. Section 3.3.1). In

the case of missing meteorological data, the mean

diurnal variation was applied using an 11-day data

window (Falge et al., 2001).

2.2.3. Phenological measurements

Leaf area index (LAI) measurements were con-

ducted from 26 July to the harvest. Every 2 weeks,

between four and six sugar beet plants were lifted and

their leaf area estimated using a camera and a picture

analyser (Windias, Delta-T Devices, Cambridge, UK).

The LAI was also estimated from the radiation

absorption measurements using a ceptometer (Sunscan,

Delta-T Devices, Cambridge, UK). This measurement

was repeated three times in September. The dry matter

(DM) content was measured fortnightly. Two meters of

three adjacent rows of sugar beet were harvested at four

locations in the field and the total DM content was

measured from 17 May to the harvest. From 16 July,

DM measurements were performed separately for the

leaves and the roots. In addition, the number of leaves
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on 24 plants was counted every week from mid May to

the harvest.

2.2.4. Parameterisation

In the following analysis, we use the micrometeor-

ological convention that downward fluxes are counted

as negative and upward fluxes as positive.

2.2.4.1. Daytime fluxes. The net ecosystem exchange

(Ne) was expressed as the difference between the gross

primary production (Gp) and the total ecosystem

respiration (Rt):

Ne ¼ Gp � Rt (1)

The gross primary production (GPP) was parame-

terised as a curvilinear function of the incident PPFD

(Qi) (Aubinet et al., 2001):

Gp ¼ Gs

�
1� exp

�
� aQi

Gs

��
(2)

where Gs is the assimilation flux at light saturation and a

is the apparent quantum efficiency (i.e., the initial slope

of the curve).

The total ecosystem respiration (TER) is expected to

depend heavily on temperature. This relationship is

parameterised using an exponential function (Lloyd and

Taylor, 1994):

Rt ¼ R10 exp

�
TR

�
1

56:02
� 1

T s5 � 227:13

��
(3)

where R10 is the respiration flux at 10 8C, the soil

temperature measured at a depth of 5 cm (Ts5) is used

as a reference and TR is a parameter characterising the

respiration sensitivity to the temperature.

The daytime NEE was modelled using Eqs. (1)–(3).

The residuals are defined as the difference between the

measured and the modelled fluxes. Positive residuals

indicate thus that measured fluxes are smaller, in

absolute value, than the predicted ones.

2.2.4.2. Nighttime fluxes. At night, CO2 fluxes come

only from respiration thus only the exponential

respiration function (3) was used.

When it was necessary to eliminate the impact of the

temperature, the nighttime fluxes were normalised (R10)

at 10 8C, using:

R10 ¼
Ne

expfTRðð1=56:02Þ � 1=ðTs5 � 227:13ÞÞg (4)

The nighttime NEE was modelled using Eq. (3).

Here again, the residuals are defined as the difference of
the measured fluxes and the modelled fluxes. However,

as the fluxes are positive, positive residuals indicate that

measured fluxes are larger, in absolute value, than the

predicted ones.

3. Results and discussion

3.1. Management, climate and development of the

crop

Sugar beet was sown on 30 March 2004 and leaf

emergence occurred on 21 April. The crop was harvested

on 28 September 2004 and the following crop, winter

wheat, was sown on 14 October 2004 using no-tillage

practices. Emergence occurred about 1 week later.

The mean annual air temperature was 9.7 8C and the

total precipitation was 725 mm. The total annual net

radiation and PPFD were 1640 MJ m�2 and 7830

mol m�2, respectively. Figures 1a–d shows the course

of dailyclimate between 1 April 2004 and31 March 2005.

The mean daily air temperature (Fig. 1a) rose con-

tinuously from mid April to mid August, reaching 24 8C
and then decreasing through to December. It remained

negativefor25days in thewinter,with theminimumvalue

of �5.4 8C recorded on 28 February 2005.

The mean daily PPFD (Fig. 1b) grew from about

200 mmol m�2 s�1 in April to 600 mmol m�2 s�1 in late

June, and then fell to below 100 mmol m�2 s�1 in late

December. Climate variability caused large day-to-day

variations (up to 415 mmol m�2 s�1 in early June).

The mean daily saturation deficit (D) (Fig. 1c)

remained below 5 kPa for 74% of the time. The longest

period with a large saturation deficit was in late July and

early August, when the averagewas 6.6 kPa over 16 days.

Rainfall (Fig. 1d) occurred fairly evenly during the

year, with a slight maximum in July and August. The

maximum number of consecutive dry days was 11 in

mid May. Soil moisture (Fig. 1d) ranged from 0.21 to

0.39 m3 m�3. After rain, the soil moisture decreased

rapidly.

The evolutions of the LAI and of total and leaf dry

mass are given in Fig. 1e. The LAI values were between

4 and 5 m2 m�2 and were characterised by large

confidence intervals (0.05 level of significance) result-

ing from the limited number of samples (four to six

plants). However, these values agreed well with

estimations based on radiation absorption. Moreover,

as the leaf DM was found constant (5.2 t DM ha�1)

from late July to the harvest we consider that the

oscillations in LAI estimates were due to sampling

errors and that it was essentially stable and equal to

4 m2 m�2 from late July to the harvest. It is remarkable



C. Moureaux et al. / Agricultural and Forest Meteorology 139 (2006) 25–39 29

Fig. 1. Mean daily meteorological conditions and crop evolution between 1 April 2004 and 31 March 2005: (a) air (thin line) and soil (bold line)

temperature, (b) photosynthetic photon flux density (PPFD), (c) air saturation deficit (D), (d) soil water content (dashed line) and rainfall (solid line)

and (e) leaf area index (LAI; full circle), total (empty triangle) and leaf (empty rectangle) dry matter (DM) content.
that the LAI was maintained constant in spite of the

continuous increase of leaf number, new leaves

appearing continuously throughout the season with a

rate that exceeded older leaf disappearance. This is

because the area of the leaves produced after June were

smaller than those of older leaves as already observed

by Bouillenne et al. (1940) and Jaggard and Scott

(1985). As a consequence, the area proportion of old

leaves is growing. Figure 2 presents the leaf mean age
evolution from May to the harvest. It increased

throughout the period to reach 60 days at the harvest.

3.2. Determination of the u* thresholds

The u* thresholds were estimated separately during

two periods: Period 1 extended from April to May 2004

and from November 2004 to January 2005 and

corresponded to the times with bare soil or no carbon
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Fig. 2. Evolution of the mean age of the sugar beet leaves between

May and September 2004.

Fig. 4. Evolution of the friction velocity (u*) threshold with the moving

sample size for: (a) Period 1 and (b) Period 2. The modified moving point

test algorithm was applied in the search for a higher (empty black

square) and a lower (full black square) threshold and by bypassing the

higher threshold research (empty triangle and dashed line).
sequestration (i.e., positive mean daily CO2 fluxes).

Period 2 extended from June to September 2004 and

corresponded to the times when there was vegetation

(i.e., negative mean daily CO2 fluxes). October 2004

was not included in either period because it was

characterised by a larger respiration due to harvest

residues decomposition. Indeed, at the harvest time,

leaves and beet crowns were cut by the defoliator and

left on the ground. Their decomposition produced an

additional CO2 emission. As the number of data for this

period was insufficient to determine specific u*

thresholds with enough confidence, we used the

threshold of Period 2 for this time. Figure 3 presents

the response of the normalised nighttime fluxes to u* for

each period. Each point on the graphs represents an

average of at least 100 measurements.

The Gu et al. (2005) algorithm modified as described

above was applied several times to these two datasets,

varying the MS size (n) from 31 to one-fifteenth of the
Fig. 3. Evolution of the normalised nighttime net ecosystem exchange

(NEE) in relation to the friction velocity for Period 1 (empty circles)

and Period 2 (full squares). Each point on the graph is the mean of 100

data except for the last point of each series which corresponds to 124

points.
total sample size. The evolution of the threshold with n

is given in Figs. 4a and b. It appears that, contrary to

what Gu et al. (2005) suggested, the threshold values are

not completely independent of the MS size: during

Period 1, they are stable (u*L � 0.05 m s�1 and

u*H � 0.31 m s�1) for n between 41 and 111, but below

n = 41, u*H rose to 0.4 m s�1 and above n = 111, u*L

rose to 0.1 m s�1. For Period 2, u*L increased slightly

with n (from 0.05 m s�1, at n = 30 to 0.06 m s�1, at

n = 101), but u*H was more sensitive (decreased from

0.43 m s�1, at n = 31 to 0.31 m s�1, at n = 101).

In most of the studies, only a lower threshold was

determined by visual examination. In order to analyse

the impact of the introduction of a higher threshold, we

also applied the Gu algorithm bypassing the u*H

research. The evolutions of u*L with n are also shown in

Figs. 4a and b. For Period 1, no difference with the

preceding u*L value was found, except for n = 121. For

Period 2, above n = 51, there was a significant

difference with the preceding value, the new lower

threshold rising to 0.1 m s�1. This shows that different

lower thresholds can be obtained whether the higher

threshold research is bypassed or not.

Nevertheless, the impact of these choices on the global

correction remains fairly limited. To demonstrate this, we
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Table 1

Values of the moving sample size (n), the mean normalised net

ecosystem exchange (NEEm) and the determination coefficient of

the regression NEE–temperature (R2) for different values of the lower

(u*L) and higher (u*H) friction velocity thresholds of Periods 1 and 2

u*L

(m s�1)

u*H

(m s�1)

n NEEm

(mmol m�2 s�1)

R2

Period 1

0.04 0.41 31 1.90 0.30

0.05 0.33 41–51 1.90 0.30

0.04 0.31 61 1.88 0.30

0.05 0.31 71–91 + 101 1.89 0.30

0.05 0.32 101 1.90 0.30

0.10 0.32 121 1.90 0.62

0.04 999 61 1.90 0.30

0.05 999 31–51 + 71–121 1.92 0.30

Period 2

0.05 0.43 31 2.23 0.18

0.05 0.40 41 2.22 0.19

0.05 0.39 51–61 2.22 0.19

0.07 0.31 71 2.22 0.24

0.06 0.31 81–101 2.20 0.21

0.05 999 31–51 2.25 0.17

0.08 999 61 2.30 0.20

0.10 999 81–101 2.32 0.26

u*H ‘‘999’’ values mean that no higher thresholds values were con-

sidered.

Fig. 5. Response of the nighttime net ecosystem exchange (NEE) to

soil temperature for Period 1 (empty grey square), Period 2 (black

dash) and October (black cross). The adjusted exponential regression

is represented by the line.
computed the mean normalised flux values obtained

using the different thresholds. The results are given in

Table 1. The maximum difference between the different

situations was always lower than 2.1% for Period 1 (from

1.88 to 1.92 mmol m�2 s�1) and less than 5.2% for Period

2 (from 2.20 to 2.32 mmol m�2 s�1).

We finally chose the thresholds that allowed the best

regression between NEE and temperature for each

period. To this end, we compared the R2 of these

relationships (see Table 1). For Period 1, the best

regression (R2 = 0.62) was obtained for n = 121, which

is the maximum size recommended by Gu et al. (2005).

The corresponding thresholds were u*L = 0.1 m s�1 and

u*H = 0.32 m s�1. For Period 2, the best regression

(R2 = 0.26) was obtained for n being more than 81 and a

single threshold. The corresponding threshold value

was 0.1 m s�1, as for Period 1.

These values are similar to those observed over

grasslands and short crops. Anthoni et al. (2003)

determined, by visual examination, a lower threshold

value of 0.1 m s�1 over a wheat crop at Gebesee. Gu

et al. (2005), using the MTP algorithm, found a lower

threshold varying from 0.1 to 0.16 m s�1 over a tall

grass prairie in Oklahoma, from 0.07 to 0.11 m s�1 over

an oak-grass savanna in northern California and from

0.00 to 0.02 m s�1 over an annual grassland in northern

California. The higher threshold obtained using the
same algorithm on these sites ranged from 0.4 to

0.59 m s�1 for the first, from 0.21 to 0.33 m s�1 for the

second and from 0.09 to 0.27 m s�1 for the third.

The percentages of remaining data were 52 and 76%

of the total number of nighttime data for Periods 1 and 2,

respectively. These percentages were not smaller than

those obtained above forests but they generally corres-

ponded to lower thresholds. This is probably because

crops present lower roughnesses than forests and are

therefore characterised by lower friction velocity values.

In the following sections, nighttime fluxes corre-

sponding to u* < u*L are excluded. Values correspond-

ing to u* > u*H are excluded from the analyses of flux

response to climatic and non-climatic variables but, as

these fluxes are not considered to be erroneous, they are

included in the summation procedure for computing the

annual NEE.

3.3. Response of the turbulent fluxes to the climate

3.3.1. Nighttime fluxes

The evolution of nighttime NEE with temperature is

presented in Fig. 5 for Periods 1 and 2 and October. The

response of respiration to temperature during Periods 1

and 2 was described by an exponential parametrisation

(3). The regression parameters were: R10 = 2.14 mmol

m�2 s�1 and TR = 305.2 K, and the determination

coefficient was 0.74. The two periods were characterised

by different temperature ranges, most of Period 1

corresponding to temperatures lower than 13 8C and

most of Period 2 corresponding to temperatures higher

than 13 8C. Consequently, the observed response to

temperature can also reflect an impact of crop develop-

ment on the night flux. In October, the month following

the harvest, significantly greater fluxes were observed



C. Moureaux et al. / Agricultural and Forest Meteorology 139 (2006) 25–3932

Fig. 7. Response of the daytime net ecosystem exchange (NEE) to

photosynthetically active radiation (PPFD) during the last 10 days of

May (full triangles), the first 10 days of July (full circles) and the first

10 days of September (empty square) and the corresponding expo-

nential regression.
than during the other periods. This is due to an additional

CO2 emission resulting from the crop residues left on the

ground at harvest time. This impact is quantified in

Section 3.5.

The respiration at 10 8C was of the same order of

magnitude as those reported in the literature even

though the regression was often adjusted for the

growing period only. Anthoni et al. (2004) observed

an R10 of 3.9 mmol m�2 s�1 for winter wheat during

May and June and an R10 of 2.5 mmol m�2 s�1 for

potato during June and July. Barcza et al. (2003)

reported 3.5 mmol m�2 s�1 for a semi-natural grass

field in western Hungary for the growing period (from

March to October). The respiration at 10 8C estimated

above the maize crop during full canopy development

ranged from 2.3 to 2.7 mmol m�2 s�1 (Pattey et al.,

2001, 2002) and during the second part of the growing

season (stage V14–R6) Suyker et al. (2004) observed an

R10 of 1.3 mmol m�2 s�1.

In order to analyse the flux response to soil water

content (SWC), in Fig. 6 we plotted the evolution of the

residuals of the NEE–temperature parameterisation

with this variable. A small but significant decrease of

the residuals was observed for SWC higher than

0.29 m3 m�3. This effect could be explained by a lack of

oxygen and a CO2 accumulation in the soil under high

humidity as a result of soil pore spaces filling with water

(Glinski and Stepniewski, 1985; Freijer and Leffelaar,

1996; Davidson et al., 2000). About 21% of the period

was affected by such a high SWC. As no significant

drought occurred during the period under investigation,

we cannot draw conclusions about the respiration

response to low SWC.

3.3.2. Daytime fluxes

The response of daytime fluxes to PPFD evolved

with crop development (Fig. 7). During the last 10 days
Fig. 6. Evolution of the residuals of the nighttime NEE to temperature

response with soil water content for Periods 1 and 2.
of May, a clear response was apparent. Greater

sensitivity was observed in early July and September.

In order to reduce the impact of crop development on

this response, only measurements made during the

stable LAI period (August and September) were

selected. Its evolution with PPFD is presented in

Fig. 8a. The NEE was modelled using Eqs. (1)–(3) and

the parameters were: a = 0.0557 mmol mmol�1,

Gs = 27.8 mmol m�2 s�1 and Rd = 3.38 mmol m�2 s�1.

The determination coefficient was 0.86. The apparent

quantum efficiency of the sugar beet crop was slightly

lower than that observed by Anthoni et al. (2004) for

winter wheat and potato (0.063 and 0.062 mmol

mmol�1, respectively) and by Ruimy et al. (1995) for

C3 crops (0.062 mmol mmol�1). However, these para-

meters are derived from a hyperbolic regression known

to give 20% higher estimations of a than an exponential

equation (Aubinet et al., 2001).

In order to analyse the possible impact of other

climatic variables on the net flux, we present in Fig. 8b–e

the evolution of the residuals of the NEE parameterisa-

tion (Eqs. (1)–(3)) to air saturation deficit, air tempera-

ture, soil water content and diffuse radiation fraction.

The crop did not suffer severe saturation deficit (D)

at any time, as the maximum observed value was

2.3 kPa in early August and, except for a few half-hours,

D never exceeded 2.0 kPa (Fig. 1c). However, a small

influence of this variable on the flux was observed as the

residuals increased with D above 1.1 kPa (Fig. 8b).

However, the impact of D was limited as it corre-

sponded with only 15% of the data. Similar impacts of

D on NEE were observed by Hirasawa and Hsiao (1999)

in a maize crop when D > 2.0 kPa and in a semi-natural

grass field when D > 1.5 kPa (Barcza et al., 2003). In

contrast, no clear impact was observed by Suyker et al.



C. Moureaux et al. / Agricultural and Forest Meteorology 139 (2006) 25–39 33

Fig. 8. (a) Response of daytime net ecosystem exchange (NEE) for August and September to incident photosynthetic photon flux density PPFD and

evolution of its residuals with (b) saturation deficit (D), (c) air temperature (Tair), (d) soil water content (SWC), (e) fraction of diffuse radiation and (f)

response of the NEE to incident PPFD during clear (fraction of diffuse radiation: 0.2–0.3) (empty circle) and cloudy (fraction of diffuse radiation:

0.8–0.9) (full circle) periods.
(2004) on an irrigated maize crop. The fluxes

corresponding to D > 1.1 kPa were removed from the

dataset for further analysis in order to avoid any bias

regarding the impact of the other climatic variables.

The evolutions of the residuals with air temperature

and soil water content are presented in Fig. 8c and d. No

dependence of the fluxes on the air temperature

appeared. A similar result was obtained with soil

temperature (results not shown). However, a depen-

dence of the residuals on soil water content was

observed: above a SWC of 0.29 m3 m�3, negative

residuals were observed, suggesting an increase of the

fluxes (in absolute value) at these values. This effect

could be due to the respiration decrease, as discussed

above. However, only 14% of the assimilation fluxes

were obtained under these conditions. These fluxes

were removed from the dataset in subsequent analyses.
A clear dependence of the residuals on the diffuse

radiation fraction is shown in Fig. 8e. This is confirmed

by Fig. 8f which compares the responses of the net

assimilation to the incident PPFD during clear (fraction

of diffuse radiation = 0.2–0.3) and cloudy periods

(fraction of diffuse radiation = 0.8–0.9). The quantum

efficiency of the crop is greater during cloudy periods

than during clear periods and, at the same incident

PPFD, NEE values are greater during cloudy periods

than during clear periods. For example, at PPFD = 700

� 50 mmol m�2 s�1, the NEE was about �20.2 � 1.52

mmol m�2 s�1 during cloudy periods but only

�13.5 � 1.37 mmol m�2 s�1 during clear periods.

Gu et al. (2002) discussed the advantages of diffuse

PPFD in carbon uptake in a variety of ecosystems

(grasslands, croplands and forests). The same observa-

tion was made in croplands by Suyker et al. (2004) and
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Fig. 9. Evolution from April 2004 to March 2005 of: (a) the mean

daytime (empty circle) and nighttime (full circle) net ecosystem

exchange (NEE) and (b) the mean daily NEE.
Anthoni et al. (2004). The reason for a greater

assimilation during cloudy periods could be related

to the impact of other climatic variables such as vapour

pressure deficit or leaf or soil temperature or to different

degrees of efficiency in canopy light interception.

Freedman et al. (1998, 2001) suggested that the vapour

pressure deficit could be lower during cloudy periods.

As the leaf temperature cannot be measured easily, this

variable is unknown here. However, by assuming that

leaf temperature is close to air temperature, the vapour

pressure deficit can be approximated by the air

saturation deficit. It is clear that, under our conditions,

the difference between NEE and incident radiation

responses during clear and cloudy conditions could not

be due to an impact of saturation deficit because data

with D > 1.1 kPa were removed from the set presented

in Fig. 8e. Beside this, Baldocchi (1997) suggested that

smaller leaf or soil temperatures may reduce respiration

and therefore increase NEE during cloudy periods. As

no relationship between NEE and air or soil temperature

was observed, this explanation is probably not sound

either in this case. Consequently, the main reason for the

differences between canopy net assimilation during

direct and diffuse PPFD seems to be the differences

between diffuse and direct radiative transfer regimes in

the plant canopy, coupled with the non-linearity of the

photosynthesis, as suggested by Gu et al. (2002).

3.4. Evolution of the CO2 fluxes

3.4.1. Seasonal pattern of the fluxes

The evolution with time of mean nighttime and

daytime NEE values is presented in Fig. 9a, and the

evolution of the mean daily flux in Fig. 9b. On 1 April, 2

days after sowing, the mean nighttime and daytime

fluxes were both 1.5 mmol m�2 s�1, confirming that

there was no assimilation at the site at this time. The

daily flux was, of course, similar during this period.

From early May to end of June, the night flux increased

continuously, reaching about 4–5 mmol m�2 s�1, while

the day flux reverted and increased rapidly by negative

value, due to leaf development and assimilation onset. It

reached about�19 mmol m�2 s�1. As a result, the daily

fluxes became negative in late May, the crop becoming a

carbon sink. In July, daytime fluxes remained stable

although the LAI was still increasing, as suggested by

the evolution of the plant dry weight during this period

(Fig. 1e). From mid July to mid August, the night flux

reached 5–6 mmol m�2 s�1. From this period until the

harvest, it was maintained at 3–4 mmol m�2 s�1. The

day flux began to decrease regularly in absolute value

from early August. The net flux evolved similarly and
rose to about �4 mmol m�2 s�1 just before the harvest.

It is noteworthy that throughout this period the LAI

remained constant (Fig. 1e). After the harvest, the crop

became a carbon source. In the month following the

harvest, the emitted daily flux was about twice its spring

value because of residue decomposition. After the end

of October the net flux fell to about 1 mmol m�2 s�1,

due to a decrease of the residue decomposition rate as

well as to the development of the new crop; winter

wheat was sown on 14 October and, although the net

flux remained positive, the difference observed between

the day and night fluxes during this period suggests that

the crop assimilation was already significant.

The maximum observed daily flux was about

�11 mmol m�2 s�1 in early July 2004. This value is of

the same order of magnitude as that noted earlier for other

C3 crops: Soegaard et al. (2003) observed about

�13.5 mmol m�2 s�1 in winter wheat and �10 mmol

m�2 s�1 in winter barley and spring barley in Denmark,

Baldocchi (1994) �12.8 mmol m�2 s�1 in a wheat crop

in Oregon, USA, Anthoni et al. (2003) about �10 to

�12 mmol m�2 s�1 in winter barley in Germany and

Hollinger et al. (2005)�8.6 mmol m�2 s�1 in soybean in

Illinois. The maximum daily NEE exchanged by crops of
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Fig. 10. Comparison of daytime (Rd) and nighttime (Rn) estimates of

ecosystem respiration. (a) Ten day average and (b) normalised respira-

tion at 10 8C.
maize, a C4 plant, was generally greater: Hollinger et al.

(2005) observed �18.5 g C m�2 s�1 in IL, USA and

Pattey et al. (2001) �20.5 g C m�2 s�1 near Ottawa,

Canada.

3.4.2. Crop development influence

In order to investigate the impact of crop develop-

ment on the fluxes, representative parameters were

extracted from the preceding datasets. Assimilation at

light saturation, Gs, was used to characterise the crop

photosynthetic capacity evolution, while respiration

normalised at 10 8C was used to characterise the canopy

and soil respiration. These parameters were estimated

every 10 days from leaf emergence to the harvest. Data

were grouped by 10-day periods, on each period, the

NEE response to PPFD was parameterised using

Eqs. (1) and (2) from which the parameters Rt and

Gs were deduced. Below, we will rename Rt in Rd in

order to distinguish respiration estimates based on

daytime (Rd) data from those based on nighttime (Rn)

data. Rd10 was then deduced from Rd by normalisation,

using relation (4). Another independent estimate of the

respiration was obtained by computing the averaged

night fluxes (Rn) for the same 10-day periods. Rn10 was

obtained from Rn in the same way as Rd10.

Initially, the coherence between the respiration

estimations was assessed. To this end, a comparison

between Rd and Rn is given in Fig. 10a. The agreement is

good, with R2 = 0.84 and a regression slope of 1.00. Such

an agreement is remarkable as the two sets of data are

independent, and the two estimation methods were

subjected to big uncertainties: on one hand, the NEE–

PPFD regression intercept is generally affected by a large

confidence interval; on the other hand, night data are

expected to be prone to large errors due notably to the

occurrence of non-turbulent processes. In addition,

comparisons between day and night fluxes are sometimes

difficult to perform above heterogeneous terrains because

the footprint of the two fluxes does not coincide. The

good agreement between these two estimations suggests

that all these errors were quite limited at our site: the data

selection based on night data (see Section 3.3.1) was

well-suited to our site, the uncertainty on the PPFD curve

intercept was not too large (confidence interval at 0.05:

2.85–3.90 mmol m�2 s�1) and the site was homogeneous

enough.

In order to eliminate any temperature dependence of

the respiration, Rd10 and Rn10, estimations were

compared in Fig. 10b. The agreement is, of course,

weaker but still fairly good (R2 = 0.41). This suggests that

the evolution of respiration during the growing season is

not only due to a response to the temperature but also
reflects a seasonal evolution. Nevertheless, the good

agreement between the two respiration estimations

confirms the soundness of these parameters. As the

uncertainty is larger for Rd10 than for Rn10, in the

following sections only the evolution of the latter is

discussed.

The evolution with time of Gs and Rn10 are presented

in Figs. 11a and b, respectively. During the first 40 days,

very low Gs values (lesser than 7 mmol m�2 s�1) were

obtained, due to the limited development of the crop.

However, the assimilation was already active, as shown

by the well-developed crop NEE response to PPFD in

Fig. 7. The larger error bar in the second Gs estimation

results from very weak incident radiation during this

period. From the end of May, the leaf development

provoked a rapid Gs increase: in 20 days it rose from

less than 7 mmol m�2 s�1 to a maximum value of

42 mmol m�2 s�1 in mid June. Between mid June and

mid July, Gs remained close to its maximum value and the

maximum daily fluxes were observed during this period.

It is noteworthy that the leaf development was not still

completed at this time, the LAI value not yet being

maximal. Visual inspection of the field confirmed,

however, that the canopy was closed in late June. From

late July to the harvest, Gs decreased, falling from about
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Fig. 11. Evolution of: (a) the assimilation flux at light saturation (Gs)

and (b) the normalised nighttime respiration Rn10 from leaf emergence

to December 2004.
38 to 23 mmol m�2 s�1. Throughout this period, the LAI

remained constant and new leaves were constantly

appearing, replacing the old leaves that became

senescent. The cause of the Gs decrease is not clear: it

is unlikely to be due to meteorological conditions as the

parameter is independent of incident PPFD and the fluxes

were found to be hardly sensitive to other meteorological

variables. It seems therefore to point out a decline in

canopy assimilation capacity. However, no diseases had

been observed in the canopy and the LAI was constant

throughout the period. On the other hand, it could be due

to leaf ageing with time (Fig. 2). Complementary

measurements of the leaves assimilation performed with

a portable photosynthesis system in August and

September (results not shown) showed indeed that older

leaves were characterised by a lower photosynthetic

capacity even if no clear sign of senescence did appear.

At the beginning of the season, the Rn10 evolution

followed that of Gs quite closely: from emergence to

early June it was about 1.8–2.1 mmol m�2 s�1 and then

it rose to 2.3–2.8 mmol m�2 s�1. The higher values

were observed between mid June and mid July, the

period during which Gs was also greater. At the

beginning of August, Rn10 fell to its spring value but it

began to increase again during August and September,
reaching its highest value in mid October, 2 weeks after

the harvest. The parallelism between the Gs and Rn10

evolutions in June and July suggest that the first

respiration peak could be triggered by crop develop-

ment and would correspond mainly to an autotrophic

contribution. Winner (1981) reported that the beet tap

root grew only after the 12-leaf stage, with only fine

roots developing before that stage. As this stage was

reached in early June in our case, this suggests that the

first respiration peak appeared during the early

development of the tap root. The second peak that

began in August and culminated in mid October is

probably due to leaf and harvest residues decomposi-

tion: between mid June and the harvest, each plant lost

about 10 leaves at regular intervals and, at harvest, the

leaves and beet crowns decomposition produced an

additional CO2. In total, these represent 5.8 kg m�2 of

fresh matter. The additional respiration was maintained

until mid October. Its impact on the total carbon

sequestration is estimated below.

3.5. Annual sequestration

The total sequestration by the crop, as well as its

sensitivity to the u* threshold value and to the quality

criterion, were assessed. The impact of the crop residues

decomposition was then estimated.

The annual net ecosystem exchange obtained by using

the procedure described above was 0.61 � 0.11 kg

C m�2. The uncertainty is computed as the total error

resulting from data gap filling using the method

recommended by Aubinet et al. (2002). In order to

assess its sensitivity on the u* thresholds, we computed it

several times using different thresholds. We conducted

three tests, each time varying one threshold while

maintaining the others. In the first test, we varied u*L for

the two periods and in the two others, we varied u*H

during the first and the second period, respectively. For

each test, a new NEE to temperature response was

estimated and used for data gap filling. Only the data

corresponding to u* < u*L were replaced by the

parameterisation. Figure 12 presents the annual NEE

evolutionversus thevarying threshold values for the three

tests. As expected, the sequestration was more sensitive

to the lower threshold value than to the higher one: it fell

in absolute value from 0.62 to 0.59 kg C m�2 when the

lower thresholds increased from 0 to 0.2 m s�1. This is,

however, very limited as it corresponds to 5% of the total

sequestration. The sensitivity to the higher threshold was

even smaller: the annual NEE varied from less than 3%

when u*H varied between 0.2 and 0.5 m s�1 during Period

2 and was practically insensitive to u*H variations during
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Fig. 12. Evolution of the annual net ecosystem exchange (NEE) with

the friction velocity (u*) threshold value. A black full square corre-

sponds to a variation of the lower u* threshold of both periods while

other thresholds remain unchanged, an empty square corresponds to a

variation of the higher u* threshold of Period 1 while other thresholds

remain unchanged and an empty triangle corresponds to a variation of

the higher u* threshold of Period 2 while other thresholds remain

unchanged. Dashed line represents the annual NEE corresponding to a

lower u* threshold of 0.1 m s�1 for both periods and an upper u*

threshold of 0.32 m s�1 for Period 1.
Period 1. The small impact of the threshold values on

crop sequestration suggested that the problem of night

flux underestimation was very limited at our site. This

result is not totally surprising because the problem of

night flux underestimation is expected to be less

important above short crops than over tall forests.

However, this is not always the case: studying a winter

wheat crop, Anthoni et al. (2003) observed a decrease in

the net annual sequestration from about�0.32 kg C m�2

when no threshold was applied to about�0.11 kg C m�2

when a 0.3 m s�1 threshold was used.

The impact of the data selection in relation to the

quality test was also examined. The test led to the

removal of 25% of day data and 27% of night data.

However, its impact on the annual NEE was limited: the

introduction in the annual sequestration computation of

data that did not meet quality criteria led to a decrease of

1% in the result. All these results show that the quality

of the measurements at our site was high and allowed a

robust estimation of the annual sequestration.

3.5.1. Residues decomposition impact

It was shown earlier that the period between 30

September and 25 October was characterised by a larger

CO2 emission due to the decomposition of crop residues

left on the ground after the harvest. In order to estimate

the impact of these residues, we compared the flux

measured during this period with an estimation based on

the NEE–temperature parameterisation adjusted for the

data of Periods 1 and 2. The results were 0.09 and
0.07 kg C m�2 for the measurements and the simula-

tion, respectively. This suggests an impact of the

residues decomposition of about 0.02 kg C m�2, repre-

senting 3.3% of the total sequestration.

4. Conclusions

Eddy covariance CO2 fluxes were measured between

April 2004 and March 2005 for sugar beet in an

agricultural ecosystem in Lonzée, Belgium, in which

the crop rotation was 50% cereal and 50% sugar beet

and potato. Additional measurements were made of LAI

and biomass net primary production.

The response of the nighttime fluxes to turbulence

and climatic variables was studied. The u* thresholds

were determined by applying the modified MPT

algorithm (Gu et al., 2005). The lower u* threshold

was found to be 0.1 m s�1. The sensitivity of the net

ecosystem exchange to lower u* threshold was found to

be less than 5% when varying it from 0 to 0.2 m s�1

suggesting that the impact of the night flux error on NEE

estimations was limited at the site. However, this result

could be crop-dependent and should be re-evaluated in

the following years.

Respiration was found to clearly increase with

temperature, as expected, and to decrease with increasing

soil water content above 0.29 m3 m�3. This could be

explained by a lessening of oxygen availability due to a

soil porosity reduction at high soil water contents.

The daytime NEE was found to depend on radiation

(PPFD and diffuse to global ratio) and, in a lesser extent,

on air saturation deficit and soil water content. The

impact of the diffuse to global radiation ratio was

attributed to the difference between the light transfer

regimes. A decrease of the NEE was observed at

saturation deficit values greater than 1.1 kPa. It is

probably due to partial stomatal closure. Furthermore,

an increase of the NEE was observed when soil water

content was larger than 0.29 m3 m�3. This effect could

be due to the respiration decrease observed at high soil

water content.

The evolution of assimilation and respiration fluxes

was studied. Assimilation was clearly apparent 1 month

after leaf emergence and reached its maximum in late

June before the canopy was fully developed. From late

July onwards, the assimilation fluxes decreased. This

decrease was not solely due to a radiation decrease but

also to a canopy assimilation capacity reduction

probably resulting from the increase of aged leaf

relative area. The following crop, winter wheat, was

sown in mid October and from February onwards a net

assimilation was observed.
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Respiration was estimated in two ways: by computing

the intercept of the NEE–PPFD response and by

averaging nighttime measurements. A good coherence

was found between the two estimations, even after

normalisation, suggesting that the evolution reflects not

only a response to temperature but also a seasonal

evolution. Two peaks were observed: the first in July

corresponding to the maximum canopy assimilation

capacity, which could reflect an autotrophic contribution,

and the second from September to October resulting from

leaf senescence and harvest residues decomposition.

Annual sequestration was estimated by a summation

of the half-hourly fluxes and filling the missing measure-

ments. It was found to be�0.61 � 0.11 kg C m�2 which

is unexpectedly high for a crop. It should be noticed that

the year of measurement encompassed the whole sugar

beet growing season and the first months of the winter

wheat cultivation. The contribution of the harvest

residues to the annual NEE was estimated to be 3.3%.

These results are accurate under these experimental

conditions. However, it must be remembered that

carbon sequestration of sugar beet crops depends on

many other factors such as variety, sowing date, crop

establishments, harvesting date, controls of weeds,

disease, pests, soil types, irrigation and fertilizer

application rates.
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Abstract 

The total ecosystem respiration (TER) and gross primary productivity (GPP) were obtained 

from the eddy covariance measurements. Two approaches, based on the daytime or night-

time measurements, were compared for three successive crops between emergence and 

harvest (or chemical haulm) at the Lonzée site in Belgium. For both approaches, the 

differences between assessments obtained using several procedures were evaluated and 

uncertainties resulting from procedure choices were evaluated on both cumulated and daily 

values. The choice of the reference temperature produced the most important difference (5–

11%) for the both approaches. The differences were systematic but inversed for the day 

approach compared with the night approach. In both cases, the soil temperature was shown 

to be a better reference than air temperature. The second cause of systematic differences 

between assessments was the choice of the relationship between net ecosystem exchange 

(NEE) and photosynthetic active radiation for the daytime approach (2–5% for the 3-

parameter relationships) and the choice of the u* threshold value (0–5%) for the night-time 

approach. The window size choice produced selective systematic differences that were 

therefore quite limited on an annual scale (1–11% for both approaches), but could become 

more important (up to 30%) on a daily scale. The narrow window procedure was able to 

reproduce particular events such as intense crop development, senescence or water stress. It 

is therefore recommended for crop analysis. Finally, the error on the regression caused a 

random error of 1–4 %. The difference between the two approaches was lower than 3–8% on 

total TER and 1–3 % on total GPP, which is acceptable, taking into account that these 

estimates were obtained from independent measurements.  

 

Keywords: eddy covariance, TER, GPP, partitioning, uncertainties 



 

 



1. Introduction 

The continuous rise of CO2 atmospheric concentration resulting from anthropogenic 

activities and the anticipated adverse consequences on the global climate system has led to 

the need for a better understanding of the global carbon cycle. Since the mid-1990s, the 

particular interest in the ecosystem contribution to the global carbon cycle has led to net 

carbon exchange measurements being made worldwide (Baldocchi et al., 2001; Baldocchi, 

2003; Valentini, 2003). The measured CO2 net ecosystem exchange (NEE) is the small 

difference between assimilated carbon by photosynthesis (gross primary productivity: GPP) 

and emitted carbon by respiration (total ecosystem respiration: TER). These two components 

are commonly inferred from the NEE measurements using empirical relationships with 

climate (e.g., Hollinger et al., 1994; Lee et al., 1999; Falge et al., 2002; Gilmanov et al., 2003; Xu 

and Baldocchi, 2004; Reichstein et al., 2005; Suyker et al., 2005). Alternatively, neural 

networks might be used which do not presuppose any prior knowledge of, or assumption 

about, a relationship between fluxes and climate (Papale and Valentini, 2003; Hagen et al., 

2006). In addition to these empirical methods, physiologically based models are also used to 

partition NEE (e.g., Williams et al., 1996; dePury and Farquhar, 1997; Wang and Leuning, 

1998; Owen et al. 2006). In all these methods, TER is assessed from NEE measurements. 

Apart from this, chamber methods were used (e.g., Norman et al., 1992; Dugas et al., 1997; 

Lavigne et al., 1997; law et al., 1999; Granier et al., 2000; Dore et al., 2003; Zamolodchikov et 

al., 2003; Boldstad et al., 2004; Wohlfahrt et al., 2005a) to conduct independent estimations of 

the ecosystem respiration. Some studies have reported fairly good correspondence (e.g., 

Granier et al., 2000), whereas others have found that eddy covariance overlooks up to 50% of 

the respiration measured by chambers (Law et al., 1999; Bolstad et al., 2004). 

 

 

In this paper, we compared two approaches to obtain TER and GPP from NEE 

measurements. One approach (the ‘night-time approach, TERN’) consisted of deducing TER 

from night flux measurements; the second approach (as the ‘daytime approach, TERD’) 

deduced TER from the intercept of NEE-photosynthetically photon flux density (PPFD) 

response during the day. For both approaches, different procedures were compared: the use 

of a narrow or large window for the adjustment of NEE to climate relationship, and the use 

of the air or soil temperature as a reference for this response. In addition, the impact on TERN 

of an uncertainty in the u* threshold value and the impact on TERD of the regression choice to 
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compute the NEE-PPFD responses were assessed. The comparison was performed on three 

successive crops grown at the CarboEurope-IP crop site of Lonzée, Belgium. Only the 

uncertainties resulting from the inferring procedure are addressed here; we do not take into 

account the errors or uncertainties linked to NEE measurements. Crop ecosystems are 

characterized by a rapid evolution and a large variation of the biologic activity during the 

growing season. As the overall aim of our work is to assess the crop carbon balance and to 

understand the assimilation and respiration evolutions in relation to crop development and 

the vegetation stages, we need reliable daily values for these fluxes. Therefore, the 

uncertainty analysis we developed here is not limited to total values, but also includes daily 

values. This differentiates this paper from previous studies, most of which compared TER 

assessments methods on an annual (Reichstein et al., 2005; Stoy et al., 2006; Richardson et al., 

2006; Desai et al., in press) or on a monthly scale (Desai et al., in press) and did not analyse 

differences produced by models in terms of daily evolution and ecosystem development.  

 

2. Material and methods 

2.1. Site description 

The Lonzée site is an agricultural field, involved in the CarboEurope-IP and IMECC 

networks, with a 4-year rotational cycle. The climate is temperate maritime with a mean 

temperature of 10°C and an annual precipitation of about 800 mm. The site has been 

described by Moureaux et al. (2006). 

 

In 2004, after traditional tillage in late February, a sugar beet crop (Beta vulgaris L.) was sown 

on 30 March and harvested on 29 September. The NEE and the annual sequestration of the 

sugar beet crop were analysed by Moureaux et al. (2006). The following crop was winter 

wheat (Triticum aestivum L.), sown on 14 October, 2 weeks after the sugar beet harvest. The 

soil conditions were such that a minimum tillage with a rotary harrow was performed before 

wheat seedling. The wheat crop was harvested on 3 August 2005, and in late November 2005 

a conventional tillage was carried out. No crop was grown during autumn, winter and early 

spring. The carbon balance of the winter wheat crop between emergence and harvest was 

studied by Moureaux et al. (in press). In 2006, a seed potato crop was grown on the site.  It 

was planted on 1 May, with the ridging done on 13 May. On 6 August, the first chemical 
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haulm destruction was carried out, following by a second one on 13 August. The potato crop 

was harvested on 15 September 2006.  

 

2.2. Eddy covariance and meteorological measurement systems   

Fluxes of CO2, water vapour and sensible heat were measured with an eddy covariance 

system made with a research-grade sonic anemometer (Solent Research R3, Gill Instruments, 

Lymington, UK) placed at a height of 2.7 m and an infrared gas analyser model Li-7500 

(Licor Inc, Lincoln, NE, USA); this was the standard system used in the CarboEurope-IP and 

Fluxnet networks (Moncrieff et al., 1997; Grelle and Lindroth, 1996; Aubinet et al., 2000). This 

system and the complementary measurements were described by Moureaux et al. (2006).    

 

2.3. TER and GPP assessments 

The GPP and TER can be deduced from half-hourly NEE measurements. These three fluxes 

are related thus: 

 

GPP = NEE – TER (1) 

 

Following Equation (1), the GPP can be deduced from an NEE measurement and a TER 

estimate. TER estimates can be obtained by extrapolating to the whole period NEE 

measurements taken during selected night (TERN) or day (TERD) periods. This paper seeks to 

compare these approaches, evaluate the uncertainties that result from each approach and 

propose the approach that produces the best GPP and TER estimates. Throughout the paper 

we use micrometeorological conventions; i.e., upward fluxes are counted as positive and 

downward fluxes as negative. 

 

The NEE was computed half hourly as the sum of the turbulent flux measured by the eddy 

covariance system and of the storage flux deduced from a single measurement point. Storage 

estimates based on single point measurements were comparable with those based on a 

complete profile, due to the limited height of the measurement system (Moureaux et al. [in 

press]). The turbulent fluxes were scrutinized using a stationary test (Foken and Wichura, 

1996) and only those data that met the quality test, with a deviation below 30%, were used in 

the present analysis.  Stable night-time conditions were identified using a criterion based on 
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the friction velocity (u*). The impact of the threshold value on the annual fluxes was 

analysed. Reference u* thresholds were 0.1, 0.22 and 0.12 m s-1 for the sugar beet crop, winter 

wheat crop and seed potato crop, respectively. They were calculated using a method similar 

to that described by Reichstein et al. (2002a). 

 

Data gaps were filled using a mean diurnal variation with an 11-day data window approach 

when meteorological data were missing (Falge et al., 2001). When this was not the case, an 

empirical NEE-climate relationship was preferred. Daytime gaps were estimated using an 

NEE (Ne)-PPFD (Q) relationship based on 10-day periods. Three NEE-PPFD relationships 

were tested for the data gap filling: a Misterlich equation (Dagnelie, 1973; Aubinet et al., 

2001), a rectangular hyperbola (Michaelis-Menten, 1913; Falge et al., 2001; Gilmanov et al. 

2003) and a non-rectangular hyperbola (Peat 1970; Johnson and Thornley, 1984; Boot and 

Loomis, 1991; Gilmanov et al., 2003). The differences in NEE between the various methods 

was less than 0.1%. Finally, we used the Misterlich equation:  

( ) ( )
1 exp
⎛ ⎞⎛ ⎞−α

=− + − +⎜ ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠⎝ ⎠
e s d

s d

QN N R
N R

⎟
⎟ dR   (2) 

where Ns is the NEE at light saturation, α  is the apparent quantum efficiency (i.e., the initial 

slope of the curve) and Rd the dark respiration. 

 

The TER can be deduced from nigh-time or daytime NEE valid measurements. In the night-

time approach, an exponential relationship was established between the night-time NEE 

which equals the TER and the temperature. The relationship was as proposed by Lloyd and 

Taylor (1994): 

e 10 0
ref

1 1N R exp E
56.02 T 227.13

⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭
  (3)   

where R10 is the respiration flux at 10°C, Tref is the reference temperature and E0 is a 

parameter characterising the respiration sensitivity to temperature. The parameterisation 

was fitted on data corresponding to mixed conditions. On the assumption that the TER 

dependence on temperature is the same during the day as it is at night, the TER was 

computed on the whole day using this parameterisation and TERN was then obtained.  

 

In the daytime approach, the respiration was assessed from the intercept of the NEE-PPFD 

relationship (Rd in Equation 2).  
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2.4. Description of the computation procedures 

First, as CO2 eddy covariance fluxes are known to be underestimated at night (Goulden et al., 

1996, Aubinet et al., 2000), it was important to determine the uncertainty resulting from this 

error. We considered the night flux error as a systematic error and corrected it by applying 

the classical u* filtering described earlier. However, as the normalised flux to u* response 

was not perfectly flat above the u* threshold, an uncertainty remained for TERN that resulted 

from the uncertainty for the threshold value. To evaluate it, we compared TERN computed 

by using either the best estimate of the u* threshold (u*ref) or this value increased by 0.1 m s-1 

threshold (u*ref+0.1). 

 

Models used to extrapolate TERN and TERD can be fitted on long or short periods (large or 

narrow window). Large window adjustments (subscript LW) were performed for the whole 

period. In the night-time approach, Equation 3 was fitted on the whole crop data and a 

unique set of parameters (temperature sensitivity and respiration at 10°C) was obtained. The 

TERN, LW was then computed for the whole period using Equation 3 with this set of 

parameters. This method is similar to those used, for example, by Hollinger et al. (1994); 

Saigusa et al. (2005) and Davidson et al. (2006). In the daytime approach (TERD, LW), Rd,10 and 

mean daytime temperature were initially calculated every 10 days. Rd,10 was deduced from a 

Misterlich regression (Equation 2) and daytime temperature by a simple average. A Lloyd 

and Taylor relationship (Equation 3) was then fitted on these data and a unique set of 

parameters (temperature sensitivity and respiration at 10°C) was again obtained. TERD, LW 

was computed as described earlier. This method was used, for example, by Lee et al. (1999) 

and Wohlfahrt et al. (2005a).  

 

The problem with the large window procedure is that parameters not only represent a direct 

response to temperature, but can also reflect indirectly the crop development or soil moisture 

effects (e.g., Davidson et al., 1998; Reichstein et al.; 2002, Xu and Baldocchi, 2004). To reduce 

the impact of these factors, they could be incorporated explicitly in the model or implicitly by 

introducing temporally varying functions of temperature (Reichstein et al., 2005). This is the 

aim of the narrow window procedure (subscript NW). In the night-time approach (TERN,NW), 

it consisted of using time-varying R10 parameters that were re-evaluated every 4 days and 

temperature sensitivities that were computed on a 15-day basis. This method is similar to 

those proposed by Reichstein et al. (2005). In the daytime approach the respiration was 

deduced daily from the intercept of the NEE-PPFD relationship. The daily TERD,NW was the 
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sum of daytime and night-time respiration, where the daytime respiration was the product 

of the NEE-PPFD intercept (Rd in Equation 2) and the duration of the day (between sunrise 

and sunset) and the night-time respiration was the product of the intercept, the night 

duration and a negative exponential function, taking into account the temperature difference 

between the day and the night. This method was proposed by Gilmanov et al (2003). The 

intercept value was found to be sensitive to the relationship used for the regression. 

Gilmanov et al. (2003) recommended a non-rectangular hyperbola relationship (i.e. a 4-

parameter equation). We also used this method with a rectangular hyperbola relationship 

and a Misterlich relationship, both of which are 3-parameter functions.  

 

The impact of the reference temperature choice was also studied. Four methods combining 

the two approaches (daytime or night-time) with the two procedures (large or narrow 

window) were applied using either air temperature (subscript TA) or soil (subscript TS) 

temperature at a depth of 5.5 cm as a reference.  

 

To avoid making this paper too cumbersome, only the most relevant results are presented 

here. First, the impact of the NEE-PPFD relationship shape on TERD,NW,TS and of the u* 

threshold value on TERN,NW,TS and TERN,LW,TS was analysed. The influence of the window size 

was then tested for both approaches, using TS as a reference temperature. Next, the impact 

of the temperature reference was assessed for both approaches using the narrow window 

procedure. Finally, the daytime and night-time approaches, using both the narrow window 

procedure and the soil temperature, were compared. The uncertainties affecting each method 

and the method feasibility were discussed. Differences between the methods were evaluated 

by computing the difference (D) and the quadratic (QD) difference between daily values. A 

paired t-test was also used to determine the significance of the mean difference on a seasonal 

scale. The uncertainty associated with TER and GPP parameterisation was computed every 

half hour as the residual variance of the Lloyd and Taylor fit for the TER and GPP night-time 

approach assessments, as the standard error of the respiration parameter for TERD,NW and 

GPPD,NW and as a combination of both for TERD,LW and GPPD,LW. 

 

These analyses were performed on three crops (i.e., on periods ranging from emergence to 

harvest for the sugar beet and winter wheat crops, or chemical haulm destruction for the 

potato crop). These three periods were referred to as SB04, WW05 and P06, respectively, and 

corresponded to the periods from 21.04.2004 to 27.09.2004, from 01.11.2005 to 02.08.2005 and 
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from 24.05.2006 to 06.08.2006, respectively.  However, for the winter wheat crop, TERD,NW 

was not computed before 1 April 2005 due to the weak number of possible daily fits. During 

winter, the crop barely developed and thus the assimilation was weak. In addition, radiation 

was reduced and the adjustment of a daily NEE-PPFD relationship was then subjected to 

large uncertainties or even became impossible. The period from 1.04.05 and 2.8.05 was 

referred to WW05* and the corresponding respiration to TER*. 

 

All the model parameters were determined by non-linear least squares regression, using the 

Marquardt-Levenberg algorithm (SAS Enterprise, SAS Institute Inc., USA). 

 

3. Results and discussion 

3.1. Impact of the NEE-PPFD relationship on TERD,NW,TS  

The same three NEE-PPFD relationships noted earlier were compared for Rd evaluation in 

the daytime approach: Misterlich (Mist), rectangular hyperbola (RH) and non-rectangular 

hyperbola (NRH). The TER assessments for the three crops are presented in Table 1. The 

differences between RH and Mist estimations varied from 1% (0.01 kg C m-2) (WW05) to 4% 

(0.01 kg Cm-2) (P06), whereas differences between RH and NRH estimations varied from 7% 

(0.02 kg C m-2) (P06) to 15% (0.10 kg C m-2) (SB04). All the differences were systematic and 

significant (α = 0.05) (Table 1). This suggested clearly that the Rd value was linked to the 

regression choice. We were not able to determine which regression gave the best estimate, 

but practical arguments may prevent the use of the NRH equation. As it was based on four 

parameters, whereas both the other relationships were based on three, its fit failed more 

often (64%, 53% and 60% for SB04, WW05* and P06, respectively) than those of the other 

functions (48%, 19% and 53%, respectively, for the same periods). Gilmanov et al. (2003), 

who recommended using the non-rectangular hyperbola, did not report this problem. One 

reason could be that they applied it to gap-filled data series, whereas we exploited only valid 

measurements and therefore had fewer available data. 

 

In July 2006 the weather was exceptional sunny and dry climatic conditions. Coupled with a 

superficial root system, these conditions resulted in a level of water-stress in the potato crop 

that had never been observed in previous crops. Consequently, the fit of a daily NEE-PPFD 

relationship failed for most of this time period and the interpolation was based on very few 
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data. The large number of interpolation values is shown in Figure 1f in the weak daily 

variation of this method compared with the other methods (Figs. 1c and 1f). We tested an 

NRH equation to which we had added a respiration to temperature response in order to 

improve our TER assessment, as suggested by Gilmanov et al. (2006). This further increased 

the number of parameters and reduced the number of possible fits (less than 10% of the 

days). In addition, as Gilmanov at al. (2006) noted, the use of this relationship can 

overestimate the ecosystem respiration because the NEE decrease could result not only from 

a respiration increase, but also from an assimilation decrease due to stomatal regulation. 

Additional measurements carried out at the potato leaf scale with a porometer (Li-6400, Licor 

Inc., Lincoln, NE, USA) showed a stomatal conductance decrease with increasing vapour 

pressure deficit (results not shown). We confirm that the use of NEE-PPFD and temperature 

regression did overestimate TER for the P06 crop and we did not use it again. This model 

was therefore abandoned. 

 

[kg C m-2] SB04 WW05* P06 
Mist 0.637 0.697 0.270 
RH 0.662 0.709 0.284 
NRH 0.562 0.625 0.264 
RH - Mist D : 0.025 

P < 0.001 
QD : 0.060 

D : 0.011 
P = 0.004 
QD : 0.043 

D : 0.014 
P < 0.001 
QD : 0.020 

NRH - Mist D : - 0.075 
P < 0.001 
QD : 0.130 

D : - 0.072 
P < 0.001 
QD : 0.107 

D : - 0.006 
P = 0.009 
QD : 0.020 

NRH-RH D : - 0.100 
P < 0.001 
QD : 0.135 

D : - 0.084 
P < 0.001 
QD : 0.122 

D : - 0.020 
P < 0.001 
QD : 0.025 

Table 1: Total TER values obtained using the daytime approach, a narrow window and the soil 

temperature. For the three crops (sugar beet (SB04), winter wheat (WW05) and seed potato (P06)), the 

TERD,NW,,ST was assessed using Misterlich (Mist), rectangular (RH) and non-rectangular (NRH) 

hyperbola relationships. Differences (D) and quadratic differences (QD) were computed to compare 

the TER assessments. The P value indicates if the differences are significant. 

 

 

In conclusion, in view of the difficulties with its fit, the NRH relationship was not retained 

for further analysis and only parameters deduced from the Misterlich equation were used 

subsequently. The uncertainty resulting from the equation choice is discussed below.  
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3.2. Impact of the u* threshold value on TERN,TS  

Moureaux et al. (2006) and Moureaux et al. (in press) mentioned that, for SB04 and WW05, 

the relationship between normalised flux and u* did not move towards a horizontal 

asymptote at high u*, but rather continued to increase, albeit at a limited rate. This suggests 

that, even above the critical u* value, the total TERN of these crops would increase with the u* 

threshold. The resulting uncertainty for TERN cannot be evaluated directly because it also 

depends on the u* frequency distribution at the site. It was therefore evaluated by comparing 

two TERN,TS values, one computed using the best u* threshold estimate and the other using 

this estimate increased by 0.1 m s-1. The results, presented in Table 2, showed that the 0.1 m s-

1 in the u* threshold induced an increase of 5% (0.03 kg C m-2) for SB04, 3% (0.02 kg C m-2) for 

WW05 and no increase for P06. A paired t-test concluded that the differences were 

significant for SB04 and WW05 (Table 2). An analysis of the daily difference evolution (not 

shown) suggests that this error was systematic and did not vary greatly from day to day. The 

uncertainties computed here appear similar or slightly smaller than those reported for other 

sites by Barford et al. (2001), Anthoni et al. (2004) and Xu and Baldocchi (2004). It is worth 

noting, however, that (i) the uncertainty was computed after applying the u* filtering and 

therefore does not quantify the night flux error itself, which is far more important (Papale et 

al., 2006) and (ii) that the impact of this uncertainty on the annual NEE (Anthoni et al., 2004; 

Moureaux et al., 2006) is one of the biggest uncertainties affecting this variable.  

 

[kg C m-2] u*,ref u*,ref+0.1 u*,ref+0.1 – u*ref

NW 0.616 0.648 0.032 
P < 0.001 

SB04 

LW 0.622 0.643 0.021 
P < 0.001 

NW 0.946 0.965 0.019 
P = 0.001 

WW05 

LW 0.921 0.940 0.019 
P < 0.001 

NW 0.294 0.294 0.000 
P = 0.963 

P06 

LW 0.300 0.300 0.000 
P = 0.875 

 

Table 2: Impact of a u* threshold value underestimation of 0.1 m s-1 on the total TER modelled 

following the night-time approach and the soil temperature. Results corresponding to narrow (NW) 

and large (LW) windows are presented for the three crops. The differences and the value of P 

corresponding to a paired t-test are indicated. 
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3.3. Impact of the window size 

Table 3 presents (3a) and compares (3b) different TER estimations computed using various 

procedures. In particular, a comparison between TER computed with a narrow (NW) and 

large (LW) window is made for both the night (N) and day (D) procedures. In terms of total 

TERTS, the window size produced differences varying from less than 0.01 kg C m-2 to 0.04 

kg C m-2, the differences being significant (α = 0.05) only for the daytime approach (Table 3). 

For both approaches, the difference was not systematic, as confirmed by large differences 

between the QD and D values. This had already been observed by Stoy et al. (2006) and 

Richardson et al. (2006), contrary to the report by Reichstein et al. (2005) which predicted 

systematic (TERN,NW < TERN,LW) and greater differences for annual GPP and then for annual 

TER. They also said that the window size impact would depend on the amplitude between 

daytime and night-time temperatures. A greater difference between TERN,NW and TERN,LW 

should therefore be expected when using air temperature instead of soil temperature as a 

reference. Slightly larger differences between TERN,NW,TA and TERN,LW,TA (not shown) were 

indeed observed, but they remained lower than 5% and were not significant (paired t-test, α 

= 0.05, results not shown).  

 

As the impact of the window size was limited for total TERTS, its impact on daily values was 

far more important, differences reaching up to 0.5 to 1.5 g C m-2 d-1 on certain days (Fig. 1), 

which could represent uncertainties of up to 30 %. For both TERN,TS and TERD,TS, the NW 

estimations were greater than the LW estimations during intense above-ground biomass 

development. This period lasted from the second half of June to late July (Moureaux et al., 

2006) for SB04, from early April to mid-June (Moureaux et al., in press) for WW05, and from 

mid-June to early July for P06. This is because, during these periods, the intense crop activity 

produced an increased respiration flux that was taken into account in the short-term 

assessment of R10 (Equation 3), whereas it was confounded with temperature effect in the 

long-term assessment (Reichstein et al., 2005).  

 

A noticeable difference was also observed in July 2005 (Figs. 1b and 1e), when the winter 

wheat was senescent and its activity, including respiration, decreased (Moureaux et al., in 

press). This decrease was well reproduced by TERNW,TS but not by TERLW,TS which therefore 

largely overestimated the flux during this period. In the same way, the potato respiration 

decrease resulting from a drought in July 2006 was again well reproduced by TERNW,TS but 
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not by TERLW,TS. During this period, however, the TERD,NW fit failed most of the time, which 

induced a large number of interpolated data, as discussed in 3.2, thus weakening our 

confidence in this assessment. These two examples highlight the inability of large window 

procedures to correctly reproduce the daily TER evolution.  

 

Daily TERNW,TS and TERLW,TS values were compared with measurements of night-time NEE 

which are representative of TER. Data were u* filtered, without gap filling, and averaged by 

night. Only nights with more than five valid measurements were considered. For the three 

crops and both approaches, the mean quadratic errors between computed TER and night-

time NEE were smaller for TERNW,TS than for TERLW,TS (Table 4), confirming that the narrow 

window procedure is more able to reproduce particular periods as intense crop 

development, drought or senescence, as confirmed by Reichstein et al (2005), Richardson et 

al. (2006) and Stoy et al. (2006). Consequently, here we will consider only those estimates 

computed with the narrow window procedure.  

 

3.4. Impact of the reference temperature choice   

Comparisons between TER estimates, computed using either air or soil temperature as a 

reference, were then made for both the daytime and night-time approaches. The impact of 

the temperature choice was different for each approach (Table 3): in each case, a systematic 

difference was observed, but the estimates based on TA were larger than those based on TS 

for the night-time approach (Table 3), whereas the opposite was observed for the daytime 

approach. In both cases, the differences were significant (α = 0.05) and ranged between 5% 

(0.05 kg C m-2) (WW05) and 11% (0.03 kg C m-2) (P06) for TERD, and between 8% and 9% 

(0.03–0.05 kg C m-2) for TERN. The daily differences were fairly constant throughout the 

season and lower than, or equal to, 0.5 g C m-2 d-1 in both cases (results not shown).  

 

In both cases, these differences reflected artefacts linked to the extrapolation of 

measurements from one temperature range to another: in the night-time approach, the 

procedure included an extrapolation from night to day conditions (i.e., from lower to higher 

temperatures). Such extrapolations are known to produce large uncertainties but, in this 

case, the errors would have been less important when using TS rather than TA because the 

night and day ranges were closer for the former than for the latter. 
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a. [kg C m-2] SB04 WW05 WW05* P06 
1. TERN,NW,TS 0.616 ± 0.011 0.946 ± 0.011 0.735 ± 0.010 0.294 ± 0.010 
2. TERN,LW,TS 0.622 ± 0.013 0.921 ± 0.017 0.675 ± 0.012 0.300 ± 0.011 
3. TERD,NW,TS 0.637 ± 0.018  0.697 ± 0.015  0.270 ± 0.009 
4. TERD,LW,TS 0.609 ± 0.013 0.941 ± 0.017 0.661 ± 0.011 0.300 ± 0.010 
5. TERN,NW,TA 0.667 ± 0.011 0.994 ± 0.011  0.786 ± 0.010 0.327 ± 0.010 
6. TERD,NW,TA 0.587 ± 0.018  0.639 ± 0.015 0.246 ± 0.009 
b. [kg C m-2]     
2-1: TERN,LW,TS – TERN,NW,TS  D: 0.006 

P = 0.481 
QD: 0.100 

D: -0.025 
P = 0.120 
QD: 0.269 

D: -0.060 
P < 0.001 
QD: 0.173 

D: 0.006 
P = 0.403 
QD: 0.060 

4-3: TERD,LW,TS –  TERD,NW,TS D: - 0.027 
P = 0.005 
QD: 0.125 

 D: -0.036 
P = 0.010 
QD: 0.157 

D: 0.030 
P < 0.001 
QD: 0.078 

5-1: TERN,NW,TA – TERN,NW,TS D: 0.051 
P < 0.001 
QD: 0.063 

D: 0.048 
P < 0.001 
QD: 0.111 

D: 0.051 
P < 0.001 
QD: 0.073 

D: 0.033 
P < 0.001 
QD: 0.038 

6-3: TERD,NW,TA - TERD,NW,TS D: - 0.050 
P < 0.001 
QD: 0.056 

 D: -0.058 
P < 0.001 
QD: 0.063 

D: -0.024 
P < 0.001 
QD: 0.029 

3-1: TERD,NW,TS – 1. TERN,NW,TS D: 0.021 
P = 0.002 
QD: 0.084 

 D: - 0.038 
P = 0.001 
QD: 0.130 

D:  -0.024 
P < 0.001 
QD: 0.052 

 

Table 3: Values of TER and the corresponding uncertainty resulting from the inferring procedure for 

the sugar beet crop (SB04), winter wheat crop (WW05) and seed potato crop (P06). The WW05* 

corresponds to the period beginning on 01.04.05. Italic values correspond to values computed for this 

period only, whereas they could be computed for the whole WW05 period. Differences and square 

differences between TER assessments were computed. A P value indicates whether or not the 

difference is significant. 

 

In Figure 2 we present a comparison made for a few days between half-hourly TER estimates 

based on TA and TS, respectively. It seems clear that the TA estimate amplitudes and 

maximal values are not plausible, ranging from 2 to 12 µmol m-2 s-1. In contrast, the TS 

estimate amplitude appears more likely and was found to agree with those obtained from 

automatic soil chamber measurements taken on the same site at the same time (about 2 µmol 

m-2 s-1). In addition, the mean difference between measured NEE and simulated TERN,NW was 

found to be smaller when using TS rather than TA (Table 4), confirming that soil temperature 

constitutes a better reference.  
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Figure 2: Half-hourly evolution of TERN,NW using TS (black line) and TA (grey line) and half-hourly 

evolution of measured soil respiration (continuous grey line). The daytime and night-time values of 

the respiration used in TERD,NW assessments are presented when using TS (grey triangle) and TAIR 

(black circle) 

 

It should be noted that air temperature is often preferred in synthesis studies (Reichstein et 

al., 2005; van Dijk and Dolman, 2004), mainly for practical reasons because it is easier to 

measure and standardize. However, our results suggest that the large differences between 

the daily estimates of TERN,TA and TERN,TS resulted from a partial compensation of much 

larger differences that affected half-hourly estimates. This meant we had reservations about 

the use of TA in the night-time approach.   

 

[kg C m-2] SB04 WW05 WW05* P06 
TERN,NW,TS - NEEnight 0.516 0.370  0.453 
TERN,LW,TS - NEEnight 0.828 1.053  1.016 
TERD,NW,TS - NEEnight 0.707  0.876 0.785 
TERD,LW,TS - NEEnight 0.858 1.049 1.503 1.016 
TERN,NW,TA - NEEnight 0.662 0.481  0.536 
TERD,NW,TA - NEEnight 0.645  0.961 1.025 

 

Table 4: Mean quadratic differences between TER assessments and night-time NEE measurements. 

The WW05* corresponds to the period beginning on 01.04.05. Italic values are computed for this 

period only where they could be computed for the whole WW05 period. 
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The problem was not the same in the daytime approach because the extrapolation from day 

to night conditions was based on a different procedure. First, as the method computed only 

one respiration value per day (namely, Rd), the extrapolation was not based on half-hourly 

estimates but on daily averages. Two respiration rates were computed each day: one for 

daytime, Rd , and one for night-time estimated as the product of Rd (Equation 2) and of an 

exponential function of the difference between night-time and daytime temperatures 

(Gilmanov et al., 2003). Consequently, daytime respiration did not depend on the reference 

temperature choice, but the night-time respiration did. In addition, as the difference between 

daytime and night-time temperatures was larger for air than for soil, night-time respiration 

should have been systematically smaller when based on the former than on the second 

temperature. This is illustrated in Figure 2: it shows that daytime estimates of TERD,TA and 

TERD,TS were equal, but that night-time estimates of TERD,TA were systematically lower than 

those of TERD,TS. The daily amplitude of TERD,TA appeared to be more in agreement with soil 

chamber measurements and this could mean that, here, TA would be a better indicator than 

TS. However, a comparison between TER assessments and measured NEEnight revealed that 

this was generally not the case, TS assessments providing lower quadratic differences with 

measurements than TA in two of the three years (Table 4). The reason is probably that the 

respiration-TA relationship used to extrapolate day to night conditions is biased. Indeed, this 

equation puts together two variables that were not measured at the same time: Rd, the 

intercept of the NEE-PPFD curve, was affected mainly by measurements taken under low 

radiation conditions and thus most representative of sunrise and sunset conditions, whereas 

the temperature was computed as an average for the whole day period, encompassing 

warmer periods. As a result, the relationship would always underestimate the respiration, 

which explains the results shown in Table 4. This bias was less important when using the soil 

temperature. We think therefore, that for both the daytime and night-time approaches, the 

more robust TER estimates are obtained when using soil temperature as a reference.  

 

3.5. Comparison between daytime and night-time approach  

The daytime and night-time approaches were compared. For both estimations, we used the 

narrow window procedure and the soil temperature as a reference. In terms of total value, 

estimations based on daytime measurements were higher for SB04 and lower for WW05 and 

P06 (Table 3). The differences were between 0.02 and 0.04 kg C m-2 and were significant (α = 
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0.05). Quadratic differences were higher, suggesting that the differences were not systematic 

throughout the season. This is illustrated in Figure 3 where seasonal evolutions of TERD,NW,TS 

and TERN,NW,TS are presented for the three crops. The most remarkable differences between 

the two estimates were observed between mid-June and mid-July in WW05 and from late 

June to harvest in P06. In both cases, TERD,NW was smaller than TERN,NW. The difference for 

the winter wheat crop was about 2 g C m-2 d-1 and could not be explained by any climate 

particularities. This period corresponded to grain development and leaf yellowing. It is 

worth remembering that the long-term day assessment gave predictions that were similar to 

the night-time measurements and that only the TERD,NW model provided such small 

differences. The difference in potato was also about 2 g C m-2 d-1 and corresponded to the 

drought period. During this period, there were serious difficulties in assessing the TERD,NW 

(cf. 3.1) and a large number of values were interpolated.  

 

The fact that the differences between daytime and night-time approaches were not 

systematic and limited in time contradicts some studies that reported a systematic 

overestimation of TER and GPP when assessed from night-time data rather than daytime 

data (Amthor and Baldocchi, 2001; Janssens et al., 2001; Morgenstern et al., 2004; Wohlfahrt 

et al., 2005b). This overestimation was explained by a reduction of leaf respiration in the light 

compared with the darkness (Kok, 1948; Brooks and Farquhar, 1985; Pärnik and Keerberg, 

1995; Villar et al., 1995; Atkin et al. 1997, 1998, 2000; Schultze, 2003). However, recent 

findings using stable isotope methodology showed that under most conditions only the 

light-inhibition of leaf dark respiration is apparent and results in CO2 refixation in the leaf 

(Loreto et al., 2001; Pinelli & Loreto, 2003). This suggests that the differences we observed 

between daytime and night-time based TER are unlikely to be biased.  

 

3.6. Impact on GPP estimations 

With the GPP computation method, it was expected that all the uncertainties computed as 

described earlier would be much smaller than for TER assessments: first, GPP was larger in 

absolute value than TER, leading to smaller relative errors; second, as GPP was zero at night, 

it was affected by uncertainties only during the day, whereas TER was affected during both 

the day and night. However, the differences resulting from the temperature choice (between 

0.03 and 0.07 kg C m-2) were of the same order of magnitude, or even greater, for the 

GPPN,NW than the TERN,NW. In fact, the differences between TERN,NW  using TA and TS were 
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more important during the day than during the night (Fig. 2). As only the daytime TERN,NW 

values were used to compute GPPN,NW, the error resulting from the temperature reference 

choice remained important in GPPN,NW assessments.  The errors produced by the reference 

temperature choice were significant (α = 0.05) and systematic (Table 5). The relative 

differences were less than 5%.  

 

For the other choices, the impact on GPP of each procedure was similar but smaller than for 

TER. The impact of the window size was between 0.00 and 0.02 kg C m-2 for the night-time 

approach and between 0.00 and 0.02 kg C m-2 for the daytime approach. The only significant 

difference (α = 0.05) corresponded to the WW05 crop for the night-time approach. The 

window size differences were between 1 and 3% of total GPP values for both approaches 

(Table 5). As for the TER computation, the size of the window induced a selective systematic 

error. In terms of daily evolution, the differences between the narrow and large window 

models using night-time data and the soil temperature were usually less than 10% for the 

daily values but could reach 30% for TERN,TS.  

 

 

GPP [kg C m-2] SB04 WW05 WW05* P06 
1. GPPN,NW,TS -1.421 ± 0.009 -1.566 ± 0.008 -1.430  ± 0.008 -0.608  ± 0.008 
2. GPPN,LW,TS -1.423 ± 0.010 -1.542 ± 0.012 -1.393 ± 0.009 -0.611 ± 0.009 
3. GPPD,NW -1.434  ± 0.018  -1.403 ± 0.015 -0.592 ± 0.009 
4. GPPD,LW,TS -1.417 ± 0.010 -1.547 ± 0.011 -1.384 ± 0.009 -0.596  ± 0.008 
5. GPP N,NW,TA -1.479 ± 0.009 -1.632 ± 0.008 -1.495 ± 0.008 -0.642  ± 0.008 
2-1 : GPP N,LW,TS – GPP N,NW,TS  D: -0.002 

P = 0.764 
QD: 0.033 

D: 0.024 
P = 0.018 
QD: 0.168 

D: 0.037 
P < 0.001 
QD: 0.111 

D: -0.003 
P = 0.541 
QD: 0.040 

4-3 : GPP D,LW,TS – GPP D,NW D: 0.017 
P = 0.262 
QD: 0.191 

 
 

D: 0.019 
P = 0.362 
QD: 0.223 

D: -0.004 
P = 0.649 
QD: 0.081 

5-1 : GPP N,NW,TA – GPP N,NW,TS D: -0.058 
P < 0.001 
QD: 0.068 

D: -0.066 
P < 0.001 
QD: 0.119 

D: -0.065 
P < 0.001 
QD: 0.079 

D: -0.034 
P < 0.001 
QD: 0.039 

3-1 : GPP D,NW -  GPP N,NW,TS D: -0.013 
P = 0.369 
QD: 0.179 

 D: 0.027 
P = 0.157 
QD: 0.216 

D: 0.016 
P = 0.087 
QD: 0.084 

Table 5: Values of GPP assessed using the different procedures for the sugar beet crop (SB04), winter 

wheat crop (WW05) and seed potato crop (P06). The WW05* corresponds to the period beginning on 

01.04.05. Italic values are the GPP computed for this period only, whereas they could be computed for 

the whole WW05 period. Mean differences and mean quadratic differences between daily values are 

computed; the P value indicates whether or not the mean difference is equal to zero. 
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The uncertainty resulting from the choice of the NEE-PPFD relationship was systematic. The 

differences between RH and Mist GPPD,NW assessments were  between 0.01 and 0.02 kg C. 

With regard to the u* threshold uncertainty, the differences for GPPN,NW,TS were also 

systematic, the GPP values corresponding to the u*ref being bigger than those corresponding 

to u*ref+0.01. These differences were between 0.00 and 0.02 kg C m-2. 

 

Finally, the differences between the daytime and night-time approaches were not significant 

(α = 0.05) (Table 4) and not systematic. They ranged from 0.01 to 0.03 kg C m-2 (Table 5). The 

relative differences between the total GPPN,NW,TS and GPPD,NW values reached a maximum of  

3% (P06).  

4. Concluding remarks 

In this paper, the TER and GPP assessments provided by two approaches based on 

independent datasets (night-time and daytime approaches) were compared for three 

successive crops, between emergence and harvest or chemical haulm destruction.  

 

For both approaches, the impact of the window size used to compute the TER to climate 

response and those of the reference temperature choice were tested. In addition, the impact 

of uncertainty on the u* threshold in the night-time approach and the impact of the 

regression choice in the daytime approach were tested. Uncertainties resulting from these 

choices on both cumulated and daily values were evaluated, and the feasibility of each 

method was discussed.  

    

The daytime approach has two advantages: first, it does not require the use of night-time 

data and therefore is not affected by the uncertainties affecting night eddy covariance 

measurements; second, GPP assessments are not sensitive to the choice of the reference 

temperature. On the other hand, it is more difficult to apply when the vegetation is not well 

developed or during drought periods, because NEE to PPFD regressions do not always 

converge or they give wrong parameters during these periods. The use of 4- or 5-parameter 

regressions was found to exacerbate the problem and it was shown that the most robust 

regressions (i.e., those that most often gave a good fit with reasonable parameter values) 

were those that used fewer parameters. This shortcoming could make this method more 

difficult to apply for the TER and GPP computations in a complete year.  
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TERD assessments using the different procedures may differ among themselves in a 

systematic, selective systematic (i.e., they are systematic on specific periods) or random way.   

Systematic differences result, in decreasing order of magnitude, from the choice of the 

reference temperature and of the regression equation (if the choice was limited to the 3-

parameter equations). The choice of the reference temperature produced differences between 

TERD,NW,TA and TERD,NW,TS varying from 0.02 to 0.06 kg C m-2, the former always being 

smaller than the latter. The choice of the regression also had a systematic effect, the 

rectangular hyperbola giving estimates 0.01–0.03 kg C m-2 larger than the Misterlich 

equation. The choice of window size produced an error that affected mainly periods of 

strong vegetation development, drought stress or senescence. Its impact on cumulated 

values was, ultimately, limited, but it was more noticeable on daily estimates. Finally, the 

uncertainty resulting from the regression coefficient standard error acted as random and 

varied from 0.01 to 0.02 kg C m-2. Best estimates using the daytime approach were therefore 

obtained by choosing soil temperature as a reference and a narrow window procedure. In 

these conditions, the remaining uncertainty results from the regression parameter and the 

equation choice. TERD,NW,TS estimates can therefore be quantified as: 0.64 ± 0.02 ± 0.03 kg C m-

2 for SB04; 0.70 ± 0.02 ± 0.01 kg C m-2 for WW05*; and  0.27 ± 0.01 ± 0.01 kg C m-2  for P06. 

GPPD,NW estimates are: - 1.43 ± 0.01 ± 0.02 kg C m-2 for SB04; - 1.40 ± 0.02 ± 0.01 kg C m-2 for 

WW05; and - 0.59 ± 0.01 ± 0.01 kg C m-2 for P06. 

 

The advantage of the night-time approach is that it can be applied at any time in the season, 

including periods of stress or intercrops. Its shortcoming is that it depends on night eddy 

covariance measurements that should therefore be filtered using a u* criterion before being 

used. Here, the systematic differences between TERN estimates are due, in order of 

decreasing importance, to the reference temperature choice and to the u* threshold choice. As 

for TERD, the window size choice produces selective systematic differences and the 

uncertainty on the regression produces random errors.  

 

The choice of the air temperature as reference temperature produced an overestimation of 

TER of 0.03 to 0.05 kg C m-2. It is worth recalling that this overestimation resulted from 

partial compensation of much more important errors at an hourly time scale, and it is likely 

that the error would have been much larger at sites where sunny conditions prevailed and 

the daily temperature amplitude was large. We therefore strongly recommend the use of TS 

rather than TA to extrapolate night data to day conditions.  
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The uncertainty resulting from the u* threshold choice is less important here, as an 

overestimation of 0.1 m s-1 on the threshold choice produced an overestimation of TER of 

0.00 –0.03 kg C m-2.  In addition, this result depended on the shape of the normalized 

respiration response to u* which could vary from one site to another and, at a given site, from 

one crop to another. We therefore recommend carefully estimating the threshold value for 

each crop separately and for each long intercrop. 

 

The window size did not produce large differences for the cumulated respiration but, in 

terms of TER daily values, it did produce systematic differences up to 30%. As a result, it 

produced the greatest mean quadratic differences, varying from 0.06 to 0.27 kg C m-2. 

Similarly, as for the daytime approach, the analysis of these daily differences underlined the 

inability of the large window procedure to reproduce the intense development stages, crop 

senescence or drought periods.  

Finally, the impact of uncertainties on the regression remained quite limited, not exceeding 

0.01 kg C m-2. Best estimates using the night-time approach were therefore obtained by 

choosing soil temperature as a reference and a narrow window procedure. In these 

conditions, the remaining uncertainty results from the regression parameter and the u* 

threshold determination. TERN,NW,TS estimates can thus be quantified as: 0.62 ± 0.01 ± 0.03 kg 

C m-2 for SB04; 0.94 ± 0.01 ± 0.02 kg C m-2 for WW05; and 0.29 ± 0.01 ± 0.00 kg C m-2  for P06. 

GPPN,NW,TS are: - 1.42 ± 0.01 ± 0.02 kg C m-2 for SB04; - 1.43 ± 0.01 ± 0.01 kg C m-2 for WW05; 

and - 0.61 ± 0.01 ± 0.00 kg C m-2 for P06. 

 

The differences between our best estimates for both approaches (daytime or night-time) for 

TER were between 0.02 and 0.04 kg C m-2, which is the order of magnitude of the 

uncertainties affecting each of them. For the GPP, they were between 0.01 and 0.03 kg C m-2. 

This corresponded to relative differences of 3–8 % for TER and 1–3% for GPP. The cumulated 

differences between the two approaches were not systematic and varied from year to year: 

TERD was lower than TERN (and GPPD larger than GPPN) for the last two years, and higher 

than TERN (and GPPD lower than GPPN) for the first year. This result is all the more 

satisfying because the two approaches are based on independent datasets. It also gives an 

order of magnitude of the confidence interval for cumulated TER and GPP estimates. 

However, it should also be noted that such agreement also results partly from the 

compensation of larger differences on the daily scale. For example, in the winter wheat crop, 
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TERD provided daily values 20% smaller than the night-time approach, whereas the 

difference between total values was only 12%. This can be quantified by the quadratic 

difference between the two estimates that varied between 0.05 and 0.13 kg C m-2 for TER and 

between 0.08 and 0.22 kg C m-2 for GPP. Hagen et al. (2006) also reported larger relative 

uncertainties on TER on a daily scale (about 25%) than on an annual scale (less than 10%).  
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a b s t r a c t

The objectives of this paper are to determine winter wheat gross primary productivity (GPP)

by extrapolating to the canopy scale measurements of photosynthetic assimilation made at

the leaf scale, to identify the uncertainties inherent in this method and to quantify their

impact on GPP predictions. Crop development monitoring and photosynthesis measure-

ments were conducted between 1 May and 19 July 2004 at the Carboeurope site of Lonzée,

Belgium, with a portable porometer Li-Cor 6400. The model divided the canopy into 10 layers

in which assimilation was computed on the basis of incident radiation and of assimilation to

light response curves calibrated in the field. The model also took account of photosynthesis

of stems and ears, senescent organ distribution and response of assimilation to leaf to air

vapour pressure difference. Model estimates were compared with eddy covariance mea-

surements performed at the site during the same period. The best agreement (regression

slope = 1.13, R2 = 0.94) between the two estimates was obtained by postulating a concentra-

tion of the senescent organs in the canopy bottom and a stem assimilation rate equal to 63%

of the leaf assimilation. This ratio was found compatible with further leaf scale measure-

ments. This led to a GPP of 1570 g C m�2 during the crop development and maturation

periods. The sensitivity analysis revealed that the main sources of uncertainties were linked

to the photosynthetic capacity of the stems (an increase of 40% in the initial GPP) and ears

(an additional increase of 15%) and to the senescent organ spatial distribution (impact of 7–

9%). An overestimation of GPP during spring (270 g C m�2) was also observed, due to

assimilation reduction at low temperature not be accounted for. Apart from this, the impact

of the A–Q curve parameter uncertainties was found to be limited (impact on GPP always

lower than 4%).
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1. Introduction

Croplands occupy about one-third of the land surface in

Europe (FAO Statistical Databases, 2003) and 45% of the land

surface in Belgium (MRW-DGA, 2005). They have the potential

to mitigate about 16–19 Tg C y�1 (Freibauer et al., 2004). Their

impact on the terrestrial carbon cycle is therefore significant

and this justifies the recent development of CO2 flux

measurements at these sites (e.g., Soegaard and Thorgeirsson,

1998; Anthoni et al., 2004; Suyker et al., 2004). The present

study is part of a larger research project whose overall goal is

to establish the carbon balance of an agricultural site under a

4-year rotation system, which is typical of the Hesbaye region

(Moureaux et al., 2006).

The goal of this research is to evaluate the feasibility of

scaling up the assimilation measurements from leaf to crop

scale. Scaled-up leaf measurements might provide useful

information for validating eddy covariance measurements or

refining the description of the various flux contributions to the

net ecosystem exchange. The combination of these measure-

ments for establishing the crop carbon balance is described in

another paper (Moureaux et al., in press).

In this paper, we concentrate on the scaling up procedure.

An extrapolation scheme was developed based on assimila-

tion to radiation responses (A–Q curves) obtained by poro-

metry measurements performed at the leaf scale during the

study and on an evaluation of light absorption by the crop.

Continuous micrometeorological measurements performed at

the site meteorological station were used as input data, as well

as the vegetation element distribution in the crop that was

continuously monitored throughout season. The scaled-up

results were compared with eddy covariance flux estimations

and the differences were discussed. In addition, an uncer-

tainty analysis was developed in order to determine the most

important causes of uncertainties that affected the scaled-up

GPP. This analysis allowed us to identify the most critical

parameters to prioritize during field measurements and

scaling up procedures. Although the approach was developed

on a specific site and in a specific season, we consider that

most of the results presented here could be extrapolated to

cereal crops.

2. Material and methods

2.1. Site description

The site is a crop field in Lonzée, near Gembloux in Belgium

(508330N, 48440E). It is described in detail by Moureaux et al.

(2006). The climate is typically oceanic temperate. From 1

October to 25 Augustus the overall precipitation and average

air temperature at the site were 545 mm and 10 8C, respec-

tively. The soil is a luvisol and the site is flat, with a mean

gradient of less than 1.2%. The site is included in the

Carboeurope IP, Fluxnet and IMECC networks.

The site was equipped with an eddy covariance system and

a meteorological station. The eddy covariance system mea-

sured fluxes of CO2, water vapour and sensible heat. It was

placed at a height of 2.7 m and consisted of a research-grade

sonic anemometer (Solent Research R3, Gill Instruments,

Lymington, UK) and an infrared gas analyser (model Li-7000,

LiCor Inc., Lincoln, NE, USA). The eddy covariance system and

procedures were those currently used in the Carboeurope IP

and Fluxnet networks (Moncrieff et al., 1997; Grelle and

Lindroth, 1996; Aubinet et al., 2000). Meteorological measure-

ments were averaged every 30 min. They included air

temperature and humidity (RHT2, Delta-T Devices Ltd., Cam-

bridge, UK) at a height of 1.3 m. Global photosynthetically

active (PAR Quantum Sensor SKP 215, Skye Instruments Ltd.,

UK) and global and diffuse photosynthetically active (Sun-

shine sensor type BF3, Delta-T Devices Ltd., Cambridge, UK)

radiation was measured at a height of 2.7 m. Details of the

eddy covariance system and meteorological measurements

are given in Moureaux et al. (2006).

The crop under study was winter wheat (Triticum aestivum

L., cv Dekan). It was sown on 14 October 2004, following a

sugar beet crop (Beta vulgaris L.) harvested on 29 September

2004. No ploughing was done between the two crops, but

minimum tillage with a rotating harrow prepared the soil for

seedling and mixed green residues of sugar beet into a 10 cm

layer of soil. The field management schedule is summarised

in Table 1. Two herbicide treatments were applied, on 18

March and 11 May. Nitrogen was applied in four fractions (on

22 March and 12 April with a urea ammonium nitrate

solution, and on 12 and 30 May with NH4NO3). There was

only one fungicide treatment, on 19 May. The crop was

harvested on 3 August.

2.2. Measurements

Measurements were made at the site at different spatial and

temporal scales. They included: regular dry-matter sampling

during the growth period, continuous eddy covariance

measurements, continuous soil respiration measurements

and leaf scale assimilation measurements. We give details

below on the measurements used in this study.

2.2.1. Vegetation measurements

Photosynthetic photon flux density (PPFD) absorption by the

crop was measured using a ceptometer (Sunscan, Delta-T

Table 1 – Description of the treatments applied in the
field during the winter wheat growing season

Date Treatment

14/10/2004 Sowing

18/03/2005 Weeding (1.5l IP–1.5l Verigal)

22/03/2005 First application of liquid nitro-

gen (45 units/ha)

12/04/2005 Second application of liquid

nitrogen (35 units/ha)

11/05/2005 Weeding (40 g Harmony–25 g

Gratil)

12/05/2005 First application of NH4NO3

(40.5 units/ha)

30/05/2005 Second application of NH4NO3

(81 units/ha)

19/05/2005 Fungicide treatment (1l Opus –

0.5l Amistar)

03/08/2005 Harvest
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Devices, Cambridge, UK). Measurements were performed in

four different plots every 10 days between 12 May and 15 July

2005. The ceptometer was placed successively above the crop

and at the soil surface. In each plot, 20–30 replicates were taken.

The total vegetation, green leaf, stem and ear areas were

deduced from sampling. Each week between 22 April and 19

July 2005 all the plants were sampled from a row 30–50 cm

long. Their green leaf surface was measured using a picture

analyser (WinDIAS, Delta-T Devices, Cambridge, UK). The

stem and ear (from 31 May) length and diameter were also

directly measured. Green leaf area index (GLAI), stem area

index (SAI) and ear area index (EAI) were deduced from these

measurements by multiplying the respective average surfaces

per tiller by the number of tillers per soil surface unit. For light

interception calculations, the surface considered for stems

and ears was the cross-section; for the estimation of the CO2

flux exchange area, the surface considered was the external

area. Total vegetation area index (VAI) was calculated by

adding the leaf, stem and ear area indexes.

Finally, the leaf stomatal ratio, which is needed to deduce

the assimilation from the measurement chamber, was

determined by direct counting. Three plants were collected

and two leaves were taken from each of them. On each leaf

surface, three microscopic cuts were made on which the

stomata number was counted.

2.2.2. Photosynthesis measurements
Photosynthesis was measured in the field, at the leaf scale,

using an open gas exchange system (Li-Cor 6400, Li-Cor Inc.,

Lincoln, NE, USA) equipped with a modulable light source

(6400-02B LED). The leaf was inserted into the chamber and

saturated by light (1700 mmol m�2 s�1) for about 25 min so that

stomatal conductance reached equilibrium. The light was

then reduced from saturation point to 500 mmol m�2 s�1 by

steps of 200 mmol m�2 s�1, and then to dark (0 mmol m�2 s�1)

by steps of 100 mmol m�2 s�1. At each step, there was a 5-min

delay before the measurements were taken in order to make

photosynthetic apparatus adjustments to the light regime.

The measurements were then repeated three times. Net

assimilation (A, mmol CO2 m�2 s�1) to photosynthetic photon

flux density (PPFD, Q, mmol m�2 s�1) responses (A–Q curves)

were deduced from these measurements. Measurements of

leaf temperature, leaf-to-air vapour pressure difference (Dl),

intercellular CO2 concentration and stomatal conductance

were also performed. The measurement procedure was as

prescribed by the system manual (Li-Cor, 2003). Leaf tem-

perature, air humidity and CO2 concentration in the chamber

were kept constant throughout the curve measurement.

Relevant parameters (As, the net and Gs, the gross

assimilation at saturating light [mmol CO2 m�2 s�1], a, the

quantum yield [mmol CO2 mmol�1 photons] and Rd, the dark

respiration [mmol CO2 m�2 s�1]) were deduced from the

measurements by fitting a non-linear equation on measured

A–Q curves. We used the Misterlich equation (Dagnelie, 1991):

A ¼ ðAs þ RdÞ 1� exp
�aQ

ðAs þ RdÞ

� �� �
� Rd

¼ Gs 1� exp
�aQ
Gs

� �� �
� Rd (1)

This equation was preferred to the classical rectangular hyper-

bola because it saturates at a lower PPFD and leads to more

realistic saturation assimilation values (Aubinet et al., 2001).

As a result, saturation assimilation and quantum yield values

were typically 30 and 20% lower when deduced by Eq. (1) than

by a classical Michaelis Menten equation. The fitting was

obtained by non-linear regression using the Marquart–Leven-

berg method.

Homogeneity of the A–Q response in the crop was

evaluated by repeating measurements at different leaf levels

from the same tiller, on different tillers from the same plant

and on different plants. The relationship between A and Q

curve characteristics and season or climate was also inves-

tigated by repeating the measurements on 14 separate days

characterised by different meteorological conditions and crop

development stages. The impact of senescence on the leaf

photosynthetic capacity was assessed by conducting mea-

surements on both green and senescent leaves. Leaf respira-

tion measurements were also performed during the night. The

measurement chronology is summarized in Table 2.

2.2.3. Air humidity characterisation
In this paper, a distinction is made between the air saturation

deficit (Ds) and the leaf to air vapour pressure difference (Dl).

Both are defined as a difference between a saturated vapour

pressure and actual air vapour pressure. However, in Ds, the

saturated vapour pressure is taken at the air temperature

while in Dl, it is taken at the leaf temperature. Ds was directly

measured at the field scale by the meteorological station while

Dl was measured at the leaf scale by the open gas exchange

system. No direct Dl evaluation at canopy scale was available.

It was thus deduced from Ds and from a leaf energy balance

assessment as shown below (Section 3.4).

2.3. Extrapolation model description

2.3.1. General procedure
A model was developed in order to extrapolate A–Q curves

from the leaf scale to the crop scale and to the whole

vegetation season. First, the vegetation was divided into 10

layers of equal VAI. In each layer i, the incident PPFD (Qi), was

deduced from the PPFD measurements in taking into account

the absorption by the vegetation situated above the middle of

the i layer. The leaf gross assimilation (Gi) was then computed

for each layer by introducing Qi into a relationship derived

from (1):

Gi ¼ Gs 1� exp
�aQi

Gs

� �� �
(2)

The crop gross assimilation was computed every 30 min by

multiplying Gi by the area index of photosynthesizing vegeta-

tion in the layer (phototsynthetic area index, PsAIi) and by

summing each layer contribution. Finally, daily and yearly GPP

were obtained by a summation of the half-hourly values.

2.3.2. Calibration
The model calibration required the description of the incident

PPFD in each layer, of the PsAI distribution in the crop and a

parameterisation of the photosynthetic parameters Gs and a.
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When possible (from 12 May to harvest), Qi was directly

estimated from ceptometer measurements as:

Qi ¼ Q0t
2i�1=20 (3)

where Q0 is the incident PPFD above the crop (mmol m�2 s�1),

measured every 30 min by the micrometeorological station

and t represents the transmission factor of the whole crop,

estimated as the ratio of the incident PPFD below and above

the crop, measured with the ceptometer.

From emergence to 12 May, ceptometer measurements

were not available due to the short height of the crop. Qi was

thus deduced from the Beer’s law (Monteith and Unsworth,

1990):

Qi ¼ Q0 expð�kViÞ (4)

where k is the extinction coefficient and Vi is the cumulated

VAI of the layers above the layer i (m2 m�2). The extinction

coefficient k was evaluated by comparing Qi estimations using

the two approaches on two days (10 and 12 May) where both

ceptometer measurements and leaf area measurements were

available. This gave k = 0.63.

The evaluation of the PsAI distribution presents some

difficulties that are specific to cereal crops. First, photo-

synthesizing areas do not relate only to leaves but also to

stems and ears. However, the photosynthetic activity of these

elements probably differs from those of the leaves. Second, it

depends on the yellow organ distribution, which becomes

predominant at the end of the season.

Stem and ear photosynthetic activity could not be

measured directly as the measurement chamber did not

allow photosynthesis measurements on thick elements. The

possible impact of these vegetation parts on the GPP was thus

assessed by comparing two hypotheses: the first one assuming

that their photosynthetic activity was similar to that of the

leaves and the second one that it was zero. Finally, a more

realistic evaluation of the photosynthetic capacity of stem and

ears was proposed by comparing model results with GPP eddy

covariance estimates.

For the yellow organ distribution, we assumed a progres-

sive development of the yellow organs from the bottom to the

top of the canopy, which is the most realistic scenario in cereal

crops. However, as the yellowing progression was not directly

measured during the experiment, we evaluated the possible

impact of another progression by also testing a homogeneous

yellowing distribution.

Finally, the model required a description of Gs and a

evolution according to the principal driving factors (time and/

or climatic variables) and an evaluation of the vertical

distribution of these parameters in the crop. This was obtained

only after having thoroughly analysed the measurements

made at leaf scale. Consequently, this part is discussed below

(Section 3.4).

3. Experimental results

3.1. Climatic conditions

The mean daily climatic measurements results are given in

Fig. 1. During winter the air temperature (Ta) was always

below 10 8C and frost occurred twice: in December and at the

end of February/early March. However, Ta never fell below

�5 8C (Fig. 1a). Winter was also characterised by low air

saturation deficit (Ds, Fig. 1b), low photosynthetic photon flux

density (PPFD, Fig. 1c) and well-watered soil (Fig. 1d). In

contrast, the end of spring was marked by much drier

conditions: at the end of June, Ta reached 25 8C (Fig. 1b), Ds

peaked to about 12 hPa (Fig. 1c) and the soil water content fell

to 0.12 m3 m�3 (Fig. 1d). These conditions were fairly

representative of the regional averages for the previous 10

years, except for the water deficit, which was a bit more

pronounced.

Table 2 – Chronology of leaf scale measurements. F1 corresponds to flag leaf, F2 to last but one leaf, F3 to last but two leaf;
‘senescent’ means that the leaf has begun the death process but still photosynthetizes, and ‘necrosed’ means that the leaf
cells are dead and therefore no more photosynthesis is observed

Date Strategy Leaf level Note

1/05/2005 2 leaves from the same tiller F2–F3

5/05/2005 2 leaves from the same tiller F2–F3

15/05/2005 2 leaves from the same tiller F2–F3

19/05/2005 2 leaves from 2 different tillers of the

same plant + exploratory respiration

F2

28/05/2005 Study of 1 necrosed leaf in comparison

with 1 green F1

F1–F3 3 measurements on a necrosed leaf (F3)

9/06/2005 2 leaves from 2 different plants F2

10/06/2005 2 leaves from the same tiller F1–F2

15/06/2005 2 F2, 1 F3 and 1 F1 from different plants F1–F2–F3 F3 and 1F2 were damaged

22/06/2005 4 leaves from 2 different tillers F1-F2

10/07/2005 1 green F1 + back on the tiller of the 15/05/2005 F1–F2 Tiller of the 15/05/2005: F2 (1 measurement on

necrosed part and 1 measurement on green part) + F1

13/07/2005 1 A–Ci + 1 A–Q curves on the same leaf F1

14/07/2005 1 green F1 + back on the tiller of

the 05/05/2005 + 1 senescent leaf

F1 Tiller of the 05/05/2005: senescent F1

16/07/2005 1 green F1 and 1 damaged F1 + nocturnal

measurements

F1 Night: 2 green leaves, 1 necrosed leaf

and 2 senescent leaves

23/07/2005 Necrosed and senescent leaves F1
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3.2. Plant development

Until May–June, the crop had not been submitted to any stress.

Emergence occurred 2 weeks after sowing. Tillering (stages 21–

30 on Zadoks scale; Zadoks et al., 1974) started in early March

and ended in mid-April. At this point the VAI was about 1.6 and

it then increased rapidly until early May (Fig. 2). In early May, a

decrease in GLAI was observed that corresponded to stem

elongation (Fig. 2). During this period, a few tillers on each

plant (less than three per plant) exerted their dominance over

the others, which regressed and died. The temporary reduc-

tion in GLAI was therefore because the growth of the dominant

tillers did not compensate for the reduction of tillers per unit of

soil surface. Flag leaf emergence occurred in mid-May (stage

37 on Zadoks scale). The subsequent VAI increase was due

mainly to stem and ear development (ear emergence occurred

in early June, stage 50 on Zadoks scale) (Fig. 2). On 7 June, VAI

reached its maximum and then remained fairly constant until

the end of July (Fig. 2). However, plant senescence began from

early June, with the leaves at the bottom of the plants

beginning to turn yellow. This explains the GLAI decline

despite a constant VAI. The daily yellow leaf area index (YLAI)

in Fig. 2 was not directly measured but was evaluated as the

difference between the GLAI value on 7 June and the GLAI

value of the day. At the end of July, the GLAI fell to zero and the

YLAI reached about 50% of the VAI. The total SAI and EAI

remained fairly constant during June and July and constituted

about 25 and 15% of the VAI, respectively. At emergence, the

ears rapidly reached their maximum size, and their further

increase in diameter due to grain development was fairly

negligible, which explains the EAI stability in June and July.

Compared with the regional average, crop development

followed the standard rate until stage 57 on Zadoks scale (3/4

of inflorescence emerged), but after late May a more rapid

development than average was observed, the drought accel-

erating leaf senescence and ear maturation. The drought

effect was probably enhanced by the early sowing and the ‘no

ploughing’ practice. At the end of July, when the ears were

mature, precipitation occurred (results not shown), increasing

the grain humidity and delaying the harvest date.

3.3. Assimilation to light responses

3.3.1. Homogeneity and impact of senescence
Thirty-two valid A–Q curves were produced between 1 May

and 23 July 2005. As stated earlier (Section 2.2.2), measure-

ments were performed at different plant levels (the three

upper leaves) and on leaves at different senescence stages.

For green leaves, no significant differences between A–Q

curves were observed between the different plants, between

the tillers of the same plant or between the three upper leaves.

This accords with the results reported by Veneklaas and Van

Den Boogaard (1994), who did not find any effect of leaf age on

photosynthesis in two varieties of winter wheat.

Fig. 3 presents three A–Q curves produced under the same

meteorological conditions on three leaves at different senes-

Fig. 1 – Seasonal evolution of climatic variable daily means

from 1 November to 2 August: (a) air temperature, (b) air

saturation deficit (Ds), (c) photosynthetic photon flux

density (PPFD) and (d) soil water content at 5 cm (SWC).

Fig. 2 – Seasonal evolution of the vegetation part area

indexes: total vegetation (solid circles), green leaves (solid

triangles), stems (open circles), ears (crosses) and yellow

leaves (open triangles).
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cence stages. In the case of the green leaf, the classical

increase of A with Q was observed, with saturation reached at

about 20 mmol CO2 m�2 s�1 at large radiation. The maximal

value of As observed was 21.4 mmol CO2 m�2 s�1 on 28 May

2005. These values are of the same order of magnitude as those

reported in the literature: Soegaard and Thorgeirsson (1998)

reported 23.7 mmol CO2 m�2 s�1 on spring wheat with a non-

rectangular hyperbola and Rodriguez et al. (1998) reported 22.8

and 29.4 mmol CO2 m�2 s�1 on the leaves of winter wheat using

Eq. (1). The latter results were obtained during the tillering

phase, which could explain these larger values.

A similar relationship was observed for the yellow leaf but

with a lower saturation value, revealing a fall in leaf

photosynthetic capacity. Finally, the dead leaf did not

photosynthesize, but was still able to respire.

3.3.2. Gs response to driving variables
The relationship between the parameters extracted from the

different A–Q curves and possible driving variables were

analysed. In particular, as shown in Fig. 4, we gathered the

distributions ofGs, a andRd, with time, leaf temperature (Tl) and

leaf-to-air vapour pressure difference (Dl). It is clear that Gs

declined with the three variables (Fig. 4a–c). In the three cases,

the trend was found to be significant (P = 0.0026, 0.0060 and

0.0047, respectively). However, these correlations did not each

necessarily represent a real dependency because the three

variables were not independent from each other. First, Dl is by

definition related to leaf temperature and, second, these two

variables were correlated with time as dry and hot conditions

were observed mainly at the end of the observation period. We

supposed that the Gs decline with Dl was probably the most

representative of a real mechanism. Indeed, stomatal closure is

known to occur under highDl (e.g., Tewolde et al., 1993; Leuning,

1995), inducing leaf assimilation reduction. In these conditions,

Fig. 3 – Three examples of A–Q curves corresponding to

leaves at different senescence stages: green leaves

(diamonds), yellow leaves at the beginning of senescence

(squares) and dead leaves (triangles).

Fig. 4 – Relationship between gross assimilation at saturating light (Gs), dark respiration (Rd) and quantum yield (a) with

time, leaf temperature (Tl) and leaf to air vapour pressure difference (Dl).
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the responses ofGs to time and air temperature appear rather as

the result of an artefact; indeed, the residues of the linear

regression of Gs to Dl were not correlated to time and air

temperature (Fig. 5a and b). The absence of correlation between

residues and air temperature confirms the suggestion by

Schulze and Hall (1982) that assimilation responses to high

temperatures have often been confounded with the response to

Dl. A modulation of the Gs to Dl response by soil water potential

could also be possible, as shown by Xue et al. (2004). However,

our measurements were not numerous enough and did not

encompass a sufficiently large soil water potential range to

allow us to highlight such an effect.

Finally, it should be noted that, due to the porometer

regulation, which requires drying the air before pushing it into

the chamber, the drought conditions were probably exagger-

ated by the chamber compared with the ambient air. However,

theDl values measured by the porometer reflect the conditions

really underwent by the leaf portion whose assimilation is

measured. It is therefore reasonable to think that, if the whole

field were subjected to the same conditions, it would undergo

the same assimilation decrease. Consequently we consider

that the responses to Dl that were observed at leaf scale could

be extrapolated at crop scale provided that a convenient

estimation of Dl is given.

3.3.3. a response to driving variables
Quantum yield did not exhibit any trend with climatic

variables or with time (Fig. 4d–f). The a values varied from

0.027 to 0.068 mmol CO2 mmol�1 photons, with an average of

about 0.046 mmol CO2 mmol�1 photons and a standard error

always lower than 0.002. These values are of the same order of

magnitude as those reported in the literature: values of 0.042,

0.03–0.05 and 0.062 mmol CO2 mmol�1 photons were reported,

respectively, for winter wheat (Soegaard and Thorgeirsson,

1998), spring wheat (Rodriguez et al. (1998) and on average for

C3 crops (Ruimy et al., 1995)). However, this last-mentioned

value was derived from a Michaelis Menten regression, which

gives larger estimates of this parameter, as stated earlier.

3.3.4. Rd response to driving variables
An increase of Rd with time, temperature and Dl was also

observed (Fig. 4g–i). Here again, the three trends are significant

(P = 0.0314, 0.0073 and 0.0211, respectively) but, as the three

variables are linked as explained above, some of the correla-

tions are expected to be artificial. In this case, the most

probable response is that to temperature, as widely reported in

the literatures (see in particular Lloyd and Taylor, 1994;

Janssens et al., 2003). We therefore retained leaf temperature

as the most important driving variable. Residues of the

relationship of Rd to temperature not being found correlated

to time and leaf to air vapour pressure difference (Fig. 5c and

d), the relationships in Fig. 4 were again interpreted as an

artefact and not taken into account.

3.4. Result synthesis: Gs and a calibration

The preceding results may be synthesised in order to allow

parameterisation of the photosynthesis parameters. First, as

Fig. 5 – Relationship between the residues of the Gs response to Dl with time (a) and leaf temperature (b). Relationship

between the residues of the Rd response to leaf temperature with time (c) and with leaf to air vapour pressure difference (d).
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the parameters were found not to depend on the leaf position

(§ 3.3.1) or age (§ 3.3.2–3.3.4), they were supposed to be similar

for all green leaves.

In Section 3.3.1 (Fig. 3), yellow leaves were found to still

assimilate, albeit at a lower rate, suggesting a progressive drop

in assimilation with the senescence stage. This was, however,

difficult to model, mainly because of the high degree of

subjectivity in defining the senescence stage. With regard to

this difficulty, yellow leaf assimilation was considered as

equal to zero.

Following the discussion in Section 3.3, the sole driving

variable retained for Gs parameterisation was the leaf to air

vapour pressure difference. The relation between Dl and Gs

was approximated by a linear model. Least squares regression

on the experimental points of Fig. 4c gave:

Gs ¼ �0:331Dl þ 24:905 (5)

with a R2 equal to 0.53 and a P value of 0.0047. In order to scale

up this relation, Dl should be known at the crop scale. It was

stated above that this variable was not directly available but

could be deduced from the leaf energy budget. We can indeed

write:

Dl ¼ e�ðTlÞ � ea with Tl ¼ Ta þ
Hu

rCpu2
�

(6)

where ea is the air vapour pressure and e*(T) is the saturation

vapour pressure at temperatureT, Tl (8C) and Ta (8C) are the leaf

and air temperatures, respectively, H (Wm�2) is the sensible

heat, u* and u (m s�1) are the friction and average velocity,

respectively, r is the air density (kg m�3) and Cp the air specific

heat (J kg�1 K�1).

However, Dl cannot be estimated when sensible heat and

friction velocity are not available. It could therefore be relevant

to evaluate the error made when approximating Dl by Ds. In

practice, we found that at our site the differences between leaf

and air temperatures were lower than 1 8C for 50% of the

daytime and lower than 4.5 8C for 95% of the daytime, so that

the difference between Dl and Ds was often small. The impact

on the GPP of this approximation will be given in the

sensitivity analysis.

Facing with the difficulty to scale up the Gs to Dl response,

one could be tempted to replace Eq. (5) by a regression of Gs

with the air saturation deficit measured by the meteorological

station that could be easier to scale up. However this is not

recommended as the air saturation deficit is not representa-

tive of the drought conditions to which the leaf was subjected

in the porometer chamber. As a consequence this approach

would lead to an overestimation of the crop water stress and to

an underestimation of the crop GPP. The impact of the error

made by doing this will also be evaluated in the sensitivity

analysis.

Even if Rd does not appear explicitly in the model, its

evaluation was required in order to determine a. Following the

discussion in Section 3.3, Rd was parameterised as a function

of leaf temperature. We used the Van’t Hoff equation (1898)

(Lloyd and Taylor, 1994):

Rd ¼ Rd 25Q10
ðTa�25=10Þ (7)

whereRd25 is the dark respiration (mmol m�2 s�1) at 25 8C,Q10 is

the sensitivity of respiration to temperature and Ta is the air

temperature (8C). Regression gave Rd25 = 1.10 (S.E. = 0.22) and

Q10 = 2.83 (S.E. = 0.75) with a R2 equal to 0.59.

As no clear relationship of a with climatic and non-climatic

parameters was found, it was fixed as a constant. Its value was

computed in order to reduce uncertainty for this parameter as

much as possible. All the A–Q curves measured on green

leaves were gathered and a model combining Eqs. (1), (5) and

(7) was fitted on these data. As a result, a was the unique

parameter to adjust in a non-linear regression between net

assimilation and PPFD, air temperature and leaf to air vapour

pressure difference. All variables were measured by the

porometer. This regression gave a equal to 0.0452 mmol

CO2 mmol�1 photons, with a standard error of 0.0009.

4. Model results

4.1. Seasonal flux evolution

The general evolution of GPP estimated with our model is

presented in Fig. 6a, along with those provided by eddy

covariance measurements (Moureaux et al., in press). For this

presentation, we used the best model estimate obtained by

adjustment of the eddy covariance data for the development

and maturation periods. As a result, the summed GPP were

equal for the two estimates for these periods. They were

1570 g C m�2. Except in early spring, scaled-up and eddy

covariance estimates of GPP matched each other quite closely

(slope of the regression = 1.13, R2 = 0.94). This high level of

Fig. 6 – (a) Seasonal evolution of the winter wheat crop

daily GPP estimated with the scaling up model (solid line)

and with eddy covariance measurements (grey line); (b)

seasonal evolution of the difference between the model

and the measurements.
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agreement related not only to the seasonal trend, but also to

day-to-day variations, as observed particularly at the end of

the season. Before early March, the assimilation was slightly

positive in both cases and increased sharply from early March

until early May, which corresponds to the phase of intense

crop development. Maximal values were reached in May, after

which the GPP fell abruptly until the end of the season, when it

reached zero. The disagreement between the two estimates

that appears in winter and spring is discussed later.

4.2. Sensitivity analysis

4.2.1. Stem and ear assimilation
First, in order to assess the possible impact of ear and stem

contributions to GPP, the model was run three times using

three hypotheses to estimate the PsAI: (A) only the leaves are

photosynthesising (i.e., PsAI = GLAI); (B) stems and leaves

photosynthesise at equivalent rates (PsAI = GLAI + SAI); (C)

stems, leaves and ears photosynthesize at equivalent rates

(PsAI = GLAI + SAI + EAI). Before May, the three runs gave the

same results as the stems and ears were not well developed

(cf. Fig. 2). Paired t tests performed on the data after the

beginning of May showed that the differences between the

three runs were significant (cf. Fig. 7) (P < 0.0001). From mid-

May until the end of the season, the three situations clearly

differed, with maximum values of 21, 28 and 36 g C m�2 day�1

for situations A, B and C, respectively. In addition, the

maximum was reached later in the last two situations (8

June) than in the first (12 May), as the stem and ear

development occurred later in the season while the green

leaf area was already decreasing due to crop senescence.

Cumulated GPP was highly sensitive to this parameter as the

inclusion of the stems in the photosynthetically active organs

led to an increase of 40% in the initial GPP estimation and the

inclusion of the ears to an additional increase of 15%.

Compared with the eddy covariance GPP estimations, the

extrapolation scheme underestimated the GPP in situation A

and overestimated it in situations B and C. This suggests that

the stem and ear contributions to assimilation are clearly

important but that these organs probably present a lower

photosynthetic capacity than the leaves. The best agreement

with eddy covariance measurements was obtained by taking

hypothesis B and assuming a stem photosynthetic capacity

equal to 63% of that of leaves. Further measurements made in

2007 on the same field confirmed that the stems photo-

synthesize but at a lower rate. It was used in the following

simulations. This result clearly needs to be confirmed by

further A–Q curves made on stems in the field.

4.2.2. Spatial distribution of yellow parts
In the preceding model, yellowing was supposed to progress

from the crop bottom to the top (bottom distribution).

However, even if highly probable, this hypothesis was not

checked experimentally. Its impact was therefore tested by

comparing the preceding simulations with those of a model

submitted to a similar yellowing in all the crop layers. The

difference between the two models was about 7–9%, depend-

ing on the situation. The impact of the yellowing distribution

was significant only after early June (the paired t test gave

P < 0.0001), the GPP being always higher for the bottom rather

than the homogeneous repartition (Fig. 8). This is because,

with the bottom distribution, a larger part of the upper leaves,

which take greater advantage of sun radiation, remained

photosynthetically active for a longer time. The difference in

yellowing distribution did not severely affect the maximum

daily assimilation values (27 and 28 g C m�2 day�1 for homo-

geneous and bottom distributions, respectively). A compar-

ison of these trends with eddy covariance GPP showed that the

bottom distribution gave a more realistic evolution of the GPP

at the end of the season, confirming the former hypothesis.

4.2.3. Regression parameters
In order to study the sensitivity S of annual GPP to the model

parameters (P), we used the following definition:

S ¼ DG=G
DP=P

(8)

where D represents an absolute variation and the parameter P

may represent saturation gross assimilation, dark respiration

or quantum yield. This ratio is dimensionless. The impact of

each parameter uncertainty on the annual GPP was therefore

Fig. 7 – Comparison between the GPP seasonal evolutions

simulated using three PsAI scenarios: (A) only leaves (thin

line); (B) leaves and stems (solid line); or (C) leaves, stems

and ears (grey line) are photosynthesizing. Open circles

correspond to eddy covariance measurements.

Fig. 8 – Comparison between the GPP seasonal evolutions

simulated postulating a homogeneous (grey line) or a

bottom (solid line) distribution of yellow organs, assuming

that leaves and stems photosynthesize. Open circles

correspond to eddy covariance measurements.
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computed by multiplying the former with the corresponding

sensitivity.

The normalized sensitivity of annual GPP to Gs, a and Rd

were about �0.65, 0.6 and 0.11, respectively (Fig. 9). As the

uncertainties on these parameters (Standard Errors) were 5, 2

and 10%, respectively (§ 3.4), their impact on the annual GPP

was about 4%, slightly larger than 1 and 1%, respectively.

Surprisingly, the sensitivity toGs was negative, meaning that

anincreaseof this parametercauseda GPP decrease.This can be

explained by thecalibration procedure: asa was deduced from a

regression after Gs had been fixed, a greater Gs value would

induce a lower a value. This had more impact on the GPP than

theGs increase itself, as radiation was not saturating for most of

the canopy most of the time. The fact that the parameters are

estimated in reference to a explains that the sensitivities are

larger in absolute value in winter and spring than in summer.

Indeed, during these periods, leaves were rarely saturated by

light and therefore their assimilation rate was determined more

by quantum efficiency than by other parameters.

The last point of this sensitivity analysis concerns the

impact of the way the response of Gs to air humidity is

parameterised. We found, on the one hand, that the error

made by approximating Dl by Ds in the scaling up procedure

led to a GPP overestimation of 20 g C m�2. On the other hand,

the error made by replacing Eq. (5) by a Gs to Ds regression led

to a GPP underestimation of 70 g C m�2. The impacts of these

errors on GPP went thus in the same way as predicted but their

importance were limited. This is because the drought

condition underwent by the crop were quite smooth and

limited in time. These impacts could be more important in

crops subjected to more arid conditions.

4.3. Comparison with eddy covariance measurements

The preceding analysis suggested that more realistic assim-

ilation estimations were obtained when assuming that stems

assimilate at a lower rate than leaves (63%) and that the

yellowing progressed upwards from the lower parts of the

canopy. The evolution of the GPP extrapolated from leaf scale

measurements using these hypotheses and deduced from

eddy covariance estimations is presented in Fig. 6a, as well as

the difference between them (Fig. 6b).

We will now focus on these differences. First, it seems clear

that before April the scaled-up GPP estimates were system-

atically higher than the eddy covariance estimates. This is

because the extrapolation scheme does not take account of the

photosynthesis response to low temperatures. Clearly, the

eddy covariance deduced estimate was more realistic here:

negative air temperatures were observed between mid-

February and early March, which hindered any photosynthetic

activity. This effect cannot be taken into account by the

extrapolation scheme because no leaf scale measurements

were performed during this period. The overall impact of this

overestimation on total GPP was 270 g C m�2.

From April until harvest, the average difference between

the two GPP estimates was zero as a result of the stem

photosynthetic capacity adjustment. The root mean squared

difference between the two estimates was 1.9 g C m�2 d�1

which is about 16% of the daily average GPP. It was mainly

negative in April and July and positive in June and May,

suggesting that the extrapolation scheme overestimated the

GPP in the latter months and underestimated it during the

former months. Underestimation in July could be due to

neglecting the photosynthetic contribution of the ‘yellow’

organs. Indeed, in this scheme, only the green organs were

taken into account in the photosynthetic area, whereas we

showed earlier (Fig. 3) that senescent organs could still

assimilate, albeit at a lower rate. The overestimation in May

and June was positively correlated with the GPP itself and with

radiation, and was not related to Dl.

5. Conclusion

A model was developed in order to scale up assimilation

measurements from leaf to canopy scale in a winter wheat

crop. The model was based on porometer measurements

made in the field during the growth period. These measure-

ments showed an increase in assimilation with PPFD of dark

respiration with temperature and a decrease in saturating

assimilation with leaf to air vapour pressure difference. The

model correctly reproduced the GPP during the development

and maturation period, but not during winter because it did

not take account of the photosynthesis reduction at low

temperature. An analysis was developed in order to determine

the most important causes of uncertainty affecting these

results.

The most important cause of uncertainty resulted from the

assimilation of stems and ears. A model considering only

assimilation by leaves underestimated the GPP by 23%,

whereas a model considering stems as organs assimilating

at the same rate as leaves increased the GPP by about

600 g C m�2, leading to a 14% overestimation GPP. These two

estimates bracketed the eddy covariance estimate, suggesting

that the reality lay between these two extreme hypotheses.

The best agreement with the eddy covariance estimate was

obtained by assuming a stem assimilation equal to 63% of leaf

assimilation, which was found compatible with further leaf

scale measurements. More generally, this result shows that a

correct determination of stem and ear assimilation is critical

when scaling up wheat (and, more generally, cereal) assimila-

tion from leaf to canopy scale.

Fig. 9 – Seasonal evolution of the model sensitivity to

parameter uncertainties: Gs (grey line), a (thin line) and Rd

(thick line).
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The second cause of uncertainty was linked to the yellow

organ distribution. In particular, it was shown that a model

with a homogeneous repartition of the yellow organs gave GPP

estimates 7–9% lower than the model, postulating a bottom

yellowing distribution. This suggests the importance of better

evaluation of yellow organ progression and photosynthetic

capacity in the field. Measurements with a chlorophyll meter

would be an option for clarifying this area of assimilation.

Hanan et al. (2005) reported a similar problem, showing that

their land surface model (SiB2) overestimated crop photo-

synthetic uptake at the end of the season because they had not

taken into account the physiological senescence.

The third cause of uncertainty is linked to the winter

period. From January to March, the scaling up overestimated

the GPP because the assimilation reduction at low tempera-

tures was not taken into account by the model. The resulting

error was about 10% of the GPP. Such an underestimation is

specific to winter species and would not be so critical for

spring species that do not have to contend with low

temperatures for long periods. The problem could be easily

solved by performing some A–Q curves in winter conditions

and introducing an assimilation response to low temperature

in the model.

Finally, the impact of the A–Q curve parameter uncertain-

ties was found to be the weakest, not exceeding 4%. Rodriguez

et al. (2000) reported that for well-irrigated conditions a simple

approximation based on a light response curve avoiding the

calculation of the coupling between photosynthesis and

stomatal conductance could be used. This study confirmed

that this is possible once a careful identification of photo-

synthesizing organs and monitoring their evolution has been

performed at the site.
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Agronomiques de Gembloux, Gembloux, Belgium, 378 pp.

FAO, 2003. FAO Statistical Databases. Available on: http://
faostat.-fao.org/.

Freibauer, A., Rounsevell, M.D.A., Smith, P., Verhagen, J., 2004.
Carbon sequestration in the agricultural soils of Europe.
Geoderma 122, 1–23.

Grelle, A., Lindroth, A., 1996. Eddy-correlation system for long-
term monitoring of fluxes of heat, water vapour and CO2.
Glob. Change Biol. 2 (3), 297–307.

Hanan, N.P., Berry, J.A., Verma, S.B., Walter-Shea, E.A., Suyker,
A.E., Burba, G.G., Denning, A.S., 2005. Testing a model of
CO2, water and energy exchange in Great Plains tall grass
prairie and wheat ecosystems. Agric. Forest Meteorol. 131,
162–179.

Janssens, I., Dore, S., Epron, D., Lankreijer, H., Buchmann, N.,
Longdoz, B., Brossaud, J., Montagnani, L., 2003. Climatic
influences on seasonal and spatial differences in soil CO2

efflux. In: Valentini, R. (Ed.), Fluxes of Carbon, Water and
Energy of European Forests, Ecological Studies, 163.
Springer, Berlin, pp. 233–253.

Leuning, R., 1995. A critical appraisal of a combined stomatal-
photosynthesis model for C3 plants. Plant Cell Environ. 18,
339–355.

Li-Cor Biosciences Inc., 2003. Using the LI-6400 Version 5. Li-Cor
Inc., Lincoln, Nebraska, USA.

Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of
soil respiration. Funct. Ecol. 8, 315–323.

Moncrieff, J.B., Massheder, J.M., de Bruin, H., Elbers, J., Friborg,
T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H.,
Verhoef, A., 1997. A system to measure surface fluxes of
momentum, sensible heat, water vapour and carbon
dioxide. J. Hydrol. 188–189, 589–611.

Monteith, J.L., Unsworth, M.H., 1990. Principles of
Environmental Physics. Edward Arnold, London, England,
291 pp.

Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., Aubinet, M.,
2006. Annual net ecosystem carbon exchange by a sugar
beet crop. Agric. Forest Meteorol. 139, 25–39.

Moureaux, C., Debacq, A., Hoyaux, J., Suleau, M., Tourneur, D.,
Bodson B., Aubinet, A., in press. Carbon balance assessment
of a Belgian winter wheat crop (Triticum aestivum L.).

MRW-DGA, 2005. L’évolution de l’économie agricole et horticole
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Abstract

The carbon balance of a winter wheat crop in Lonzée, Belgium, was assessed from

measurements carried out at different spatial and temporal scales between November

2004 and August 2005. From eddy covariance measurements, the net ecosystem ex-

change was found to be �0.63 kg C m�2 and resulted from the difference between gross

primary productivity (GPP) (�1.58 kg C m�2) and total ecosystem respiration (TER)

(0.95 kg C m�2). The impact of the u
*

threshold value on these fluxes was assessed and

found to be very small. GPP assessment was partially validated by comparison with an

estimation scaled up from leaf scale assimilation measurements. Soil respiration (SR),

extrapolated from chamber measurements, was 0.52 kg C m�2. Net primary productivity,

assessed from crop sampling, was �0.83 kg C m�2. By combining these fluxes, the

autotrophic and heterotrophic components of respiration were deduced. Autotrophic

respiration dominated both TER and SR. The evolution of these fluxes was analysed in

relation to wheat development.

Keywords: agricultural crop, autotrophic respiration, carbon balance, eddy covariance, GPP, hetero-

trophic respiration, NEE, TER, winter wheat
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Introduction

The aim of this study was to assess the carbon (C)

balance of a Belgian winter wheat crop from measure-

ments carried out at different spatial and temporal

scales. It is not necessary to recall the role of carbon

dioxide (CO2) in the global climate change (IPCC, 2007)

and the impact of terrestrial ecosystems on the global

CO2 balance. Besides this, crops cover about one third

of the European land surface (FAOSTAT, 2003) and one

quarter of Belgian land surface (MRW-DGA, 2005). The

CO2 exchange between crops and atmosphere is there-

fore a major driver of atmospheric CO2 fluctuations at

an annual scale and, possibly, at an interannual scale. In

addition, preceding studies (Smith et al., 2000; Freibauer

et al., 2004; Lal, 2004; Smith, 2004) suggested that crops

had a significant potential to store C and that some

changes in crop management could induce greenhouse

effect mitigation. All of this justifies the necessity to

better quantify the crop C balance components and

to better understand their response to climate and to

cultural management.

Over the past decade, networks using the eddy

covariance method have been established worldwide

to continuously measure the CO2 exchanges between

terrestrial ecosystems and the atmosphere (Baldocchi

et al., 2001; Baldocchi, 2003; Valentini, 2003). This meth-

od allows a direct evaluation of the net CO2 exchange of

terrestrial ecosystems (NEE) and an extrapolation to the

gross primary productivity (GPP) and to the total

ecosystem respiration (TER) (e.g. Falge et al., 2002;

Gilmanov et al., 2003, 2007; Reichstein et al., 2005;

Suyker et al., 2005). However, it does not give other

terms of the ecosystem C balance. In particular, it does

not allow discriminating between below- and above-

ground contributions or between autotrophic (resulting

from plant activity – roots and aboveground parts) and

heterotrophic (due to the decomposition of organic

materials by soil microorganisms) components of TER.
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Therefore, the net primary productivity (NPP), which

represents the C stored in the plants, cannot be deduced

from the sole eddy covariance method.

Despite their obvious importance, few crop C balance

analyses were carried out until now (e.g. Anthoni et al.,

2004a; Suyker et al., 2004; Hollinger et al., 2005; Suyker

et al., 2005), only one concerning a winter wheat crop

(Anthoni et al., 2004a). In this study, Anthoni et al.

combined eddy covariance NEE measurements, NPP

assessments and simulations using a soil C balance

model.

The objectives of the present study are (i) to assess the

C balance of a winter wheat crop (i.e. to evaluate the

crop NEE, GPP, TER and NPP), (ii) to discriminate the

ecosystem respiration between its auto and hetero-

trophic contributions and (iii) to study the evolution

of the C balance components with climate and season.

To these ends, different flux measurements made at

different spatial and temporal scales were combined:

crop scale fluxes using the eddy covariance method, leaf

scale assimilation using a porometer, soil plot scale

respiration using soil chambers and dry matter (DM)

and C content using biomass samplings. At the crop

scale, NEE was measured every half hour using the

eddy covariance method. GPP and TER were inferred

from these measurements. At the leaf scale, leaf net

assimilation was measured once a week and scaled up

to provide a second GPP assessment (Hoyaux et al., in

press). At the soil plot scale, soil respiration (SR) was

measured every half hour with an automatic system

and once a week with a manual system. The SR of the

whole crop was modelled using these measurements.

At the plant scale, crop development was monitored

and samples were taken weekly or fortnightly to assess

NPP. The fluxes obtained using these methods were

combined to evaluate the different terms of the C

balance and, when relevant, comparisons between the

methods were made.

The approach is here applied to winter wheat, which

is justified by its relative importance in Belgium (winter

wheat accounts for 23% of Belgian crop area, Statistics

Belgium, 2005); however, most of the procedure de-

scribed here could be applied to any other crop.

Materials and methods

Site description

The studied site is an agricultural field in Lonzée,

Belgium. This site is included in the CarboEurope-IP

ecosystem network and has been described in detail by

Moureaux et al. (2006). The climate is temperate mar-

itime. The mean annual temperature is about 10 1C and

the annual precipitation is about 800 mm. The site is a

quadrilateral area of ca. 12 ha located on fairly flat

plateau. The site provides a fetch of 240 m in the south-

west, which is the main direction. In this direction, the

adjacent crop was planted with sugar beet. The second

main wind direction is northeast, with a fetch of 200 m.

This site of the field is bordered by a potato crop. A

footprint analysis of our site was carried out using the

forward Lagrangian stochastic trajectory model by Ran-

nik et al. (2003). The site evaluation approach is de-

scribed in detail in Göckede et al. (2005). It appears that,

excepted for one sector and for strongly stable condi-

tions, more than 80% of the flux contribution is from the

target area, which corresponds to representative results

for the target land cover type. The remaining sector

corresponds to 5% of wind occurrence and more than

77% of flux contribution is from the target area, even

during stable conditions (M. Göckede, personal com-

munication).

In 2005, winter wheat (Triticum aestivum L.) (Dekan

variety) was grown. The seed was sown on 14 October

2004, 2 weeks after the sugar beet harvest. As the soil

conditions were appropriate, a minimum tillage with a

rotary harrow was performed on 10 cm before sowing

the wheat. Between mid-April and late May, 201.5 kg

mineral nitrogen per hectare was applied in four stages.

No farmyard manure had been applied since 1996. The

crop was harvested on 3 August 2005.

General methodology

Throughout this paper, micrometeorological conven-

tions are used (i.e. fluxes towards the surface are

counted as negative and fluxes away from the surface

as positive). The presented fluxes related to the period

from 1 November 2004 to 2 August 2005. As plant

emergence occurred about 10 days after the crop had

been sown, we consider that assimilation began on 1

November. However, as the crop was harvested on 3

August the study period ended on 2 August.

The computation methodology used to assess the C

balance terms is presented in Fig. 1. Flux measurements

were performed at four spatial and temporal scales:

crop sampling at the plant scale; eddy covariance at the

ecosystem scale; diffusive fluxes at the leaf scale; and SR

at the soil plot scale. Using these approaches, the NPP,

NEE, net assimilation and SR, respectively, were mea-

sured. From the NEE, two fluxes were inferred: the TER

and the GPPEC. Similarly, aboveground autotrophic

respiration (Raa,LS) and GPP (GPPLS) were deduced

from net assimilation. All these fluxes were combined

to obtain the total autotrophic respiration (Ra), the

belowground autotrophic respiration (Rab), the hetero-

trophic respiration (Rh) and an independent assessment

2 C . M O U R E A U X et al.
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of Raa. The ways in which the fluxes were combined are

described in the following sections.

Measured fluxes

Crop sampling and biometric measurements. In order to

monitor crop development, growth stage observations

were performed once a week on several winter wheat

plants. In addition, DM and C content, as well as

vegetation area indexes, were measured.

From mid-March to harvest, aboveground crop

samples were collected in four zones. Sampling was

performed fortnightly from mid-March to mid-April

and weekly thereafter because of faster crop develop-

ment. Until early May, sampling was performed on

three 1-m-long rows; the sample area was then redu-

ced to three 0.5-m-long rows because the samples were

becoming too voluminous. Where relevant, the total

aboveground DM was divided into three parts: ears;

dead and yellow leaves and stems and green leaves.

As wheat roots can reach a depth of up to 2 m, it was

not feasible to collect all the belowground biomass. In

order to estimate their DM, we used the ratio between

belowground and total biomass described by Baret et al.

(1992). This ratio evolved exponentially with growth

degree-days. It was 0.6 at emergence and o0.1 at

maturity. This last value was confirmed by Hay (1995)

who reported a ratio of about 0.1 at harvest.

Grain yield was measured at harvest by gathering

grains from four zones measuring 2.05 m� 50 m. After

grain harvest and straw removal, the remaining

aboveground DM was measured by taking eight

samples from three 0.5-m-long rows.

The ear, leaf and stem C content was measured on

crop samples obtained from mid-March to harvest. The

root C content was not measured but it was assumed

that the C percentages of above- and belowground plant

parts were the same. These measurements allowed the

NPP to be estimated by multiplying the DM by the C

percentage. The C percentage of crop residues was also

measured. By adding the residue and root C content, the

amount of C returned to the soil was assessed.

The green leaf area index (GLAI) was measured

using a camera and a picture analyser (Windias, Delta-T

Devices, Cambridge, UK). These measurements were

carried out once a week between mid-April and mid-

July. During the same period, stem and ear lengths and

diameters were also measured and the stem and ear area

indexes were deduced by assimilating them to a cylinder

and a parallelepiped, respectively.

Eddy covariance measurement. Fluxes of CO2, water

vapour and sensible heat were measured with an

eddy covariance system made with a research-grade

sonic anemometer (Solent Research R3, Gill Instru-

ments, Lymington, UK) placed at a height of 2.7 m

and an infrared gas analyser model Li-7500 (Li-Cor

Inc., Lincoln, NE, USA); this was the standard system

used in the CarboEurope-IP and FLUXNET networks

(Grelle & Lindroth, 1996; Moncrieff et al., 1997; Aubinet

et al., 2000). This system and the complementary mea-

surements were described by Moureaux et al. (2006).

Turbulent fluxes were subjected to a stationarity test

(Foken & Wichura, 1996) and only the data that met the

quality test with a deviation lower than 30% were used

for the net exchange computation. The impact of the

quality criterion on annual NEE had already been

found to be very limited (Moureaux et al., 2006). In

addition, stable night-time conditions were identified

using a criterion based on the friction velocity (u
*
). The

impact of the threshold value on different fluxes was

analysed. The fluxes were computed with u
*

threshold

values ranging from 0 to 0.3 m s�1. Using visual

analysis, the threshold appeared to be between 0.2

and 0.3 m s�1. The results presented in this paper

correspond to a threshold of 0.22 m s�1.

Throughout this paper, the NEE is considered as the

sum of turbulent flux and storage flux. The latter flux

was computed using a single concentration measure-

ment at a height of 2.7 m. A comparison was performed

between storage fluxes computed from a single point

and from a four-point profile during stationary periods.

On average, the storage computed from the four-point

profile was 6% lower than those computed from a single

point.

Measured fluxes Inferred fluxes Combined  fluxes

NPP

NEE

An

SR

GPPEC

TEREC

GPPLS

Raa,LS

Ra

Rh

Rab

Raa

Fig. 1 Flow chart showing the computation methodology.
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Eddy covariance data quality was also assessed by

analysing the energy balance. The sum of turbulent

fluxes [i.e. sensible (H) and latent heat (LE) fluxes]

was compared with available energy [i.e. the

difference between net radiation (Rn) and soil heat

flux (G)]. The relationship we found was: (H 1 LE) 5

0.94(Rn�G)�14.61 with a r2 of 0.82. This attests a fairly

good energy balance closure compared with what is

usually found on other sites: in a comparison of the

energy balance closure of 22 FLUXNET sites, Wilson

et al. (2002) reported slope, intercept and r2 ranging,

respectively, between 0.53 and 0.99, �32.9 and

36.9 W m�2, and 0.64 and 0.36 without any effect of

vegetation height. The imbalance at our site could be

due to the neglecting of heat storage in the air below

the measurement height and in the canopy, to the

neglecting of energy consumed by photosynthesis or

to the loss of high-frequency fluctuations for water

vapour. Including the first two terms, as well as the

ground heat storage above the plate in the energy

balance of a maize crop and a soybean crop, Meyers

& Hollinger (2004) increase indeed the regression slopes

of 3% to 6%. Losses of high-frequency fluctuations were

corrected for CO2 according to the procedure described

by Aubinet et al. (2001). However, these losses are

more important for water vapour (Baldocchi, 2003).

In conclusion, although the energy balance closure

test provides only an indirect validation of CO2

measurements, the good degree of energy balance

closure suggests the good quality of CO2 measurements

all the more that most of the causes of errors we identified

in the energy balance are specific to energy fluxes and do

not affect CO2 fluxes.

Data gaps were filled using parameterization or mean

diurnal variation approaches. Where there were missing

meteorological data, the mean diurnal variation was

applied using an 11-day data window (Falge et al.,

2001). Elsewhere, gaps were filled using the empirical

NEE–climate relationship. Daytime gaps were estimated

using an NEE–photosynthetically photon flux density (Q)

relationship based on 10-day periods. The relationship

used was the Misterlich equation (Dagnelie, 1973;

Aubinet et al., 2001):

NEE ¼ � Ns þ Rdð Þ 1� exp
�aQ

Ns þ Rdð Þ

� �� �
þ Rd; ð1Þ

where Ns is the NEE at light saturation, a is the apparent

quantum efficiency (i.e. the initial slope of the curve) and

Rd the dark respiration.

Night-time gaps were estimated using a respiration–

soil temperature relationship (Lloyd & Taylor, 1994):

NEE ¼ R10 exp E0
1

56:02
� 1

TS5 � 227:13

� �� �
; ð2Þ

where R10 is the respiration flux at 10 1C, TS5 is the soil

temperature expressed in Kelvin and measured at a

depth of 5.5 cm and E0 is a parameter characterizing

the respiration sensitivity to temperature. The parame-

terization was fitted on data for the whole period

corresponding to mixed conditions.

Leaf scale measurement. Leaf scale measurements and

their extrapolation at canopy scale have been

described by Hoyaux et al. (in press). At the leaf scale,

assimilation response to photosynthetically photon flux

density (A–Q curve) was measured using an open gas-

exchange system (Li-Cor 6400, Li-Cor Inc.) equipped

with an adjustable light source (6400-02B LED). Net

assimilation was measured for radiation ranging from

1700 to 0mmol m�2 s�1. During the measurement, CO2

and H2O concentrations and leaf temperature were

maintained at constant values. Net assimilation mea-

surements were performed once a week between early

May and late July on different leaves. Homogeneity of

the A–Q response in the crop was evaluated by

repeating measurements at different leaf levels from

the same tiller, on different tillers from the same plant

and on different plants. The relationship between A–Q

curve characteristics and season or climate was also

investigated by repeating the measurements on 14

separate days characterized by different meteoro-

logical conditions and crop development stages. The

impact of senescence on the leaf photosynthetic

capacity was assessed by conducting measurements

on both green and senescent leaves. In total, about 30

A–Q curves were collected.

A Misterlich relationship, similar to Eqn (1), was

fitted on each of the curves:

An ¼ �Gs;L 1� exp
�aLQ

Gs

� �� �
þ Rd;L; ð3Þ

from which the leaf gross assimilation at saturating

light (Gs,L), the leaf apparent quantum efficiency (aL)

and the leaf dark respiration (Rd,L) were deduced.

The dependence of these three parameters on

climatic and nonclimatic factors was examined. First,

no significant differences between A–Q curves were

observed between the different plants, between the

tillers of the same plant or between the three upper

leaves. This accords with the results reported by

Veneklaas & Van den Boogaard (1994), who did not

find any effect of leaf age on photosynthesis in two

varieties of winter wheat. Then, Gs,L was found to

depend linearly on vapour pressure deficit, and Rd,L

to increase exponentially with temperature, but no clear

dependence of aL was observed. These relationships

were established from measurements carried out

between May and mid-July and extrapolated to the
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whole period. The vegetation area index was deduced

from biometric measurements (see ‘Crop sampling and

biometric measurements’). As they were not known

before mid-April, they were assumed to evolve

linearly with time between sowing and the first

measurement. The measurement results and the leaf-

to-crop scaling up procedure are described in more

detail in Hoyaux et al. (in press). The model assumed

that wheat senescence began in the lower part of crop.

A sensitivity analysis also showed that the contribution

of stem and ear assimilation to the GPP was important.

Unfortunately, as the porometer measurement head

was not designed for thick plant elements, it was not

possible to evaluate it experimentally. It was, therefore,

assessed by fitting the cumulated GPPLS on the eddy

covariance estimate (Hoyaux et al., in press). Therefore,

the cumulated GPPLS and GPPEC cannot be considered

as independent. However, their relative evolutions are

independent and will be compared below. Finally, the

leaf-to-crop scaled up dark respiration was associated

to the autotrophic respiration of the aboveground parts

of the crop (Raa,LS).

SR measurement. SR was assessed from a combination of

automatic continuous and manual SR measurements,

carried out between April and the harvest. Five

automatic closed dynamic chambers (Norman et al.,

1992; Longdoz et al., 2000; Davidson et al., 2002) were

placed 1 m from each other in a representative part of

the crop. Each chamber measured SR every half hour.

The SR extrapolation to the whole vegetation period

was performed by parameterizing the SR climatic

response for a selected measurement period and

applying the resulting equation to the whole period.

The SR responded mainly to temperature and soil water

content (Raich & Schlesinger, 1992; Raich & Potter, 1995;

Davidson et al., 1998; Duiker & Lal, 2000; Mielnick &

Dugas, 2000; Han et al., 2007). For the parameterization,

a multiplicative model was chosen:

SR ¼ Rs;10 exp E0;S
1

56:02
� 1

TS5 � 227:13

� �� �

a 1� exp �b W2
s � c

� �� �� �
;

ð4Þ

where Rs,10 was the normalized SR at 10 1C, E0,S was the

soil temperature sensitivity parameter, a, b and c were

parameters of regression, and Ws was the soil water

content.

The parameters describing the SR response to

temperature and soil water content [E0, a, b and c in Eqn

(4)] were obtained by fitting Eqn (4) on data measured

between early May and mid-July. Data from April and

from late July were not used because they corresponded to

specific crop development stages (i.e. tillering and

senescence stages). As the SR spatial variability was

large, the Rs,10 estimate deduced from the automatic

soil chambers was not considered as sufficiently

representative of the crop. It was thus deduced from

manual measurements. These additional measurements

were carried out once a week with a portable system

(Licor 6200, Licor Inc.) at 24 locations in the crop. The

manual SR values were divided according to both

temperature and humidity responses and averaged in

order to obtain Rs,10 parameter.

Inferred fluxes

GPP. GPP can be inferred from eddy covariance

measurement (GPPEC) or from leaf scale measurement

(GPPLS). In both cases, they were considered to be zero

during the night. During the day, GPPLS was computed

by extrapolation at the crop scale of the first term of the

right side of Eqn (3) (cf. ‘Leaf scale measurement’) and

GPPEC was computed as

GPP ¼ NEE� TER: ð5Þ

The way this term was evaluated is described below.

Respiration terms. TER was inferred from night-

time NEE measurements. A comparison between the

different inference methods, the impact of the reference

temperature choice and an evaluation of the uncertainties

associated with each of them will be discussed in another

study (Moureaux et al., submitted). The method we

finally retained was that described by Reichstein et al.

(2005): the ecosystem respiration was parameterized

as a function of temperature using the Lloyd and

Taylor relationship [Eqn (2)] and it was assumed that

the temperature dependence of TER was the same

during the day and the night. The respiration at a

reference temperature R10 [Eqn (2)] was estimated on

a 4-day basis and the temperature sensitivity parameter,

E0, was estimated on a 2-week basis. Soil temperature

measured at a depth of 5.5 cm was used as a reference

to describe the evolution of the night-time NEE. The

impact of u
*

threshold on TER assessments was

analysed.

A first evaluation of aboveground autotrophic respi-

ration was obtained from leaf scale measurements (Raa,LS).

The Lloyd and Taylor equation was fitted on the dark

respiration, Rd,L, respiration was extrapolated to the

whole period (November–August) and was then scaled

up to the whole crop. Leaf respiration was estimated from

air temperature, sensible heat and aerodynamic resistance

measurements (Hoyaux et al., in press).

Combined fluxes

Ecosystem respiration can be partitioned into autotrophic

(Ra) and heterotrophic (Rh) contributions. Autotrophic
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respiration can be further divided into its aboveground

(Raa) and belowground (Rab) components. These terms

were assessed from eddy covariance, SR and crop

sampling measurements as follows:

Autotrophic respiration was computed as the differ-

ence between the NPP and GPPEC:

Ra ¼ GPP�NPP; ð6Þ

its above-soil component as the difference between the

TER and SR:

Raa ¼ TER� SR; ð7Þ

and its below-soil component by deducing Raa

from Ra:

Rab ¼ Ra � Raa: ð8Þ

Finally, heterotrophic respiration was deduced from

the NPP and NEE:

Rh ¼ NEE�NPP: ð9Þ

As explained above (‘Leaf scale measurement’), leaf

scale GPP was not used in this procedure. Moreover, as

the NPP was measured weekly or fortnightly from mid-

March to harvest, the combined fluxes based on the

NPP were computed using the same time intervals.

Because no sampling was performed in winter, the

NPP was linearly interpolated between sowing and

the first measurements.

Results

Biometric measurements

We divided the crop development into five periods

between key winter wheat crop stages: (i) from sowing

to ‘full’ tillering [main shoot and one or two tiller(s)]; (ii)

from ‘full’ tillering to early stem elongation; (iii) from

early stem elongation to booting; (iv) period of inflor-

escence emergence and grain development (milk and

dough development); and (v) period of ripening. Figure

2 presents the evolution of the GLAI and of total, stem,

green leaf, dead leaf and ear DM.

During the first period (mid-October 2004 to mid-

March), corresponding to autumn and winter, crop

development was weak and the cumulated total bio-

mass reached 0.054 kg m�2 DM.

The second period (mid-March to mid-April) corre-

sponded to a temperature increase and a stronger

development of the vegetative parts. The total DM

increased to 0.27 kg m�2, including 0.095 kg m�2 for

green leaves. The GLAI was 1.5 m2 m�2 during the third

week of April.

During the third period (mid-April to late May),

an intense increase of vegetative DM was observed,

from 0.27 to 1.12 kg m�2, resulting from a stem biomass

rise and flag leaf opening. The GLAI doubled in

1 week and reached its maximal value (3 m2 m�2) in

late April. Thereafter, the GLAI did not increase

because of the senescence of older leaves and a selec-

tion made from tillers. Indeed, during this period,

dominant tillers developed while other died. As a

result, the dead leaves biomass increased to

0.065 kg m�2.

Inflorescence emerged in late May, after which the

grains developed. During the milk development stage

(up to late June), ear and stem biomasses increased.

However, green leaf biomass decreased and, at this

stage, only flag and penultimate leaves remained green.

Other leaves yellowed or died. The GLAI decreased to

2.3 m2 m�2 but the DM increased to 2.06 kg m�2. During

the dough development stage (up to mid-July), only ear

and dead leaf biomasses increased. The stems, leaves

and roots DM was transferred to the ears. Total DM

remained practically stable, reaching 2.09 kg m�2 at the

end of the period. The penultimate leaves died and only

the flag leaf remained partly green. The GLAI decreased

to 0.6 m2 m�2.

Finally, during the ripening, the DM decreased

slightly to 1.97 kg m�2. This decrease at the end of crop

growth had been observed by Schiettecatte (1993) and

de Ghellinck (2003). The ear DM did not change sig-

nificantly. At this stage it represented 55% of above-

ground DM, as reported by de Ghellinck (2003). Green

leaf biomass and GLAI fell to zero.

On 3 August, 0.88 kg m�2 DM grain and 0.42 kg m�2

DM straw were harvested. Crop residues and roots

biomass represented 0.67 kg m�2 DM and were buried

in the soil. The grain yield was comparable to the mean

winter wheat yield in the region (0.86 kg m�2 DM, De

Proft & Bodson, 2007) but slightly lower than the

average yield of the parcel under study.
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Fluxes

The NPP was obtained by multiplying the DM by the

average C content. It ranged from 0.42 to 0.45 kg C kg�1

DM, with a mean of 0.43 kg C kg�1 DM. This value was

close to those reported by Bolinder et al. (1997).

The evolution of the NPP (Fig. 3) was therefore similar

to that of DM described in ‘Biometric measurements’

(Fig. 2). At harvest, the NPP was �0.85 kg C m�2 distrib-

uted in 0.46 kg C m�2 for ears (i.e. 55% of plant C content),

0.31 kg C m�2 for leaves and stems and 0.08 kg C m�2 for

roots. The harvested grains represented 0.38 kg C m�2

and the harvested straw 0.18 kg C m�2. The C left on the

crop was 0.20 kg C m�2 for residues and 0.09 kg C m�2 for

roots. Main important causes of NPP uncertainties are

crop heterogeneity and possible biased root contribu-

tion assessment. In this study, the measurement method

does not allow determining a standard error on NPP.

Indeed, instead of measuring dry biomass for each tiller,

we split samples into ears, stems and leaves sub sam-

ples in order to follow the development of these differ-

ent organs.

As, we define the NPP as the stored C, root exudates

and turnover are not included in these values but they

are included in belowground autotrophic respiration.

Swinnen et al. (1995a, b) measured root exudates on a

winter wheat crop by labelling. They found that max-

imum exudates occur at the tillering stage and that the

total amount of exudates C was around twice the C

contained in the roots at the harvest. About 94% of root

exudates and decay are estimated to be respired before

the harvest (Sauerbeck & Johnen, 1977).

The sensitivity of the cumulated NEE, TER and

GPP to the u
*

threshold value is given in Fig. 4. It

appears that, for u
*

thresholds varying from 0 (no

threshold) to 0.3 m s�1, the NEE varied from �0.67 to

�0.62 kg C m�2, the TER from 0.78 to 0.98 kg C m�2 and

the GPPEC from �1.47 to �1.58 kg C m�2. However,

it is reasonable to assume that the uncertainty about

the u
*

threshold was not so large. We fixed the u
*

threshold value at 0.22 m s�1, and estimated its uncer-

tainty at o0.1 m s�1. On this basis, the cumulated NEE,

TER and GPPEC were �0.62, 0.95 and �1.57 kg C m�2,

respectively, and the uncertainties on these fluxes were

0.01, 0.05 and 0.03 kg C m�2, respectively. The impacts of

the temperature and of the model chosen to infer

TER and GPP were analysed in a further study

(Moureaux et al., submitted). It appears that, for the

above-determined threshold, TER was between 0.92

and 1.00 kg C m�2, and GPP between �1.55 and

�1.57 kg C m�2 (i.e. in the same range as induced by

the u* threshold uncertainty). Further details and the

impact of these choices on daily values were detailed in

Moureaux et al. (submitted).

The evolution over time of the daily NEE, TER and

GPPEC are given in Fig. 5. From November to early

March, they were small. Until late January, the NEE was

always positive, suggesting that respiration dominated

assimilation because of the weak crop development. It

was 2 g C m�2 day�1 in early November and decreased

to about 1 g C m�2 day�1 10 days later, following the

temperature evolution. Between November and late
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January, the TER and GPPEC remained stable at about

1.3 and �0.3 g C m�2 day�1, respectively. Later, both

TER and GPP decreased slightly, with the NEE reaching

about 0 g C m�2 day�1.

From mid-March, both the TER and GPPEC increased

in absolute values. The GPP increase resulted from the

crop development that occurred when temperature

rose. The daily GPPEC values increased until mid-May,

when they reached about �19 g C m�2 day�1; they re-

mained stable during the maximal LAI period, from

mid-May to mid-June, and then decreased due to the

GLAI decrease, falling to about �1 g C m�2 day�1 in late

July and until harvest. The TER increased rapidly from

mid-March and reached about 4 g C m�2 day�1 in early

April, which corresponded to the winter wheat tillering.

Thereafter, the TER increase was weaker. Maximal TER

values, exceeding 8 g C m�2 day�1, were observed initi-

ally during a short period in late May, and then for a

month between mid-June and mid-July. The first period

occurred at the booting phase but was of short duration

and corresponded to a temperature increase. The sec-

ond peak took place at the grain development stage

(milk and dough development). At the end of this peak

period, in mid-July, the TER values decreased from 8

to 4 g C m�2 day�1 and remained stable during the

ripening. The TER repartition between its different

components is analysed below.

The NEE evolution results from the combination of

the GPP and TER. In mid-March, as the GPP increase

was in absolute values larger than those for the TER, the

NEE became negative. It became a CO2 sink from late

March and reached its maximal absolute values (about

�12 g C m�2 day�1) between the end of May and mid-

June. Subsequently, it decreased in absolute value and

the crop switched again to become a source in mid-July.

The NEE remained positive during the ripening stage

and reached maximum daily values 44 g C m�2 day�1

in late July. Just before harvest, the NEE was about

3 g C m�2 day�1.

The time evolution of daily SR computed with the

parameterization described above is presented in Fig. 6

along with daily TER assessments. The aboveground

autotrophic respiration also appears in Fig. 6 as the

difference between these two curves. Over the whole

period, SR was 0.52 kg C m�2, while the aboveground

autotrophic respiration was 0.43 kg C m�2. The hetero-

trophic and autotrophic components of SR were 0.23

and 0.29 kg C m�2, respectively. During winter, the SR

was close to the TER, generally about 1 g C m�2 day�1,

suggesting a very low Raa. At some times, the SR was

slightly greater than the TER, which could result from

the uncertainties for both variables.

In mid-March, both the SR and TER increased. How-

ever, the SR increase was quite limited, reaching

2 g C m�2 day�1 rapidly but then remaining quite stable,

between 2 and 3 g C m�2 day�1, until late June. This

suggests that the main cause of the TER increase at this

period resulted from the aboveground autotrophic com-

ponent and is related to crop development. Indeed, Raa

increased from mid-March until mid-June and was

then, for a fortnight, greater than 6 g C m�2 day�1. These

maximal values occurred at the flowering stage. In late

June, after Raa maximal values, the SR increased and

was between 3.5 and 4 g C m�2 day�1 until mid-July (i.e.

during the dough development stage and a soil water

content increase).

During ripening, after mid-July, Raa and SR both fell

to 2 g C m�2 day�1. Here again, the TER evolution re-

sulted mainly from the aboveground autotrophic com-

ponent decrease following crop senescence. Just before

harvest, SR values larger than TER were also observed.

The evolution of Ra, Rab and Rh is presented in Fig. 7.

As these variables were inferred from the NPP (Fig. 1),

which was estimated fortnightly, we present the evolu-
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tion of the cumulated values, along with the cumulated

TER assessments.

From November to March, the autotrophic respira-

tion constituted about one-third of the TER and resulted

only from the belowground component, the Raa con-

tribution being very small, as shown earlier. The hetero-

trophic component increased regularly during this

period and accounted for about two-thirds of TER; it

then reached 0.11 kg C m�2 in mid-March. At this

point, Ra and Rab increased sharply, while Rh remained

quite weak. Rab reached about 0.2 kg C m�2 in late

May, constituting about 50% of the autotrophic

respiration during this period. The cumulated hetero-

trophic respiration was smaller than the cumulated

autotrophic SR during this period. In June, both

Rab and Rh remained low until harvest. The low Rab

value suggests that the soil autotrophic respiration

decreased as soon as the wheat was developed and

inflorescence emerged. From late June to harvest, the

cumulated Rh was about 0.2 kg C m�2 and remained

stable. During this period, the cumulated Rh and Rab

were of the same order of magnitude and contributed

equally to SR.

Discussion

Data quality

Although the different C balance terms were computed

using different methods, each of them affected by

specific uncertainties, the results presented here ap-

peared fairly consistent and in good agreement with

the literature.

Firstly, the NPP estimate, obtained by DM sampling,

was clearly enclosed between the NEE and GPP esti-

mates from eddy covariance, as expected. The C use

efficiency (NPP/GPP ratio) was 0.54, which is within

the range predicted by the literature (between 0.3 and

0.6 for crops, Amthor & Baldocchi, 2001).

A second validation can be obtained by comparing

the leaf scale and eddy covariance GPP estimates. We

showed earlier that, although the cumulated GPPLS and

GPPEC were linked, the day-to-day evolutions of these

fluxes remained independent. It appears clearly in Fig. 8

that, between mid-March and harvest, the seasonal

trends and the day-to-day evolutions (notably the

strong day-to-day variations in early April and at the

end of May/early June) followed each other closely,

providing a further validation of these estimates. The

differences appearing before mid-March result from an

error in the leaf scale estimate, which does not take the

photosynthesis response to low temperature into ac-

count. This is discussed in detail by Hoyaux et al. (in

press).

In addition, the maximal daily and cumulated

flux values are of the same order of magnitude as

in the literature. The maximal NEE daily values

(�12 g C m�2 day�1) were close to those found for other

winter wheat crops by Baldocchi (1994) (�13.3 g C m�2

day�1), Anthoni et al. (2004a) and Soegaard et al.

(2003) (about �10 g C m�2 day�1). Finally, the cumu-

lated GPPEC was slightly larger than that reported by

Falge et al. (2002) on other wheat crops (�1.40 and

�1.10 kg C m�2).

Finally, it is worth noting that the uncertainty of these

fluxes resulting from the choice of the u
*

threshold is

limited. In particular, the 0.01 kg C m�2 uncertainty for

the NEE is small compared with those reported by

Anthoni et al. (2004b) for winter wheat and potato

(0.06 and 0.03 kg C m�2, respectively) and suggests that

the C balance factors were not very sensitive to the

night flux underestimation at our site.
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However, some inconsistencies appear in the data.

First, the estimates of aboveground autotrophic respira-

tion deduced from leaf scale measurements were found

to be unrealistic, due to an excessive sensitivity to

temperature (results not shown). These results were

therefore not used here. Second, some inconsistencies

were observed between the SR and TER estimations, the

former being larger than the latter in winter and at the

end of the season. This probably results from uncertain-

ties in the SR computation, the model not being vali-

dated during these periods. However, the impact of this

error on the cumulated flux was small in both cases:

during the first period, the error was small as winter

fluxes were very low and the second period was very

short in time. Finally unrealistically negative respiration

values were sometimes found, in late May (Rh) and in

late June (Rab) (Fig. 7). This is because these terms were

computed as a difference between two fluxes estimated

with two independent methods [see Eqns (6–9)] each of

them affected by a large uncertainty. In consequence,

the uncertainty of the difference results from the accu-

mulation of the uncertainties on each flux and is larger

than for other fluxes. The most important causes are

probably the uncertainties on the NPP resulting from

crop heterogeneity and the biased root contribution

assessment. However, even if the short-term evolution

of autotrophic and heterotrophic SR components

should be considered with caution, their average evolu-

tion and annual totals remain reliable.

C balance terms

The results presented above can be combined to estab-

lish the C balance of the crop. We will present it first

for particular periods of crop development and then for

the whole growth period.

During autumn and winter, the TER was twice as

great as gross assimilation, due to the low development

stage of the crop. As a consequence, the field behaved as

a source and emitted 90 g C m�2 between November

and mid-March. One-third of the TER was due to

belowground autotrophic respiration and the two re-

maining thirds were due to heterotrophic respiration.

The latter was boosted by the decomposition of sugar

beet residuals from the preceding crop that were spread

on the field after harvest.

In mid-March (tillering) both the GPPEC and TER

increased, the GPPEC reaching a maximal value in early

May and remaining stable until the end of May (booting

end). During this period of intensive crop development,

the GPP reached �85 g C m�2 and the TER about

40–45% of GPP. Consequently, the NEE was about

�49 g C m�2 during this period. As the heterotrophic

respiration was small at this time, the TER resulted

mainly from autotrophic respiration, to which above-

and belowground components contributed one half

each. Similar ratios had been observed during the same

period by Lohila et al. (2003) on a barley crop. Moreover,

an increase of root respiration and rhizodeposition was

already observed on winter wheat at the tillering stage

by Swinnen et al. (1995a).

After flowering, in early June, the GPP began to

decrease but the TER remained fairly constant until

mid-June and then increased for a month. The cumu-

lated GPP between early June and mid-July reached

�61 g C m�2 but the TER now exceeded 50% of the GPP

so that the NEE was about 29 g C m�2. The aboveground

autotrophic component reached 70% of the TER and SR

resulted mainly from the heterotrophic component, Rab

being almost zero during this period. Decreases in

assimilation after inflorescence emergence had already

been observed in winter wheat crops by Geisler (1983),

Johnson et al. (1981) and Anthoni et al. (2004a). It is

worth noting that the amount of assimilated C after

flowering was still significant. It was nearly exclusively

used to build grain. Indeed, the ear C content increased

from 0.08 to 0.47 g C m�2 during the considered period.

This resulted both from C assimilation and from C

translocation from stems, leaves and roots. A similar

nitrogen accumulation in grain was also observed dur-

ing this period (Destain et al., 1997).

An earlier TER increase (after inflorescence emer-

gence) had been observed by Baldocchi (1994) and

Denmead (1976), while Lohila et al. (2003) reported

maximal value after flowering. The Rab decline could

be explained by the translocation of photosynthesis

products from the roots to the grain that occurs after

flowering in cereals. As a result, the supply of easily

degradable C into the soil and, consequently, the rhizo-

sphere respiration gradually declines (Lohila et al.,

2003). However, this explanation is hypothetical be-

cause the Rab decline could also result from an artefact

linked to uncertainties about the NPP, as discussed

above.

Finally, after mid-July, during ripening, both the GPP

and TER decreased. As the GPP decrease was sharper

than the TER decrease, the crop reverted to a source, as

at the start of the season. However, unlike this early

period, the three respiration terms, Raa, Rab and Rh,

contributed about 45%, 30% and 25%, respectively, to

the TER. The net exchange between mid-July and

harvest in mid-August reached 7 g C m�2.

A similar TER decrease during ripening was ob-

served by Lohila et al. (2003) on a barley crop. This

suggests that the respiration process is linked to plant

activity. Respiration is known to be linked to photo-

synthetical activity (e.g. Landsberg & Gower, 1997;

Waring et al., 1998; Janssens et al., 2001; Kuzyakov &
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Cheng, 2001) and is, therefore, expected to fall when all

organs have yellowed and died. The measurements

made at leaf level on the same crop confirmed that

the respiration rates of dead leaves were smaller than

those of other leaves (Hoyaux et al., in press).

From these results, the C balance of the winter wheat

crop can be deduced for the whole cultivation period

(Fig. 9). In total, the crop assimilated �1.57 kg C m�2

and the ecosystem emitted 0.95 kg m�2. The TER to

GPPEC ratio was, therefore, 0.61, in agreement with

ratios for maize crops [between 0.55 and 0.66 (Meyers

et al., 2001; Law et al., 2002; Suyker et al., 2005; Verma

et al., 2005)] and soybean crops [between 0.55 and 0.65

(Law et al., 2002; Suyker et al., 2005; Verma et al., 2005)].

The net ecosystem was then�0.63 kg m�2. The NPP was

�0.85 kg C m�2 (i.e. 54% of the GPP, as already dis-

cussed). The C of harvested ears and straw was

0.57 kg C m�2. As a result, over the period in question,

the net ecosystem assimilation was greater than ex-

ported C. The ecosystem could then be considered as

a C sink.

TER can be divided into its above- and belowground

component: Raa reached 0.43 kg m�2 and the SR was

0.52 kg m�2, corresponding to 45% and 55% of the

TER, respectively. The SR to TER ratio was lower than

that reported for grasslands [0.75 at Carlow (Gilmanov

et al., 2007), 0.85 for a New Zealand grassland (Hunt

et al., 2004)], or forests [between 0.68 and 0.88 (Wofsy

et al., 1993; Goulden et al., 1996; Davidson et al., 1998;

Law et al., 1999, 2001; Granier et al., 2000; Saigusa et al.,

2005)]. However, our ratio was computed only in rela-

tion to the crop growth period and could thus be

smaller than if considered over a whole year, as in other

studies.

The heterotrophic respiration was 0.23 kg C m�2 and

the total autotrophic respiration was 0.72 kg C m�2,

which corresponds to 76% of the TER, confirming that

autotrophic processes govern crop ecosystem respira-

tion (Falge et al., 2002). Raa, the aboveground contribu-

tion of autotrophic respiration, was 0.43 kg C m�2 (i.e.

60% of Ra). The belowground part can be deduced and

was 0.29 kg C m�2. Rab was the autotrophic component

of SR and represented 56% of the SR, which is greater

than the 45% reported by Shi et al. (2006). There, SR, like

TER, was dominated by autotrophic process.

Conclusions

The C balance was assessed for a winter wheat crop.

Using the eddy covariance measurements, the NEE,

TER and GPP were �0.63, 0.95 and �1.57 kg C m�2,

respectively. In order to partition TER into its above-

and belowground components, SR measurements allow

assessing belowground respiration: 0.52 kg C m�2. We

observed that this term was quite constant after the

tillering stage (i.e. after important root development)

and that the TER increase results from the increase of

the autotrophic aboveground respiration. Combining

NPP and GPP, the autotrophic respiration of the crop

was found 0.72 kg m�2 s�1. The autotrophic respiration

dominates then the TER (76%) and the autotrophic part

of the SR was 56%.

The main uncertainties in establishing the C balance

are related to Rab and Rh assessments, which are linked

to the NPP uncertainties. To improve the NPP estimate,

the root C content has to be measured. This involves a

large amount of work (soil sampling up to a depth of

2 m depth and sorting roots) and many repetitions to

take crop heterogeneity and root evolution into account.

A better way to discriminate between autotrophic and

heterotrophic contributions could be to measure SR in

excluded and nonexcluded roots zones. However, this

method presupposes that heterotrophic SR in roots-

excluded soil is not influenced by microbial population

shifts that might occur from root C inputs. Experiments

with this aim are in progress.

The results presented here are of course dependent

on the crop type, on climatic conditions and on crop

management. In particular, let us recall that the winter

wheat crop was not ploughed before sowing because of

appropriate soil conditions and that, in June, the

amount of precipitation was particularly small, while

temperature was high compared with mean averages.

This led to an early yellowing of the crop compared

0.63

1.57 0.95

0.43

0.29 0.23

kg C m–2

NPP 

0.85

NEE

TERGPP

Raa

Rab
Rh

Fig. 9 Carbon balance of the winter wheat crop during the

cultivation period. Cumulated fluxes are given in kg C m�2.
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with other winter wheat crops growing on adjacent

fields after a traditional tillage (Tourneur et al., 2006).

However, the yield of the study crop was comparable

with the regional mean, although slightly (o5%) lower

than the studied parcel potential yield.

Further studies would be necessary in order to study

the impact on the different terms of the C balance of

extreme climatic events (mild winters, harsh droughts)

of management practices (ploughing/no ploughing,

nitrogen fertilizer dressing, disease, pest and crop pro-

tection, sowing date, variety choice) or of soil conditions.
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Abstract 

A production crop managed in a traditional way was followed during a complete sugar beet 

/ winter wheat / potato / winter wheat rotational cycle, from 2004 to 2008. Eddy covariance, 

automatic and manual soil chamber, leaf diffusion and biomass measurements were 

performed continuously in order to obtain daily Gross Primary Productivity (GPP) and Total 

Ecosystem Respiration (TER) and seasonal Net Ecosystem Exchange (NEE), Net Primary 

Productivity (NPP), GPP, TER, autotrophic respiration, heterotrophic respiration and, finally, 

Net Biome Production (NBP). performed continuously in order to obtain daily GPP and TER 

and seasonal NEE, NPP, GPP, TER, autotrophic respiration, heterotrophic respiration and, 

finally, NBP.  

 

Results show that GPP and TER were subjected to an important interannual variability that 

was due to differences between crops but also to climate variability. A significant impact of 

intercrop assimilation and of some farmer interventions (ploughing, crop residue left) was 

also detected and quantified.  

 

Seasonal budgets showed that, during cropping periods, the TER/GPP ratio varied between 

40 and 60 % and that TER was mainly dominated by autotrophic component (65 % of TER 

and more). Autotrophic respiration was found closely related to GPP during growth period.  

 

Whole cycle budget showed that NEE was negative and the rotation behaved as a sink of 

1.59 kgC.m-2 on the four year rotation. However, if exportations are deduced from the 

budget, it turned out to a slight source of 0.17 (+/- 0.14) kgC.m-2. The main causes of 

uncertainty on this result were due to eddy covariance measurements (uncertainty on the u* 

threshold determination) and to biomass samplings. The positive NBP also suggests that the 

crop soil carbon content decreases. This could be explained by the crop management, as 

neither farmyard manure nor slurry was applied on the crop since more than 10 years and as 

cereal straw was systematically exported for livestock. In addition, this result was strongly 

influenced by the particular climatic conditions in 2007 that increased the fraction of biomass 

that returned to the soil to the prejudice of harvested biomass and mitigated thus the source 

intensity. If 2007 had been a “normal” year, this intensity would have been twice as large. 

 



 

 



1. Introduction 

 

The impact of agriculture lands on climate is multiple and significant. First, compared to 

forested sites, agricultural lands are characterised by larger albedo, lower soil roughness and 

soil humidity variations which influences sensible and latent heat exchanges (Bonan, 2002). 

Crop management techniques may also influence the local and regional climate. 

Overgrazing, land use change, deforestation contribute to minder precipitations (Bonan, 

2002) while irrigation contributes to increase air humidity, cloud density and precipitation. 

In addition, crops constitute the most important biospheric source of CO2 (Cole, 1996; Mosier 

et al., 1998; Pattey et al., 2007) as resulting from plant respiration and soil organic matter 

decomposition.  

 

Recently, changes in agricultural practices have been considered as possible ways to mitigate 

climate change by increasing carbon storage in their crop soils (Smith et al. 2000; 

Vleeshouwers et Verhagen, 2002; Freibauer et al., 2004; Smith, 2004). Soil organic carbon 

content of agricultural ecosystems was indeed found to depend on land use, cultural 

management fertiliser application, harvest features, residues management and, on the other 

hand on microclimate, soil tillage, etc… (IPCC, 1997).  

 

However, relations of CO2 exchanges between crop and atmosphere and their response to 

climate, crop management activities as well as their difference from crop to crop remain 

largely unknown. The overall aim of this work is thus to quantify and understand the 

evolution of CO2 exchanges in a crop rotational cycle. More particularly, they are to: 

• Measure net carbon fluxes exchanged by the crops and estimate the overall carbon 

sequestration by the crop during the rotational cycle. 

• Compare the budgets of different crops.    

• Analyse the impacts of climate and of management activities on these fluxes and on 

the global carbon sequestration.  

• Identify the respective importance of assimilation and respiration in the carbon 

balance and better bound the physiological processes that control the mechanisms of 

the net flux response to climate. 

 

In this aim, a production crop managed in a traditional way was followed during four years, 

from 2004 to 2008. Different measurements (eddy covariance, automatic and manual soil 
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chambers, leaf diffusion, biomass sampling) made at different spatial (leaf, soil chamber, 

whole crop) and temporal (half hour, week, fortnight) scales were performed regularly, 

treated and extrapolated at the crop scale and either at the day, the season or the whole 

rotational cycle. The results of this analysis are presented and discussed below. 

 

2. Material and methods 

2.1 Site description 

The study site is a cropland situated in Lonzée, about 45 km SE of Brussels, Belgium 

(50°33'08'' N, 4°44'42'' E, 165 m asl). It is a node of the Carboeurope, and Fluxnet networks since 

2004, a core site of the IMECC infrastructure and an inferential measurement site of the 

Nitroeurope network since 2007. The climate is temperate maritime. The mean temperature is 

about 10°C and the annual precipitation is about 800 mm. 

 

The cropland is a quadrilateral area of c. 12 ha located on a fairly flat plateau with a 

maximum slope of 1.2 % in a WSW direction. The site provides a fetch of 240 m in the SW 

which is the main wind direction. The farm is located 400 m WSW from the measurement 

point. There are no other buildings or roads in this direction for more than 1000 m. The 

second main wind direction is NE, with a fetch of 200 m. This side of the parcel is bordered 

by a road with very light traffic, beyond which croplands extend more than 900 m. The soil is 

a Luvisol (FAO classification). A footprint analysis of our site was carried out by Göckede 

(pers.comm.), using a forward Lagrangian stochastic trajectory model (Rannik et al., 2003) 

and following the procedure described in detail by Göckede et al. (2005). It appears that 

target area contribution to flux amounted in all conditions to more than 80% in all sectors, 

excepted one, corresponding to 5% of wind occurrence, where it amounted to 77% in stable 

conditions. 

 

2.2 Crop history 

The land has been cultivated for more than 70 years. For at least the past 6 years, the crops 

have been cultivated following a 4 year rotational cycle with sugar beet, winter wheat, seed 

potato and again winter wheat. Before the period under study, 180 kg.ha-1 mineral N and 60 

kg.ha-1 organic N (sugar lime) had been applied in 2003, 156 kg.ha-1 mineral N, 14 kg.ha-1 

phosphorus and 42 kg.ha-1 potassium in 2002, and 180 kg.ha-1 mineral N in 2001. No 

farmyard manure had been applied since 1996. Before the cycle beginning, in February 2004, 

the soil was ploughed at about 30 cm. 
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All the crop management activities during the rotational cycle are listed in Table I. The cycle 

began with sugar beet (Beta vulgaris L.) sowing on 30 March. Nutrient applications were 

performed in April and May 2004. At the harvest, on 29 September, roots were lifted and 

exported while beet crowns and leaves were left on the field.  

 

Date Action Material / Product 

1-Feb-04 Ploughing    

30-Mar-04 Soil preparation Canadian cultivator, Rotary harrow  

 Sowing Sugar beet 

1-Apr-04 Application liquid nitrogen (156 units .ha -1) 

 Weeding 3l Pyramine 

24-Apr-04 Weeding 0,2 Premium + 0,2 Fumesin + 0,5 Goltix 

3-May-04 Weeding 
0,3 Premium + 0,2 Fumesin + 0,5 Goltix + 0,25 

Matrigon 

12-Apr-04 Weeding 
0,5 Premium + 0,25 Fumesin + 0,75 Goltix + 0,5 

Matrigon 

12-May-04 Application Boramax : Magnesia + Boron (200kg.ha-1) 

23-May-04 Weeding 
0,5 Premium + 0,25 Fumesin + 0,5 Goltix + 0,25 

Matrigon 

31-May-04 Weeding Venzar 

7-Aug-04 Fungicide treatment  0,3 Virolex + 0,5 Capitan 

29-Sep-04 Pulling (lifting ?)  

14-Oct-04 Soil preparation  Rotary harrow  

 Sowing Winter Wheat, cv. Dekan, 150 kg.ha-1

28-Mar-05 Weeding 1,5l IP + 1,5l Verigal 

22-Mar-05 Application liquid nitrogen (45 Units.ha-1) 

12-Apr-05 Application liquid nitrogen (35 Units.ha-1) 

11-May-05 Weeding 40g Harmony + 25g Gratil 

12-May-05 Application NH4NO3 (40,5 Units.ha-1) 

30-May-05 Application NH4NO3 (81 Units.ha-1) 

19-May-05 Fungicide treatment  1l Opus + 0,5l Amistar 

3-Aug-05 Harvest  

28-Aug-05 Stubble breaking  
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23-Nov-05 Ploughing  

11-Apr-06 Application 
Asparagite (0N/0P/25K +10% calcium oxide + 30% 

sulphuric oven-dry) 

1-May-06 Planting Potatoes - cv. Spunta 

2-May-06 Application liquid nitrogen (117 Units.ha-1) 

 Weeding 4l Defi + 1l Linuron (Pre emergence treatment) 

13-May-06 Definitive ridging  

14-May-06 Weeding (4l Defi + 1l Linuron (Pre emergence treatment) 

1/9/15/20/27 

Jun-06 

3/8/13/19  

Jul-06 

 

Insecticide + Fungicide 

Spray 
 

6-Aug-06 
chemical haulm 

destruction 
 Purivel 

13-Aug-06 
chemical haulm 

destruction 
 Reglone 

15-Sep-06 Pulling (lifting ?)  

19-Sep-06 Stubble breaking  

13-Oct-06 Sowing Winter Wheat, cv. Rosario 

16-Mar-07 
Weeding / Insecticide 

spray 

Weeding (Cossack 300g/ha +1l/ha Actirob) 

Insecticide (Cytox 0,2l/ha) 

17-Mar-07 Application liquid nitrogen (40 Units.ha-1) 

12-Apr-07 Application + Spray 
liquid nitrogen (60 Units.ha-1)+Growth regulator (1l 

Cycocel) 

19-Apr-07 Fungicide Spray 1l Opus 

8-May-07 Application 
Third application of nitrogen (350 kg Nitrate 27) 

(94,5 Units.ha-1) 

23-May-07 
Insecticide + Fungicide 

Spray 

Fungicide (Fandango 1,25l/ha + Daconil 1l/ha) 

Insecticide (Cytox 0,2l/ha) 

5-Aug-07 Harvest  

10-Sep-07 Application Slimes (10t.ha-1) 

20-Sep-07 Stubble breaking  

5-Jan-08 Ploughing  

Table 1: Schedule of management activities during the rotational cycle. 
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In 2005, winter wheat (Triticum aestivum L., cv. Dekan) was grown. The seeds were sown on 

14 October 2004, 2 weeks after the sugar beet harvest. As the conditions were appropriate, 

before the winter wheat sowing, the soil has been managed using a power take-off rotary 

harrow working on 10 cm combined with a subsoiler made up of loosening shares with a 30 

cm tillage depth. Between mid-April and late May, mineral N was applied in four stages. 

The crop was harvested on 3 August 2005. Grain and straw were both harvested and 

exported while other crop residues were incorporated in the soil. A deep ploughing was 

operated on 23 November 2005. 

 

In 2006, potato (Solanum tuberosum L., cv. Spunta) was cultivated for seedlings. They were 

planted on 1 May 2006 and earthed up on 13 May 2006. Nutrients were applied in April and 

May 2006. Chemical haulm was applied in two steps, on 6 and 13 August 2006. The crop was 

harvested on 15 September 2006. 

 

On 19 September 2006, a stubble breaking was operated and winter wheat (Triticum aestivum 

L.) (cv. Rosario) was sown on 13 October 2006 after a similar soil treatment as in October 

2004. Between mid March and mid May mineral N was applied in three phases. The crop 

was harvested on 5 August 2007. Here again both grain and straw were exported and crop 

other crop residues were left on the soil. A stubble breaking operated in end September after 

application of a total herbicide on 7 September and of 10 t ha-1 sugar beet mill slimes 

(corresponding to about 0.07 kg C.m-2, Destain et al., 1997) on 10 September 2007. A deep 

ploughing was operated in January 2008. 

 

2.3 Eddy covariance system and meteorological station 

Fluxes of CO2, water vapour and sensible heat were measured with an eddy covariance 

system made with a research-grade sonic anemometer (Solent Research R3, Gill Instruments, 

Lymington, UK) placed at a height of 2.7 m and an infrared gas analyser model Li-7000 

(Licor Inc, Lincoln, NE, USA); this was the standard system used in the CarboEurope-IP and 

Fluxnet networks (Moncrieff et al., 1997, Grelle and Lindroth, 1996; Aubinet et al., 2000). This 

system has been described in more details by Moureaux et al. (2006). Data from the sonic 

anemometer were gathered at a sampling rate of 20 Hz using the EDDY Software (Kolle, 

Max-Planck-Institute for Biogeochemistry, Germany). This software was also used to 

determine online and post-processed fluxes.  
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Micrometeorological measurements were made on a half-hourly basis. They included air 

temperature and humidity (RHT2, Delta-T Devices Ltd., Cambridge, UK) at a height of 1.3 

m, soil temperature (PT100) at a depth of  3, 5.5, 9, 26 and 56 cm and soil humidity 

(ThetaProbe, Delta-T Devices Ltd., Cambridge, UK) at a depth of 5, 20 and 50 cm. Global 

(CM21, Kipp en Zonen, Delft, NL), net (Q*7.1, REBS, Seattle, WA, USA), global 

photosynthetically active (PAR Quantum Sensor SKP 215, Skye Instruments Ltd., UK) and 

global and diffuse photosynthetically active (Sunshine sensor type BF3, Delta-T Devices Ltd., 

Cambridge, UK) radiation were measured at a height of 2.7 m. Rainfall and mean 

atmospheric pressure (MPX4115A, Motorola, Phoenix, AR, USA) were also measured at the 

site. 

 

2.4 Biometric measurements 

In order to monitor crop development, growth stage observations were performed once a 

week or once a fortnight, according to crop development rate. In addition, vegetation area 

indexes were measured as well as dry matter (DM) and carbon (C) content, Net Primary 

Productivity (NPP) was deduced from these measurements. 

 

In each crop, dry mass (DM) and carbon content were studied separately. DM was obtained 

by weighing the samples after drying in an incubator. Incubator temperature and drying 

duration were 80°C and 15 days for sugar beet and 90°C and 2 days for the other crops. 

Carbon content was estimated by gas chromatography after complete combustion, 

purification and gas reduction. In each case, the sample was divided in four duplicates. 

  

In the sugar beet crop, 3 lines of 2 meter long each were taken at each sampling. As soon as 

the root was developed enough, it was separated from the rest of the plant and DM and 

carbon content of the two parts were followed separately. Details of the procedure are given 

by Moureaux et al. (2006). In the potato crop, 12 to 20 plants were taken at each sampling. 

Samples were separated in four parts: mother tuber, daughter tubers, roots and aerial parts. 

In winter wheat crops, plants were sampled on a surface of 0.5 to 1 m2. Samples were 

divided into two parts: ears and stems / leaves. In 2005, in addition, separation between 

green and yellow organs was made. As winter wheat roots can grow down to 1.5 m deep, it 

was not possible to collect all the below-ground biomass in these crops. Root biomass was 

thus evaluated by using a ratio between below-ground and total biomass described by Baret 

et al. (1992). Details of the procedure are given by Moureaux et al. (2008).  
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Exportations were measured using the same procedure as for NPP. In the winter wheat and 

the sugar beet, sampling was made on four different parcels of 6 lines of 150 meter each in 

the sugar beet and of 2 m X 50 m and 2 m X 30 m area in the winter wheat in 2005 and 2007, 

respectively. In the potato, they were estimated on the basis of the last NPP sampling that 

was made on two parcels. Indeed, values given by the farmer were underestimated as not 

taking below grade potatoes into account. 

 

Vegetation area index was also deduced in each crop from light absorption measurements, 

using a Ceptometer (Sunscan, Delta T Devices, Cambridge, UK). Measurements were 

performed weekly during the period of vegetation development. The green leaf area index 

(GLAI) was also measured in each crop by directly measuring the leaf surface of sampled 

plants with a camera and a picture analyser (Windias, Delta-T Devices, Cambridge, UK). 

 

2.5   Data treatment and uncertainty evaluation 

This study is focused on day average evolution and/or seasonal cumulated values of Net 

Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), Total Ecosystem Respiration 

(TER), Net Primary Productivity (NPP), autotrophic and heterotrophic respirations and 

exportations, 

 

Half hourly NEE measurements were estimated as the sum of the turbulent flux and of the 

change storage in the air below the measurement point. Measurements were computed using 

the standard Carboeurope computation procedure (Aubinet et al., 2000). Classical corrections 

(high frequency, density effects) were applied. In addition, the data were filtered in order to 

remove those taken during periods of low turbulence (u* filtering) or those that did not fill 

the stationarity criteria (Foken and Wichura, 1996). Data gaps were filled using mean diurnal 

variation (Falge et al., 2001) when meteorological data were missing and parameterisation 

when they were available. All these procedures were described in more detail by Moureaux 

et al. (2006) and (2008).  

 

Respiration components were computed using two methods. In the first, an estimate of 

cumulated autotrophic respiration (AR) was obtained as the difference between GPP and 

NPP and an estimate of cumulated heterotrophic respiration (HR) as the difference between 

NPP and NEE. In the second method, HR was obtained by extrapolation of chamber 
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measurements taken in field parcels that were maintained without vegetation and AR was 

deduced by subtracting HR from TER. Soil respiration measurements were taken using 

home made manual (Longdoz et al., 2000) or automatic (Suleau et al., submitted) chambers. 

Data were obtained during two campaigns, from June to July 2006 and from March to 

August 2007, in 2 m X 4 m non planted areas situated in the middle of the planted field. In 

2006, manual measurements were performed on 32 points every four days. In 2007 they were 

performed every half hour at four locations, using the automatic chambers. Extrapolation of 

these measurements to the whole rotational cycle was performed using an exponential 

temperature response (Q10 equation). 

 

Errors in eddy covariance measurements were avoided as much as possible by applying 

corrections and quality tests. The main corrections applied in this case concerned the high 

frequency losses by the IRGA pumping system and the filtering of night fluxes. However, 

some uncertainty could subsist, due notably to a wrong evaluation of the u* criterion used for 

night flux filtering. The resulting uncertainty was evaluated by Moureaux et al. (2006) as 

lower than 5 % on cumulated NEE. An evaluation of uncertainty due to all fluxes variations 

that were not controlled by climate fluctuations (i.e., footprint fluctuations, mesoscale 

movements) was estimated by applying the daily differencing approach (Richardson et al., 

2006) to Lonzée data. The cumulated error due to this was about 2 g C.m-2 on each cropping 

season and 2 g C.m-2 on the cumulated intercrop periods. Thanks to a low percentage of 

missing data, uncertainties due to data gap filling was limited to about 2 g C.m-2.yr-1 and did 

not exceed 5 g C.m-2.yr-1 on the whole rotational cycle. 

 

GPP and TER were deduced by extrapolation of NEE measurements. Two approaches were 

compared by Moureaux et al. (sub.) and each of them was optimised. Both computed first 

TER and deduced GPP by summation of TER and NEE. TER computation was based in both 

cases by extrapolation to the whole day of respiration estimates. The first approach was 

based on night eddy flux measurements while the second used the intercept of day flux 

response to radiation (PPFD). We used here the first approach as it is applicable to the whole 

rotational cycle, including intercrop periods. The uncertainty on TER and GPP was estimated 

as: 2
2

2
12

2
12

1 σδσε ++=  where �1 and �2 correspond to the uncertainties relative to each 

method and �12 to the mean squared difference between TER or GPP annual estimates by the 

two methods.  
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Finally, for the NPP computation, the product of dry mass and carbon content was first 

computed for each sample. NPP was then computed as the mean of the four samples and its 

uncertainty as the standard error of the mean. 

    

3 Results and Discussion 

3.1 Climate evolution 

With 10.7 °C, 11.0 °C, 11.4 °C and 11.5 °C, respectively, the years 2004 to 2007 were all 

characterised by an annual mean temperature higher than average (9.8°C), 2006 and 2007 

corresponding in addition to the two warmest years ever observed in Belgium (Institut Royal 

Météorologique, 2008). This was due notably to very warm conditions in July 2006 and to 

temperatures well above seasonal averages between September 2006 and May 2007. In 

particular, only four days with an average temperature below zero was observed during 

winter 2006-2007. During the first two years, the average monthly temperature varied 

between 2 - 3 °C in winter and 17-18 °C in summer, minima lower than -5°C and maxima 

larger than 23°C being sometimes observed (Figure 1a). Average monthly radiation varied 

between 40 and 500 �mol.m-2.s-1. June - July 2006 and April 2007 were characterised by larger 

radiation than average while August 2006 and the period from May to September 2007 by 

radiation lower than average (Figure 1 b). Average air vapour pressure deficit peaked to 20 

hPa, with day maxima up to 30 hPa (Figure 1c), and soil water content varied between 0.15 

and 0.40 m3.m-3 (Figure 1d). Three drought periods characterised by more than ten days with 

large saturation deficit were recorded in end June 2005, June - July 2006 and April 2007. 

These periods were also characterised by a sharp soil water content decrease.  

  

3.2 Evolution of GPP and TER 

In all figures and Tables and in most of the discussion below, the results are presented with 

the micrometeorological sign convention, considering that the positive sign is associated to 

upward fluxes and the negative flux to downward fluxes. However, in the next section for 

the sake of clarity in the discussion, both TER and GPP will be considered in absolute value. 

 

Temporal evolutions of GPP and TER measured between 1 April 2004 and 31 March 2008 are 

given on Figure 2. Arrows indicate farmer interventions that had an impact on fluxes: 

sowing (S), harvest (H), ploughing (P), chemical haulm application (C), Round up and slime 

application (A) and shallow tillage (T). 
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Figure 1 : Evolution of main daily averaged meteorologic variables from 1 April 2004 to 31 March 

2008. Figure 1a : Temperature and Photosynthetic Photon Flux Density. Figure 1 b : Average (curve) 

and maximal (poins) Vapour pressure deficit and soil water content. 

3.2.1 Differences between crops 

Daily GPP and TER were both subjected to seasonal variability reaching maximal (absolute) 

values (respectively 15 gC.m-2.d-1 and 5 to 10 gC.m-2.d-1) during spring and summer and 

minimal values (respectively lesser than 3 gC.m-2.d-1 and  1 gC.m-2.d-1 ) in autumn and 

winter.  

 

These fluxes are also subjected to a large inter-annual variability that is due either to climate 

variations or to differences between the crops. First, the cultivation period duration (between 

emergence and harvest) differed from one crop to another: it was limited to 75 days for seed 

potato and extended to 147 days for sugar beet and to 275 and 287 days for the two winter 

wheat crops. In the latter case however the vegetation period includes a vegetative slow 

growth period of about 150 days and a full vegetation development period on the rest of the 

 10



growing season. In addition, full vegetation periods were not synchronous as apparent on 

Figure 3: they began in April for winter wheat and much later, in mid to end June, for the 

sugar beet and the seed potato. In the two latter crops the assimilation prolonged until the 

harvest in end September for the sugar beet or until the chemical haulm which was operated 

in early August for the seed potato. On the contrary, in winter wheat, assimilation was 

slowed down well before the harvest, the leaf senescence progressing from bottom to flag 

leaves and stems during the grain filling and until the crop maturation. As a result, the crop 

development period included a two to three week period corresponding to plant senescence. 
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Figure 2 : Evolution of daily averaged GPP (open symbols) and TER (closed symbols) from 1 April 

2004 to 31 March 2008. The different arrows represent the main management interventions : S : 

Sowing, H : Harvest, P : Deep ploughing, T : Tillage, A : Slimes application, C : Chemical haulm. 

 

Amplitudes of daily GPP and TER also depend on crops. Higher values of both fluxes  were 

observed in the winter wheat (16 gC.m-2.d-1 and 8 gC. m-2.d-1, respectively), slightly smaller 

values in sugar beet crop (15 gC. m-2.d-1 and 5 gC. m-2.d-1, respectively) and again smaller 

values in the seed potato crop (10 gC. m-2.d-1 and 5 gC. m-2.d-1, respectively). The smaller 

values in the potato could partly be explained by a smaller LAI (about 3) compared to other 

crops (LAI about 4). However, this explanation does not hold for sugar beet that had similar 

LAI than winter wheat. The difference should thus probably due to a lower photosynthetic 

capacity of the beet. GPP values in winter wheat are in good agreement with those found in a 

similar crop by Anthoni et al. (2004) in Thuringia ( > 15 gC. m-2.d-1) but larger than those 
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found by Soegaard and Thorgeirsson (1998) (10 gC. m-2.d-1 at Tisby). However, in the latter 

case, the smaller value is probably explained by the higher latitude (59°N) of the site. No 

such data were found for potato and sugar beet. TER in the winter wheat was always larger 

than observed by Anthoni at Gebesee ( < 5  gC. m-2.d-1 ) (Anthoni et al., 2004). 
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Figure 3 : Evolution with day of year (DOY) of daily averaged GPP and TER. Positive values 

correspond to TER, negative values to GPP. Legend : Green : Sugar beet 2004, Yellow / orange :  

Winter wheat 2005, Red / pink : Potato 2006, Blue : Winter wheat 2007. 

 

Seasonal decreases in GPP had also different origins: in the winter wheat, they resulted from 

the leaf senescence that carries out in end June and July, while, in the sugar beet, it was due 

to both a radiation reduction in August and September and a reduction of sugar beet leaf 

photosynthetic capacity (Moureaux et al., 2006). In the potato crop, the small values observed 

in July are also due to the water stress undergone by the crop during this period. This is 

confirmed by half hourly NEE measurements taken during this period that exhibit an 

asymmetrical daily response which points out an afternoon stomatal closure in response to a 

large air vapour pressure (Figure 4). Such behaviour is relatively exceptional in Belgium and 

was observed only at this moment of the whole rotation cycle. 

 

3.2.2 Impact of intercrops 

Figure 2 suggests also a non negligible contribution to TER and GPP during intercrops. After 

winter wheat harvests, in autumn 2005 and 2007, weeds and wheat volunteers developed in 
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the field, which induced an increase of both GPP and TER. The carbon uptake resulting from 

these plants was 1 to 2 gC. m-2.d-1 but it did not compensate the TER (2 to 3 gC. m-2.d-1) so 

that the field remained a net source. These fluxes were stopped, in November 2005 by a 

ploughing and in September 2007 by a total weed killer application and a shallow tillage.  
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Figure 4 : Time evolution of half hourly NEE (Figure 4 a), PPFD (Figure 4 b, black curve) and VPD 

(Figure 4 b, grey curve) during the drought period in July 2006. 

 

In autumn 2006, after the potato harvest, a sizeable GPP was also observed. It was first due 

to assimilation by weeds and after to the next crop development. GPP and TER were similar 

as in the other intercrops and, during this period again, the field remained a net source of 
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about 1 to 2 gC. m-2.d-1. During the following winter, winter wheat assimilation was larger, 

due the especially mild conditions. The usual leaf development limitations due to frost and 

low temperature were indeed not observed on this year.  

 

3.2.3 Impact of crop management 

Some impacts of crop management on GPP and TER are also apparent in Figure 2: after the 

sugar beet harvest, in autumn 2004, no TER decrease was observed as should have been 

expected due to autotrophic respiration suppression. This is because this suppression was 

compensated by an increase of heterotrophic respiration due to the leaving on the field of 

crop residues (beet crowns and leaves, about 0.38 kgC.m-2) after the harvest. The additional 

emission associated to the residues was clearly observable during about three weeks. 

Moureaux et al. (2006) estimated it to amount to 0.02 gC.m-2, which corresponds to only 5 % 

of the carbon left.  

 

In November 2005 a deep ploughing (30 cm) was operated. Its effect was to stop immediately 

both the assimilation and the respiration of the weeds that had developed in the field since 

the harvest. However, as both the uptake and the emission of CO2 were suppressed the effect 

on NEE was not observable. The carbon emission from soil due to the ploughing itself was 

very limited, not exceeding 2 to 3 gC. m-2.d-1 during one or two days following the 

intervention. Continuous eddy flux measurements made by Anthoni et al. (2004) on a winter 

wheat in Thuringia also suggested this effect to be limited. In addition, Baker and Griffis 

(2005), who compared flux exchanged by fields subjected to shallow or conventional tillage 

showed that the emission difference was of the same magnitude. This result doesn’t of 

course take the indirect and long term effects on soil structure and soil quality into account.  

 

In September 2007, the farmer intervention was operated in three steps: first an application 

of herbicide was operated on 7 September, followed by a spread of sugar beet mill slimes on 

September 10th, and a shallow tillage on 21 September. The herbicide application induced a 

progressive decrease of GPP but didn’t change the TER. As a result, the net emission 

increased during this period. The stubble breaking finished to stop weed assimilation but 

had again no detectable effect on TER. Other shallow tillages, operated in mid October 2004 

and 2007 had a small effect on the flux, increasing TER by 1 to 2 gC. m-2.d-1 but this increase 

did not persisted beyond the day of the intervention.   
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3.2.4 Impact of interannual climate variability 

The impact of interannual climate variability may be emphasized by comparing the two 

winter wheat crops. 2005 and 2007 were indeed characterised by very different climates that 

induced large differences: the exceptionally mild conditions in winter 2006-2007 boosted the 

wheat assimilation during winter time and provoked an earlier vegetative development but 

also an earlier senescence and maturation than in 2005 (Figure 3). Between November and 

March, the GPP was three times as high in 2007 as in 2005 (205 gC.m-2 compared to 68 gC.m-

2). However, the drought that occurred in April 2007 had a negative effect on the assimilation 

that was not immediately detectable on the GPP evolution but perturbed the crop 

development and led finally to a reduced crop productivity compared to 2005. An analysis of 

these interannual differences is in progress.     

 

3.2.5 Relative role of autotrophic and heterotrophic respiration 

The evolution of heterotrophic respiration computed with the second approach (i.e. 

extrapolation of soil chamber measurements on bare areas) is presented on Figure 5 (grey 

curve). The extrapolation was performed by using a simple exponential response to 

temperature (Q10 equation). The regression coefficients of this relation were: R10 (i.e., 

respiration normalised at 10°C) = 0.91 �mol m-2s-1 and Q10 (i.e., temperature sensitivity) = 1.5 

and the Rsq was 0.75. In addition, the time evolution of autotrophic respiration deduced by 

difference between HR and TER is presented on Figure 6a along with those of GPP and the 

relation between ten-day-averaged values of AR and GPP on Figure 7.  
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Figure 5 : Time evolution of daily averaged TER (black curve) and HR (grey curve). 
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Figure 6: Time evolution of daily averaged AR (points) and GPP (grey curve). 

 

Despite that this HR computation method is quite crude, as based on a limited set of 

measurements, on a single temperature response and on the hypothesis that temperature 

sensitivity is constant over the whole rotational cycle, it gives estimates that agree fairly well 

with other independent estimates during both cropping and intercrop periods. First, Figure 5 

shows that during the intercrop periods, HR estimates are close to TER measurements, 

which was expected as the autotrophic component is small at these moments. In addition, 

during the three first cropping periods, cumulated HR values computed with this method 

was found to agree very well with estimates based on the first method (i.e. difference 

between NEE and NPP) (Table 2). The discrepancy between the two estimates on the fourth 

year is due to another problem and will be discussed below.  

 

The HR temperature sensitivity we found was lower than the expected value of 2 and much 

lower than long term temperature sensitivities observed usually in crops (Reichstein et al., 

2005). As a result, the annual HR fluctuations are of limited amplitude (Figure 5) and the 

TER increase observed in summer appears rather to be related to an AR change. This suggest 

that the large temperature sensitivities usually observed in crops do not indicate a direct 

response to temperature but rather an indirect response associated to leaf assimilation and 

plant growth. This was already stressed, notably in forests by Janssens and Pilegaard (2003) 

and in crops by Han et al. (2007) and Moyano et al (2007).  
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Figure 7 : Relation between AR and GPP. Each point corresponds to a ten day average. Closed 

symbols / Continuous line : sugar beet in 2004 (black) and potato in 2006 (grey). Open symbols / 

Dotted lines: winter wheat in 2005 (black) and 2007 (grey). In the winter wheat the chronological 

order is counter clockwise. 

 

During the growth phases of each crops (Figure, 7, excluding the end of winter wheat 

season), the ratio AR / GPP appears to be practically constant, similar for the four crops and 

equal to 0.3. Amthor (2000), Cannell and Thornley (2000) suggested indeed this ratio to vary 

between 0.4.and 0.6, Monje and Bugbee (1998) and Gifford (1995) found it to remain fairly 

constant during the development in winter wheat.  

 

At the end of the winter wheat season, the AR / GPP ratio increased due not only to the GPP 

decrease following the leaf senescence but also to an AR increase. The cause of the latter 

increase is not clearly identified. It probably results from specific processes at work during 

the dough development phase. In particular, photosynthesis product translocation and grain 

growth are possible causes (Amthor, 2000). Such an increase was not observed in the sugar 

beet and the potato crops suggesting that it is linked to a specific winter wheat development 

stage.    
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 SB - 2004 WW - 2005 PS - 2006 WW - 2007 IC Total 

Exportation  

 

Roots: 0.63 

 

Grain : 0.37 

Straw : 0. 19 

Tuber :  

 0.29 (0.03) 

Grain : 0.31 

Straw : 0.14 

  

1.88 

Importation  Grain : 

-0.006 

Mother tuber :  

- 0.04 

Grain : 

-0.006 

Slimes :  

- 0.07 

 

- 0.12 

GPP -1.42 (0.08) -1.58 (0.13) -0.60 (0.05) -1.68 (0.12)   

TER 0.62 (0.08) 0.95 (0.13) 0.29 (0.05) 0.95 (0.12)   

NEE -0.80 (0.04) -0.63 (0.03) -0.31 (0.02) -0.73 (0.04) 0.88 (0.04) -1.59 

NPP -1.01 (0.09) -0.88 (0.05) -0.36 (0.01) -0.76 (0.05)   

AR 0.41 (0.12) 

0.44 

0.70 (0.14) 

0.70 

0.24 (0.05) 

0.20 

0.92 (0.13) 

0.70 

 

 

 

HR 0.21 (0.09) 

0.18 

0.25 (0.05) 

0.24 

0.05 (0.01) 

0.09 

0.03 (0.05) 

0.26 

 

 

 

NBP -0.17 (0.10) -0.07 (0.06) -0.06 (0.03) -0.28 (0.06) 0.81 (0.06) 0.17 (0.14) 

Table 2 : Carbon budget of the rotation. Legend : SB : sugar beet (from emergence (21 April) to 

lifting (29 September)), WW : winter wheat (from emergence (1 November) to harvest (3/5 August)), 

PS : potato seeds (from emergence (24 May) to chemical haulm (6 August)), IC : intercrops 

(cumulated on the whole cycle). AR and HR values in normal (italic) fonts were computed using 

the first (second) approach. Values between parentheses correspond to the uncertainty.                  

For more detail, see text. 

 

3.3 Crop budgets 

3.3.1 Terms of the budget 

The carbon balances of each crop are presented on Table 2 as well as an evaluation of the 

uncertainties on each term. First, the values of all cumulated fluxes depend mainly on 

vegetation period lengths. In particular, the lowest values were observed for the seed potato 

whose vegetation period was 75 day long. Winter wheat and sugar beet, that had longer full 

growth period lengths (about four and three months, respectively), obtained the largest GPP 

and TER.  
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The ratio TER / GPP varied between 40 % in potato and sugar beet and 60%, in the winter 

wheat. The higher percentage in the winter wheat results on one hand from a higher daily 

respiration rate during the crop development, on the other hand from the additional 

respiration observed during dough development, as discussed above. TER/GPP ratios 

reported in the literature are generally much higher than found here because they are based 

on a complete year and include intercrop periods during which TER remained important 

while GPP was generally low. On the eight sites that we listed in the literature, only one 

fertilised barley field, reported by Gilmanov et al. (2003), had a TER/GPP ratio lower than 

60% (42%), all the others varying between 60% and more than 100% (Suyker et al., 2005, 

Falge et al., 2002, Gilmanov, 2003). If we had computed this ratio on the same length scale, 

we would have obtained comparable values, between 61% and 73%.  

 

The NPP / GPP ratios, obtained by comparing biomass carbon content and eddy covariance 

measurements were 70% for sugar beet, 60% for seed potato and the 2005 winter wheat crop 

and 45% for the 2007 winter wheat crop. The three first results appear in good agreement 

with those of Cannell and Thornley (2000) (between 40% and 60% for crops), Monje and 

Bugbee (1998) and Gifford (1995) (60% for winter wheat). However, the ratio obtained in 

winter wheat in 2007 appears too small in comparison to 2005 measurements and to 

literature values. We suspect this is due to a NPP underestimation and identified two 

possible causes. The first one is the non account in NPP computations of the tillers that 

decayed during the stem elongation phase. During this phase, a lower than expected NPP 

increase was observed, which could be explained by the degeneration of dominated tillers. 

As these tillers were especially numerous in 2007, due to the mild temperature underwent by 

the crop during winter, the non account of this term in the NPP could have a larger impact 

than in 2005. The second cause could be an underestimation of root biomass. As it was 

evaluated on the basis of a partitioning coefficient (Baret et al., 1992), which was validated on 

normal conditions, it did not take into account a possible enhancement of root development 

during the mild winter or the drought underwent by the crop in spring 2007. Both 

hypotheses are in agreement with the fact that, despite a larger GPP, the crop harvest was 

lower in 2007 than in 2005. They suggest in addition that, in 2007, a larger part of the biomass 

was not harvested and left to the field.  

 

Cumulated autotrophic and heterotrophic respiration components computed by the two 

approaches are also presented in Table 2. The agreement between the two approaches is 
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satisfactory for the three first crops, in view of the uncertainty inherent to each method. The 

differences between the predictions by the two approaches are indeed always lower than 40 

gC.m-2, which corresponds typically to less than half the uncertainty affecting each approach. 

The two methods diverge in 2007 for the reason discussed above: due to the NPP 

underestimation the first approach leads to abnormally high AR estimates and unrealistically 

low HR estimates. The second approach appears to give more coherent results. For all crops 

the AR / TER ratio is larger than 0.65, suggest a clear dominance of AR compared to HR 

during crop development period. Here again these ratios are larger than found in the 

literature, the reason being again that they are evaluated on the crop vegetation season and 

not on a whole year. 

 

3.3.2 Global budget 

In order to establish the global rotational cycle budget, NEE was also evaluated during the 

intercrops. During these periods, the field behaved mainly as a source, emitting 0.83 kgC.m-2 

on the cumulated period. The emission was fairly constant, varying between 1 and 1.5 gC.m-

2.d-1, excepted in October 2004 when NEE was increased to 3 gC.m-2 d-1, due to the 

decomposition of crop residues left on the soil after the sugar beet harvest. The cumulated 

NEE on the four years amounted thus to -1.64 kgC.m-2. If we consider that all the grain and 

straw is rapidly consumed and resituated to the atmosphere in a short term, we could define 

the NBP as the difference between NEE and net exportation (exportations minus 

importations). The exported carbon by the harvest amounted to 1.88 kgC.m-2 that distributed 

into 0.63 kgC.m-2 sugar beet roots, 0.37 + 0.31 kgC.m-2 winter wheat grain, 0.24 kgC.m-2 seed 

potato tuber and 0.14 + 0.19 kgC.m-2 wheat straw. Carbon importation also resulted from 

slime application, in September 2007 (0.07 kgC.m-2) and from potato mother tuber sowing 

(0.04 kgC.m-2). Importation resulting from other crop sowing was neglected, amounting to 

lesser than 0.01 kgC.m-2 in the winter wheat and the sugar beet.  

 

On the whole, the net biome production of the whole rotational cycle could be evaluated to 

0.17 kgC.m-2. In average, the crop behaved thus as a slight source of about 43 gCm-2.yr-1. The 

uncertainty on the cumulated NBP is estimated to be 0.14 kgC.m-2, i.e., the same order of 

magnitude as the value itself, so that the source character of the rotational cycle is just 

significant.  
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Any comparison of our results with literature is delicate as published results don’t 

correspond to the same rotational cycle or to the same time scale. On one hand, one find local 

carbon budget studies, similar to ours that are based on multi year eddy covariance 

measurements and exportation assessment. However, excepted one incomplete rotational 

cycle (two year of winter wheat crop, Anthoni et al., 2004) most of the other studies concern 

maize-soybean rotational cycles, which are more common in Northern America (Verma et 

al., 2005, Hollinger et al., 2005). On the other hand, studies performed at a decennial scale 

analyse the evolution of crop soil organic carbon (SOC) using models or carbon inventories. 

If methane and volatile organic compound emission contributions to the soil carbon balance 

are neglected, NBP can be compared to SOC evolution. 

 

Two of the multi year eddy covariance measurements show the crop to behave as a source 

with a NBP varying between 25 and 10 gCm-2.yr-1 (Verma et al., 2005, Anthoni et al., 2004) 

while the third one appears as a sink (30 gCm-2.yr-1 on a six year maize – soybean rotation, 

Hollinger et al., 2005, 2006a), a debate remaining however in the latter case (Hollinger et al., 

2006b, Doberman et al., 2006) to determine if the sink character is significant.  

 

SOC evolution studies conclude generally that SOC decreases in average in crops, i.e. that 

they behave as sources but with a variable intensity. Vleeshouwers and Verhagen (2002) 

using the CESAR model predicted an average emission by European arable crops of 84 gCm-

2 yr-1, under a business as usual scenario during the Commitment period 2008-2012. Goidts 

and Vanwesemael (2007) estimate the average decrease on carbon soil content of Southern 

Belgium crops between 1955 and 2005 to be about 12 gCm-2.yr-1 and, more specifically, 

between 7.6 to 32 gCm-2.yr-1 in the region of our study (loam region). They suggest that it is 

due to a decrease in mass of farmyard manure and slurry applied on cropland along with a 

change in the types of crops cultivated. Dawnson and Smith (2007) also indicate a SOC 

decrease in UK and explained it as due to a decrease in farmyard manure and slurry 

application. They also noticed the impact of a more efficient removal of agricultural products 

from fields. On the contrary, Gervois et al. (2008) consider that this last effect was 

compensated by increased yield that induced increased litterfall and estimated the European 

cropland to have behaved as a sink during 20th Century. 

 

Globally the results we found are in coherence with most predictions at local (Anthoni et al., 

2004, Verma et al., 2005) or regional (Vleeshouwers and Verhagen, 2002, Goidts and 
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Vanwesemael, 2007, Dawnson and Smith, 2007) scale. The emission of 42 gCm-2.yr-1 by our 

rotation could indeed be explained by the crop management which includes a systematic 

exportation of winter wheat straw for livestock and didn’t apply any farmyard manure or 

slurry since more than ten years. The soil carbon content decrease we observed 

corresponded to about 1 % per year of the initial carbon content.  

 

Finally, this result is strongly linked to the particular climatic conditions undergone by the 

crops during the rotational cycle. It is indeed largely influenced by the large NBP in 2007, 

which is supposed to be due to a larger than usual carbon accumulation in non harvested 

biomass, as a result of the particular climatic conditions. Indeed, if 2007 had been similar to 

2005, the cycle NBP would have been more positive (~ 0.38 kg C.m-2) which would have 

accentuated the source character of the crop rotation (~ 90 gC.m-2.yr-1) and made it more 

significant. Models suggest generally that the impact of climate change on SOC is much 

lower than those of agricultural management (Vleeshouwers and Verhagen, 2002, Gervois et 

al., sub.). However, generally they only include the direct impact of temperature on 

respiration and don’t take crop development modifications, as observed here, into account. 

They could thus underestimate this effect. Our results suggest that, by inducing an increased 

tiller biomass, the particular climate conditions in 2007 have increased the biomass of 

residues left to the field and have thus increased the carbon storage in soil. It remains 

however to be determined what is the residence time of the carbon stored thanks to this 

process.   

  

4 Conclusions 

 

This study allowed studying the carbon balance of a rotational crop. It showed that both TER 

and GPP are submitted to large seasonal and interannual variations, mainly due to 

differences between crop development and to climate. In particular a clear impact of a 

drought was observed on the seed potato crop in 2006 but, in the absence of measurements 

on a similar crop in normal conditions, it was not possible to quantify it. Besides this, the 

impact on winter wheat of the exceptionally mild conditions in winter 2007 and of the 

drought in spring 2007 was to increase the fraction of biomass that returned to the soil. 

Impact of farmer interventions were also observed: CO2 emission during ploughing was 

found to be limited in intensity (1 to 2 �mol.m-2.s-1) and duration (not more than 1 day). 

However, this does not preclude about its impact at longer term, notably through soil 
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structure or microbial activity modification. A significant impact of sugar beet residue 

abandonment on the field after the harvest was also clearly during the three weeks that 

followed the harvest. However, as only a small fraction of residues was respired during this 

period, it this effect was prolonged during the following months. It was however not 

possible to separate it from the other contributions to the flux. Assimilation during 

intercrops was also found significant, although not sufficient to offset the respiration during 

these periods. 

 

A separation of TER between its autotrophic and heterotrophic components was also 

performed and showed that the former was clearly dominating (65 % and more) during the 

cropping season. A strong correlation between AR and GPP was also found during the 

growing season. In the winter wheat, the response of AR to GPP was characterised by a 

hysteresis: at the end of the season, larger AR were observed while GPP decreased due to 

leaf senescence. This AR increase was interpreted as due to specific processes that take place 

during the dough development.  

 

Budget of the rotational cycle showed that NEE was negative during cropping periods but 

positive during intercrops. On the whole, NEE was negative, the ecosystem assimilating -

1.64 kg C.m-2. The NBP, computed by combining NEE, exportations at the harvest and 

importations was finally positive, about 0.17 kg C.m-2. This suggests that, if the carbon 

exported at the harvest was immediately released in the atmosphere, the rotational cycle 

would then behave as a source. Another consequence is that, at the rotation scale, the crop 

soil looses carbon. This result is just significant as the uncertainty is about the same as the 

flux itself. However, it is always on the source side of zero. In addition, the source intensity 

was mitigated by the particular climatic conditions of 2007. The exceptionally mild 

temperatures in winter and the drought in April 2007 induced a larger than usual tiller 

biomass that degenerated during the elongation phase and returned to the soil, leading to a 

larger aerial litter biomass as usual. Consequently, if 2007 had been a “normal” year, similar 

to 2005, the source intensity of the rotation would have been much larger and more 

significant. However, caution must be taken before extrapolating this result at a larger scale 

as this result is probably a result of the specific management of the site. Indeed, neither 

farmyard manure nor slurry was applied on the side since more than ten years and cereal 

straw were systematically exported for livestock, which could explain the decrease in soil 

carbon content.   
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The main causes of uncertainties affecting these results were associated to eddy covariance 

or biomass sampling measurements. In eddy covariance, the main cause of uncertainties 

came from the u* threshold determination. Indeed, as no clear plateau appeared in the 

relation between normalised night flux and temperature, NEE was sensitive to the threshold 

choice. Moureaux et al. (2006) showed that an uncertainty of 0.1 m.s-1 on the threshold, 

induced an uncertainty of 17 gC .m-2.yr-1 on the NEE. Besides this, random uncertainties 

introduced by data gap filling, by footprint fluctuations or mesoscale movements appeared 

very small, of the order of 2 gC.m-2.yr-1 each. This uncertainty appeared finally lower to those 

associated with the biomass sampling and that resulted from crop heterogeneity.  
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	Résumé  
	Le bilan carboné d'une rotation culturale de quatre ans a été établi entre 2004 et 2008 sur le site expérimental de Lonzée, Belgique. La région se caractérise par un climat tempéré océanique avec une température moyenne de l'air de 10°C et des précipitations annuelles de l'ordre de 800 mm. Le sol de la parcelle est un Luvisol. Les cultures composant la rotation sont des cultures de betterave, froment d’hiver, pomme de terre et froment d’hiver.  Dans le but d’établir un bilan carboné, des mesures ont été effectuées à différentes échelles spatiales et temporelles. Un système de mesure par eddy covariance fournit une estimation par demi-heure de l'échange net en CO2 de l'écosystème (NEE). La qualité des procédures de sélection et de traitement des flux de NEE a été contrôlée. A partir de ces mesures, la productivité primaire brute (GPP) et la respiration totale de l'écosystème (TER) sont déduites. Plusieurs procédures basées sur les mesures diurnes ou nocturnes de NEE sont comparées. L'intérêt d'utiliser un court pas de temps dans ces procédures et la température du sol comme température de référence a été mis en avant, ainsi que la nécessité de déterminer une valeur seuil de la vitesse de friction (u*) pour chaque culture et les longues inter-cultures. Pour la culture de froment d'hiver 2005, une estimation de la GPP déduite des mesures d'eddy covariance est comparée à une estimation basée sur une modélisation de mesures réalisées, une fois par semaine, à l'échelle de la feuille. La conception initiale de l'appareil de mesure a permis de réaliser les mesures sur les feuilles uniquement. Les évolutions des deux estimations sont proches à l'échelle de la saison et à l'échelle journalière. La mise en œuvre de la méthode basée sur les mesures à l’échelle de la feuille a apporté d’importantes informations en termes de réponse de la GPP aux facteurs climatiques et non climatiques et a permis une validation de l’estimation basée sur les mesures d’eddy covariance. Toutefois, dans le cadre de l’établissement d’un bilan carboné, la méthode basée sur les mesures d'eddy covariance est préférée. Des mesures de la respiration de sol, réalisées à l'échelle de la mini-parcelle de sol, et des mesures du contenu en carbone des plantes sont aussi réalisées. Combinées aux mesures d'eddy covariance, ces mesures permettent de déduire les parts auto- et hétérotrophiques de la respiration. Sur l'ensemble de la rotation, la parcelle apparait être une source significative de carbone de 0.17 (+/- 0.14) kg C m-2.  Cela suggère que, durant la rotation, le contenu en carbone du sol a diminué. Ceci peut s’expliquer par l’absence d’apport de fertilisation organique durant les 10 dernières années ainsi que par la récolte systématique des pailles des céréales.
	 Moureaux Christine. (2008) CO2 fluxes measurements and carbon balance of a rotational cycle of four crops (thèse de doctorat in French). Gembloux, Belgium Gembloux Agricultural University. 10p., 1 fig., 6 articles.
	Summary
	The carbon balance of a full rotational crop cycle of four years was established between 2004 and 2008 on the Lonzée site, Belgium. The climate is temperate maritime. The mean annual temperature is about 10°C and the annual precipitation is about 800 mm. The soil is a Luvisol. The studied crops were sugar beet, winter wheat, potato and winter wheat crops. In order to assess the carbon balance, measurements were carried out at different spatial and temporal scales. An eddy covariance system measured the CO2 net ecosystem exchange (NEE) every half-hour. The selection and treatment procedures quality was checked. The gross primary productivity (GPP) and the total ecosystem respiration (TER) were deduced from the eddy covariance measurements. Several procedures based on night-time or daytime NEE measurements were compared. The importance of a narrow window to fit the NEE to climate relationship was brought to the fore, like the importance of the soil temperature as reference temperature and the necessity of evaluating a friction velocity (u*) threshold value for each crop and for long inter-crops. For the winter wheat crop of 2005, a GPP assessment based on eddy covariance measurements was compared to an estimation based on measurements carried out once a week at the leaf scale. Measurements were carried out only on leaves because of the initial conception of the porometer. The evolutions of both estimations were in good agreement at both the crop time scale and the daily scale. The leaf scale model development provided important information concerning the GPP response to climatic and non climatic parameters. This modelled GPP also allowed validating the eddy covariance GPP estimation. However, in the frame of the carbon balance assessment, eddy covariance GPP estimation is preferred. In addition, soil respiration measurements were carried out at the soil mini parcel scale, and plant carbon content measurements were performed once a week. Combined to eddy covariance fluxes, these measurements allowed determining the auto- and heterotrophic respiration parts. On the whole rotational cycle, the site was a significant carbon source of 0.17 (+/- 0.14) kg C m-2. This suggests that the soil carbon content decreased during the studied period. This could be explained by the crop management, as neither farmyard manure nor slurry was applied on the crop since more than 10 years and as cereal straw was systematically exported.
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