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Abstract. Traditional identification of ore minerals with 
reflected light microscopy relies heavily on the experience 
of the observer. Qualified observers have become a rarity, 
as ore microscopy is often neglected in today’s university 
training, but since it furnishes necessary and inexpensive 
information, innovative alternatives are needed, especially 
for quantification. Many of the diagnostic optical properties 
of ores defy quantification, but recent developments in 
electronics and optics allow new insights into the 
reflectance and colour properties of ores. Preliminary 
results for the development of an expert system aimed at 
the automatic identification of ores based on their 
reflectance properties are presented. The discriminatory 
capacity of the system is enhanced by near IR reflectance 
measures, while UV filters tested to date are unreliable. 
Interaction with image analysis software through a wholly 
automated microscope, to furnish quantitative and 
morphological information for geometallurgy, relies on 
automated identification of the ores based on the 
measured spectra. This methodology increases 
enormously the performance of the microscopist, 
nevertheless supervision by an expert is always needed. 
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1 Introduction 
 
Reflected light microscopy has been the main method of 
ore characterization throughout most of the second half 
of the 20th century, but its fate in the future may depend 
largely on the ability to increase its performance through 
reliable quantification and automation. The series of 
Quantitative Data Files edited by the IMA / COM, 
particularly the last version, QDF3 (Criddle & Stanley, 
1993), represents a milestone in the compilation of 
reliable spectral information on ore reflectances in visible 
light, making it possible to aim at automated microscopic 
identification of ores based on quantitative data. A joint 
effort by researchers from the Universidad Politécnica de 
Madrid (UPM), AITEMÍN , Ruhr Universitaet Bochum 
(RUB), and Université de Liège (ULg) has allowed to 
collect visible and near-infra-red (VNIR ) spectral data 
from ores in a systematic way for their automatic 
identification, and for their quantitative geometallurgical 
characterization.  
  

2 Experimental process 
 
2.1 Materials and methods. 
 
The selection of the ore sections to be measured is a 
most important step. Their quality is a key to the value 
of the results. All the sections have been previously 
studied and, if needed, repolished and / or analysed with 
electron microprobe (RUB). Only representative ores 
from well polished sections with a fresh surface and 
sufficient grainsize have been measured. The samples 
used are mainly from two sources: a replica of the ore 
collection used for his book (1980) by Prof. Ramdohr, 
and the research and / or teaching collections of the 
UPM, completed in some cases with ores from RUB. 

Traditional ore microscopy, well documented in the 
literature (cf. excellent introduction by Criddle, 1998) 
resorts mainly to polarized light. Nevertheless, 
observations under polarized light, very helpful for the 
qualitative characterization of ores, are bound to 
anisotropy and are a problem for routine automation, 
given the difficulty to control the orientation of mineral 
grains. The approach chosen for this work is therefore to 
avoid polarization, even if the QDF3 data resort to it: as 
predicted, the values obtained are intermediate between 
the extreme R values of QDF3. Although common ores 
can be analysed from simple 3CCD colour images 
(Berrezueta & Castroviejo, 2007), multispectral imaging 
is more reliable (Pirard, 2004). To enhance the 
discrimination capacity of the system, not only visible 
(as in QDF) but also NIR values (up to 1000 nm) are 
measured; to do this, the original heat protection filters 
of the microscopes were replaced by a heat filterhybrid 
hot mirror with a wavelength cut well above for 
WL>1000 nm. For more detailed descriptions of the 
methodology, see Pirard et al. (2008), Castroviejo et al. 
(2008), and Catalina et al. (2008).  

The tests performed on commercially available UV 
filters (down to 350 nm) showed them to transmit also a 
noteworthy intensity of visible light. Therefore, UV 
values are not included, although tests with new filters 
are in progress and might finally lead to useful values. 
 
2.2 Equipment. 
 
The experimental work has been carried out in the 



Laboratorio de Microscopía Aplicada (LMA , UPM), and 
in AITEMIN, with specific instrumentation: automated 
microscopes for reflected light (Leica DM6000M in 
LMA, Zeiss Axioskop 2 MOT in AITEMIN), both 
equipped with a DTA RPF16 filter wheel comprising 13 
Melles Griot interference filters to measure from 400 to 
1000 nm, in 50 nm intervals (40 nm FWHM); images 
were acquired with a Basler Scout scA1400fm digital 
video camera with IEEE-1394 interface. The calibration 
standards used to date are certified Ocean Optics STAN-
SSH and STAN-SSL (for high and low reflectances, resp.), 
but the production of specific standards is planned at 
RUB.  

The measures are carried out and checked separately 
in both laboratories. They can also be compared with 
values obtained in ULg, with a roughly similar 
equipment (Olympus BX 60 scope, and filter wheel with 
10 nm FWHM Coherent filters). For an additional test of 
the process a precision spectral microphotometer, 
mounted on a Leitz Orthoplan scope, has been designed 
at RUB and integrated into the work routine at LMA; 
instead of single interference filters and a photomultiplier 
usable in visible light (Bernhardt, 1987), a monolithic 
solid state spectrometer (Hamamatsu C10083CA) is 
used; it allows measurements from 400 to 1000nm, with 
a spectral resolution of 0.3nm. 
 
 
3 Multispectral VNIR data base and its use 
 
3.1 The data base: preliminary results 
 
The measured values are being compiled in a data base. As 
an example, Table 1 shows the preliminary VNIR results 
for 30 common ore minerals, found in most of the 
mineralisations of industrial interest. VNIR values in 
visible light lie among the maximum and minimum QDF3 
values, as predicted, and the curves show a similar trend. 
NIR values may show peculiar changes that enhance the 
spectral differences (compare e.g. pyrrhotite and 
chalcopyrite, or covellite and bornite: Fig. 1), while in 
other cases, they appear as a dull extension of the visible 
spectra (Fig. 2). 

3.2 Applications 
 
Although these data need to be completed to really 
establish their potential to build an expert system, it can 
be anticipated that in some cases (Fig. 1) they may be 
very helpful to implement an automated characterization 
of the ores. Automated identification can be expected in 
most common ores, although to be safe the support of 
additional criteria, such as paragenesis or preliminary 
study by a mineralogist, should be introduced. Other data 
may be needed in exceptional cases, such as the 
concentrates from Pasto Bueno mine, Peru, where 
sphalerite and wolframite (the high-R end-member 
hübnerite) occur together: their spectra can not be readily 
distinguished (Fig. 2), and chemical data (% W, and % Zn 
in the concentrates) had to be introduced to get a reliable 
modal analysis. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. VNIR (400nm-1000nm) spectral reflectance curves 
for selected minerals from Table 1, compared with the curves 
in visible light (400nm-700nm, data from QDF3) for the same 
minerals. Mineral abbreviations: code in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. VNIR spectral reflectance curves for some low-
reflectance minerals. Abbreviations: code in Table 1. 
 
 
4 Automated identification 
 
Current work aims at the automated identification of the 
ore minerals from their VNIR multispectral data. The 
performance of several well known classification 
techniques, such as minimum Euclidean distance, 
minimum Mahalanobis distance, Spectral Angle Mapper 
and MOMI (Bernhardt, 1987) has been compared on a 
data-set of 38 minerals of interest. Preliminary results 
show that minimum Mahalanobis distance might be a 
very reliable discriminatory technique, correctly 
classifying most mineral samples (363 out of 372, in a 
typical test run).  
 
 
5 Conclusions 
 
Present day optical and electronic technologies allow the 
reliable multispectral VNIR measure of ore reflectances, 
as shown by Table 1. Spectra measured to date compare 
well with published QDF3 spectra in the visible intervals 
-not considering mineral anisotropy-, but NIR values can 
show quite characteristic trends enhancing 
discrimination and automatic identification, although not 
in every case (Figs. 1 & 2). Work in progress aims at the 
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automation of the process, including quantified 
characterization for geometallurgy, but a reliable method 
of general use should include complementary data, e.g. 
on paragenesis. In exceptional paragenesis (as shown in 
Pasto Bueno mine), the mineralogist should define the 
necessary approach. The system is therefore not expected 
to replace a mineralogist, but to greatly enhance his 

performance through automation and computerized 
processing of the data. The cost of the equipment, low 
when compared to electron microscopes, can be 
assumed by small companies, and the return of the 
investment can be high (Pérez-Barnuevo et al., 2008) if 
compared with the work of a specialist with traditional 
methods as e.g. point-counter.

Wavelength(nm) 
Type Mineral (code) 

400 450 500 550 600 650 700 750 800 850 900 950 1000 
Gold (Au) 36.4 37.2 58.8 80.9 87.3 90.0 91.1 91.3 91.3 90.4 90.1 89.8 89.3 
Platinum (Pt) 60.2 63.1 65.2 66.9 68.0 69.0 70.1 70.8 71.0 71.7 72.4 72.9 73.2 1 
Silver (Ag) 81.7 87.6 90.5 92.3 93.2 93.7 94.2 94.6 94.2 93.8 93.9 93.7 93.2 
Arsenopyrite (Asp) 51.2 51.7 52.7 53.4 53.5 53.3 52.8 52.3 51.1 50.2 49.7 49.0 48.2 
Bismuthinite (Bm) 39.4 39.1 38.7 38.5 37.7 37.4 36.7 35.9 34.8 33.9 33.4 32.9 32.6 
Bornite (Bn) 20.7 19.4 21.0 24.3 27.2 30.3 33.2 35.3 36.9 37.8 38.6 39.2 40.0 
Chalcopyrite (Ccp) 19.7 31.5 41.3 46.6 48.1 48.5 48.1 47.5 46.2 45.3 44.7 44.9 45.1 
Chalcocite (Ct) 36.4 36.6 34.9 32.8 31.4 30.1 29.1 28.5 28.0 27.3 27.3 27.4 27.8 
Cinnabar (Cin) 33.0 29.5 28.2 27.1 26.7 27.5 27.1 26.7 26.2 25.7 25.3 25.2 25.0 
Covellite (Cv) 22.2 20.3 16.6 12.6 10.5 12.8 26.4 38.0 44.2 47.9 50.8 52.9 54.8 
Cubanite (Cn) 23.1 31.7 36.8 39.6 41.0 42.1 43.3 43.8 43.5 43.5 43.6 43.7 43.3 
Digenite (Dig) 26.9 26.4 24.9 22.3 20.3 18.2 16.1 14.6 13.5 13.0 13.4 14.7 17.2 
Galena (Gn) 50.3 46.9 44.4 43.1 42.7 42.8 42.4 41.7 40.5 39.9 39.3 38.7 37.6 
Marcasite (Mar) 44.4 47.6 50.9 52.1 51.2 50.1 48.7 47.4 46.0 45.9 46.0 46.4 46.6 
Molybdenite (Mo) 23.1 24.7 23.2 21.9 22.1 22.5 22.6 21.8 21.4 21.1 20.9 20.9 21.0 
Nickeline (Nc) 42.8 41.5 44.9 51.3 56.2 59.7 63.1 65.8 67.2 68.8 70.2 71.3 71.6 
Pentlandite (Pn) 32.2 38.3 42.6 46.1 48.4 50.2 52.1 53.4 54.0 54.4 55.4 56.2 56.7 
Pyrite (Py) 40.2 46.2 51.4 54.2 55.1 55.7 55.7 54.3 51.9 50.3 49.1 47.9 46.3 
Pyrrhotite (Po) 31.8 34.3 37.0 39.9 41.9 43.7 45.7 47.1 47.8 48.8 49.9 50.8 51.1 
Sphalerite (Sp) 21.0 19.6 18.9 18.5 18.2 17.8 17.5 17.3 17.1 16.9 16.8 16.7 16.6 

2 

Stibnite (Stib) 35.8 34.4 33.6 33.0 32.1 32.0 31.4 30.6 29.6 29.1 28.6 28.3 28.2 
3 Tetrahedrite (Thd) 28.3 28.5 28.9 29.4 29.2 28.3 27.2 26.4 25.6 25.0 24.7 24.4 24.1 

Cassiterite (Cs) 13.8 13.4 13.0 12.9 12.6 12.7 12.5 12.4 12.2 12.0 11.9 11.8 11.8 
Chromite (Cr) 13.7 13.3 13.0 12.9 12.7 12.7 12.6 12.4 12.4 12.4 12.3 12.4 12.7 
Goethite (Goe) 18.4 17.1 16.4 15.8 15.1 14.7 14.3 14.2 13.9 13.7 13.5 13.4 13.5 
Hematite (Ht) 28.4 28.6 27.9 27.1 25.6 24.0 22.8 22.1 21.3 20.7 20.4 20.1 19.9 
Ilmenite (Il) 21.0 19.0 18.0 17.9 18.1 18.4 18.5 18.5 18.3 18.0 17.8 17.6 17.5 
Magnetite (Mg) 20.2 19.5 19.4 19.5 19.7 19.8 19.4 18.7 17.7 16.8 16.3 16.0 15.9 
Pyrolusite (Prl) 31.0 32.4 32.8 32.6 32.0 31.2 30.6 30.4 29.8 29.1 28.8 28.5 28.0 

4 

Wolframite (Wf) 19.5 18.3 18.2 18.2 18.3 17.9 17.7 17.5 17.0 16.6 16.5 16.3 16.3 
Table 1. VNIR spectral reflectance values for common ore minerals (1: Elements, 2: Sulphides, etc., 3: Sulphosalts, 4: Oxides). 
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