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Abstract. Traditional identification of ore minerals with
reflected light microscopy relies heavily on the experience
of the observer. Qualified observers have become a rarity,
as ore microscopy is often neglected in today’s university
training, but since it furnishes necessary and inexpensive
information, innovative alternatives are needed, especially
for quantification. Many of the diagnostic optical properties
of ores defy quantification, but recent developments in
electronics and optics allow new insights into the
reflectance and colour properties of ores. Preliminary
results for the development of an expert system aimed at
the automatic identification of ores based on their
reflectance properties are presented. The discriminatory
capacity of the system is enhanced by near IR reflectance
measures, while UV filters tested to date are unreliable.
Interaction with image analysis software through a wholly
automated microscope, to furnish quantitative and
morphological information for geometallurgy, relies on
automated identification of the ores based on the
measured spectra. This methodology increases
enormously the performance of the microscopist,
nevertheless supervision by an expert is always needed.
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1 Introduction

Reflected light microscopy has been the main metsfod

ore characterization throughout most of the sedualél

of the 28" century, but its fate in the future may depend

largely on the ability to increase its performatiweugh

reliable quantification and automation. The serdds
Quantitative Data Files edited by the IMA / COM,

particularly the last version, QDF3 (Criddle & S&n

1993), represents a milestone in the compilation of

reliable spectral information on ore reflectangesisible
light, making it possible to aim at automated méc@pic
identification of ores based on quantitative détgoint
effort by researchers from the Universidad Poliigemle

Madrid (UPM), AITEMIN , Ruhr Universitaet Bochum
(RUB), and Université de LiegellLg) has allowed to
collect visible and near-infra-red/NIR) spectral data
from ores in a systematic way for their automatic

identification, and for their quantitative geométedical
characterization.

2 Experimental process

2.1 Materials and methods.

The selection of the ore sections to be measure is
most important step. Their quality is a key to tladue

of the results. All the sections have been preWous
studied and, if needed, repolished and / or andlysth
electron microprobe (RUB). Only representative ores
from well polished sections with a fresh surfacel an
sufficient grainsize have been measured. The sample
used are mainly from two sources: a replica of dre
collection used for his book (1980) by Prof. Ramgoh
and the research and / or teaching collectionshef t
UPM, completed in some cases with ores from RUB.

Traditional ore microscopy, well documented in the
literature €f. excellent introduction by Criddle, 1998)
resorts mainly to polarized light. Nevertheless,
observations under polarized light, very helpful fbe
qualitative characterization of ores, are bound to
anisotropy and are a problem for routine automation
given the difficulty to control the orientation ofineral
grains. The approach chosen for this work is tleesfo
avoid polarization, even if the QDF3 data resorit:tas
predicted, the values obtained are intermediated®t
the extreme R values of QDF3. Although common ores
can be analysed from simple 3CCD colour images
(Berrezueta & Castroviejo, 2007), multispectral dimagy
is more reliable (Pirard, 2004). To enhance the
discrimination capacity of the system, not onlyibis
(as in QDF) but also NIR values (up to 1000 nm) are
measured; to do this, the original heat protecfibers
of the microscopes were replaced by a heat filtenidy
hot mirror with a wavelength cut well above for
WL>1000 nm. For more detailed descriptions of the
methodology, see Pirard et al. (2008), Castrovétjal.
(2008), and Catalina et al. (2008).

The tests performed on commercially available UV
filters (down to 350 nm) showed them to transnsbad
noteworthy intensity of visible light. Therefore, VU
values are not included, although tests with nédter§
are in progress and might finally lead to usefuliga.

2.2 Equipment.

The experimental work has been carried out in the



Laboratorio de Microscopia Aplicad@MA , UPM), and

in AITEMIN, with specific instrumentation: automate
microscopes for reflected lightLdica DM6000M in
LMA, Zeiss Axioskop 2 MOTin AITEMIN), both
equipped with &©TA RPF16filter wheel comprising 13
Melles Griotinterference filters to measure from 400 to

1000 nm, in 50 nm intervals (40 nm FWHM); images

X

were acquired with @asler ScoutscA1400fm digital
video camera with IEEE-1394 interface. The calibration
standards used to date are certifigckan Optics STAN-
SSHandSTAN-SSI(for high and low reflectances, resp.),
but the production of specific standards is planagd
RUB.

The measures are carried out and checked separately o

in both laboratories. They can also be comparedh wit
values obtained in ULg, with a roughly similar
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equipment Qlympus BX 6Gcope, and filter wheel with Figure 1. VNIR (400nm-1000nm) spectral reflectance curves

10 nm FWHM Coherent filters). For an additional tes

for selected minerals from Table 1, compared wihit ¢urves

mounted on aeitz Orthoplanscope, has been designe
at RUB and integrated into the work routine at LMA,;
instead of single interference filters and a phathiplier
usable in visible light (Bernhardt, 1987), a motioti
solid state spectrometerH@dmamatsu C10083GAis
used; it allows measurements from 400 to 1000nrth) wi
a spectral resolution of 0.3nm.

3 Multispectral VNIR data base and its use

3.1 The data base: preliminary results

The measured values are being compiled in a data Ba

d minerals. Mineral abbreviations: code in Table 1.
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an example, Table 1 shows the preliminary VNIR itssu Figure 2. VNIR spectral reflectance curves for some low-
for 30 common ore minerals. found in most of thdeflectance minerals. Abbreviations: code in Table

mineralisations of industrial interest. VNIR valués
visible light lie among the maximum and minimum QGDF
values, as predicted, and the curves show a sitndad.
NIR values may show peculiar changes that enhdmee t
spectral differences (compare e.g.
chalcopyrite, or covellite and bornite: Fig. 1), ilghin
other cases, they appear as a dull extension ofisitde
spectra (Fig. 2).

3.2 Applications

Although these data need to be completed to reall
establish their potential to build an expert systéncan
be anticipated that in some cases (Fig. 1) they bmay
very helpful to implement an automated charactédna
of the ores. Automated identification can be expedh

Wery

4 Automated identification

pyrrhotite anurrent work aims at the automated identificatibthe

ore minerals from their VNIR multispectral data.€eTh
performance of several well known classification
techniques, such as minimum Euclidean distance,
minimum Mahalanobis distance, Spectral Angle Mapper
and MOMI (Bernhardt, 1987) has been compared on a
data-set of 38 minerals of interest. Preliminargutts
show that minimum Mahalanobis distance might be a
reliable discriminatory technique, correctly
classifying most mineral samples (363 out of 3T2ali
typical test run).

most common ores, although to be safe the supgort % Conclusions

additional criteria, such as paragenesis or prabnyi
study by a mineralogist, should be introduced. Ottada

may be needed in exceptional cases, such as th%, :
wherdeliable multispectral VNIR measure of ore reflectes,

concentrates from Pasto Bueno mine, Peru,
sphalerite and wolframite (the high-R end-member
hubnerite) occur together: their spectra can naebdily
distinguished (Fig. 2), and chemical data (% W, @&ndn

in the concentrates) had to be introduced to getiable
modal analysis.

resent day optical and electronic technologiesiathe

as shown by Table 1. Spectra measured to date cempa
well with published QDF3 spectra in the visibleeirals
-not considering mineral anisotropy-, but NIR vauwan
show quite characteristic  trends  enhancing
discrimination and automatic identification, altlgtunot
in every case (Figs. 1 & 2). Work in progress aahthe



automation of the process,
characterization for geometallurgy, but a reliatmethod

of general use should include complementary datn, e
on paragenesis. In exceptional paragenesis (asnshow
Pasto Bueno mine), the mineralogist should defire t
necessary approach. The system is therefore netteg

to replace a mineralogist, but to greatly enhani h

including quantified performance through automation and computerized

processing of the data. The cost of the equipnment,
when compared to electron microscopes, can be
assumed by small companies, and the return of the
investment can be high (Pérez-Barnuevo et al., 08
compared with the work of a specialist with traafitl
methods as e.g. point-counter.

Type |Mineral (code) i eE =N}
400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 | 800 | 850 | 900 | 950 | 1000
Gold (Au) 36.4 372 588 809 873 90.0 91.1 91.31.39 904 90.1 89.8 89.3
1 |Platinum (Pt) 60.2 63.1 652 66.9 680 69.0 70.1 70.8 710 717 724 729 732
Silver (Ag) 817 876 905 923 932 937 942 94842 938 939 937 937
Arsenopyrite (Asp) 51.2 51.7 527 534 535 533 528 523 51.1 502 497 49.0 48.2
Bismuthinite (Bm) 39.4 39.1 387 385 377 374 36359 348 339 334 329 326
Bornite (Bn) 20.7 19.4 21.0 243 272 303 332 353 369 37.8 386 392 400
Chalcopyrite (Ccp)  19.7 315 413 46.6 48.1 485 48475 462 453 447 449 451
Chalcocite (Ct) 364 366 349 328 314 301 291 285 280 273 273 274 278
Cinnabar (Cin) 330 295 282 271 267 275 27.1 726262 257 253 252 25
Covellite (Cv) 222 203 16.6 126 105 12.8 264 380 442 479 508 529 548
Cubanite (Cn) 231 31.7 368 396 410 421 43.3 843435 435 436 437 43.
, |Digenite (Dig) 269 264 249 223 203 182 16.1 146 135 13.0 134 147 172
Galena (Gn) 50.3 46.9 44.4 431 427 428 424 417 405 399 393 387 376
Marcasite (Mar) 444 47.6 509 521 512 50.1 487 474 460 459 460 464 46.6
Molybdenite (Mo) 23.1 247 232 219 221 225 226 218 214 211 209 209 210
Nickeline (Nc) 428 415 449 513 562 597 63.1 658 672 688 702 713 716
Pentlandite (Pn)  32.2 38.3 426 46.1 484 502 521 534 540 544 554 562 56.7
Pyrite (Py) 40.2 462 514 542 551 557 557 543 519 503 491 479 463
Pyrrhotite (Po) 31.8 343 37.0 399 419 437 457 47.1 478 488 499 508 51.1
Sphalerite (Sp) 210 196 189 185 182 178 175 173 171 169 16.8 16.7 16.6
Stibnite (Stib) 358 344 336 330 321 320 314 306 296 29.1 286 283 282
3 |[Tetrahedrite (Thd) 28.3 285 289 29.4 292 283 27.2 264 256 250 247 244 241
Cassiterite (Cs) ~ 13.8 134 130 129 126 127 125 124 122 120 119 118 1138
Chromite (Cr) 13.7 133 130 129 127 127 126 124 124 124 123 124 127
Goethite (Goe) 18.4 171 164 158 151 147 143 142 139 13.7 135 134 135
4 |Hematite (HY) 284 286 279 27.1 256 240 228 221 213 207 204 20.1 199
lImenite (1) 210 19.0 180 179 181 184 185 185 183 180 17.8 176 175
Magnetite (Mg) 202 195 194 195 197 198 194 187 17.7 168 163 160 159
Pyrolusite (Prl) 310 324 328 326 320 312 30804 298 29.1 288 285 280
Wolframite (Wf) 195 183 182 182 183 179 177 175 170 16.6 165 16.3 16.3

Table 1. VNIR spectral reflectance values for common ore mailse(1: Elements, 2: Sulphides, etc., 3: Sulphssdl Oxides).
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