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SUMMARY

An explicit-dynamics spatially-discontinuous Galerkin (DG) formulation for non-linear solid dynamics
is proposed and implemented for parallel computation. Discontinuous Galerkin methods have
particular appeal in problems involving complex material response, e.g. non-local behavior and failure,
as, even in the presence of discontinuities, they provide a rigorous means of ensuring both consistency
and stability. In the proposed method, these are guaranteed: the former by the use of average numerical
fluxes, and the latter by the introduction of appropriate quadratic terms in the weak formulation.
The semi-discrete system of ordinary differential equations is integrated in time using a conventional
second-order central-difference explicit scheme. A stability criterion for the time integration algorithm,
accounting for the influence of the DG discretization stability, is derived for the equivalent linearized
system. This approach naturally lends itself to efficient parallel implementation. The resulting DG
computational framework is implemented in three dimensions via specialized interface elements. The
versatility, robustness and scalability of the overall computational approach are all demonstrated in
problems involving stress-wave propagation and large plastic deformations. Copyright c© 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Among the reasons that spatially-discontinuous Galerkin methods are attractive in the field
of solid mechanics is the fact that they provide a means of enforcing (higher-order) continuity
requirements in a weak manner in the solution of initial boundary value problems. In their basic
form, DG methods constitute a generalization of weak formulations, allowing for discontinuities
of the problem unknowns in the interior of the problem domain. This is usually accomplished
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2 L. NOELS AND R. RADOVITZKY

by integrating by parts the governing equations in subdomains: a process which naturally
leads to boundary integral terms on the subdomain interfaces involving jump discontinuities.
Clearly, the role of these terms is to enforce the consistency and the continuity of the problem
unknowns in a weak manner, where appropriate. In the context of finite element formulations
of elliptic problems, jump-discontinuities are allowed across element boundaries.

Recent efforts to exploit the advantages of DG methods in solid mechanics have included
applications to linear [1] and nearly-incompressible elasticity [2], beams and plates [3], shells
[4], failure [5] and strain-gradient theories of damage [6, 7]. Formulations applicable to the
nonlinear theory of large elastic deformation of solids have recently emerged [8, 9]. In [9], a
general discontinuous Galerkin formulation for finite elasticity based on the three-field Hu-
Washizu-de Veubeke functional for large deformations was proposed. The resulting variational
statement [9] leads naturally to the formulation of average stress fluxes at interelement
boundaries which guarantee consistency, while stability is ensured by a (sufficiently large)
quadratic term. The integration of the interelement boundary consistency and stability terms
is implemented within the framework of interface elements for simplicity and for compatibility
with existing code. In both references [8, 9], implementations and examples of application in
three dimensions were provided, thus demonstrating the feasibility, accuracy and versatility of
the methods proposed. However, these formulations were restricted to nonlinear elastostatics.

The purpose of this paper is to extend the spatially-discontinuous Galerkin formulation
proposed in [9] to non-linear dynamics. The integration of the equations of motion in time
is achieved via a conventional central-difference explicit scheme, which is highly scalable
and particularly well-suited to problems involving high deformation rates. Time integration
stability is shown to require a modified CFL condition that depends on the discontinuous
Galerkin stabilization parameter. In addition, modifications of the discontinuous Galerkin
formulation required in the presence of plasticity are discussed. A numerical implementation
using interface elements leads to a highly-efficient parallelization of the method. Numerical
examples involving wave propagation, high deformation rates and plasticity are conducted to
demonstrate the robustness, accuracy and scalability of the proposed formulation.

The outline of the paper is as follows: in section 2, we develop from a weak statement of
the continuum dynamics equations, the space-discontinuous Galerkin formulation for large
dynamic deformations. The static forces resulting from this formulation are the same as
those obtained from the three-field Hu-Washizu-de Veubeke functional [9]. It follows that the
spatial discretization inherits the consistency, stability and convergence rate of the formulation
proposed in this reference. In section 3, the explicit time integration of the resulting differential
equations is described, and the stability criterion is derived from a spectral study of the
linearized equations. The parallel implementation of the method within a conventional finite-
element code via interface elements is detailed in section 4. This section includes a brief
discussion of its scalability properties. Section 5 is devoted to the presentation of numerical
examples.

2. FORMULATION OF THE DISCONTINUOUS GALERKIN METHOD FOR SOLID
DYNAMICS

We consider the dynamic motion of a body which, in its reference configuration at time t = t0,
occupies the region of space B0 ⊂ R3. The configuration of the body at any time t in the
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EXPLICIT TIME INTEGRATION OF DISCONTINUOUS GALERKIN METHODS FOR SOLIDS 3

interval T = [t0, tf ] can be described by the deformation mapping

x = ϕ (X, t) ∈ H1(B0) ∀X ∈ B0, ∀t ∈ T , (1)

where x is the position of the material particle X. The deformation gradient characterizing
the local state of deformation is defined by

F = ∇0ϕ (X, t) ∀X ∈ B0, ∀t ∈ T , (2)

where ∇0 is the material gradient operator and

J = det (F ) > 0 ∀X ∈ B0, ∀t ∈ T , (3)

is the Jacobian of the deformation. The body is subjected to a force per unit mass B
and its boundary surface ∂B0 is partitioned into a Dirichlet portion ∂DB0 constrained by
displacements ϕ̄ and a Neumann part ∂NB0 subjected to surface traction T̄ . One always has
∂B0 = ∂NB0∪∂DB0 and ∂DB0∩∂NB0 = ∅. The continuum equations stated in material form
are

ρ0ϕ̈ = ∇0 · P + ρ0B ∀X ∈ B0, ∀t ∈ T, (4)
ϕ = ϕ̄ ∀X ∈ ∂DB0, ∀t ∈ T, (5)

P ·N = T̄ ∀X ∈ ∂NB0, ∀t ∈ T, (6)

where ρ0 : B0 → R+ is the initial density, •̇ represents the partial differentiation with respect
to time at fixed X, P ∈

[
H1(B0)

]2
is the first Piola-Kirchhoff stress tensor, N is the unit

surface normal in the reference configuration, and the notation
[
H1(B0)

]2
refers to second

order tensors. In order to integrate this system of equations, displacement and velocity initial
conditions

ϕ (X, t0) = X ∀X ∈ B0, (7)
ϕ̇ (X, t0) = ϕ̇0 ∀X ∈ B0, (8)

must be provided. We seek to develop DG formulations suitable for a large class of models of
material behavior. As a step toward this end, we adopt the variational constitutive framework
in [10, 11]. The advantages of the variational formulation of constitutive updates have been
discussed in detail in these references. Such advantages have been exploited in the formulation
of a variety of material models, including models of finite-deformation isotropic plasticity and
single-crystal plasticity [11], non-cohesive granular media [12], porous plasticity [13], kidney
tissue response to shocks [14], nonlinear viscoelasticity [15] and grain boundary deformation
mechanisms in polycrystals [16]. This framework has recently been extended to the coupled
thermomechanical response of general dissipative solids [17]. In what follows, we briefly
summarize the variational approach to the formulation of constitutive updates. For conciseness,
we restrict our attention to the case of large-deformation isotropic plasticity. A conventional
multiplicative decomposition of the deformation gradient F = F eF p into an elastic part F e

and a plastic part F p is assumed. The existence of a Helmholtz free energy density per unit
undeformed volume

A(F ,F p, T,Q) = W e(F e, T ) +W p(F p,Q, T ), (9)
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where W e is the elastic strain energy density, T is the absolute temperature, W p the stored
energy of cold work, and Q ∈ RN a suitable set of internal variables describing local inelastic
processes is postulated. The first Piola-Kirchhoff stress tensor and the conjugate forces follow
from Coleman’s relations as

P =
∂A

∂F
, T = − ∂A

∂F p
, Y = − ∂A

∂Q
. (10)

The evolution of the internal variables is assumed to be governed by local kinetic equations of
the implicit form

T =
∂ψ∗

∂Ḟ p
(Ḟ p, Q̇), Y =

∂ψ∗

∂Q̇
(Ḟ p, Q̇), (11)

where ψ∗(Ḟ p, Q̇) is a (dual) inelastic potential. The variational structure of the constitutive
framework then follows from the definition of the rate potential:

D(Ḟ , Ḟ p, Q̇) =
∂A

∂F
· Ḟ +

∂A

∂F p
· Ḟ p +

∂A

∂Q
· Q̇ + ψ∗(Ḟ p, Q̇) . (12)

as its stationary points satisfy the constitutive equation for the stress (10) and give the values
Ḟ p∗, Q̇∗ satisfying the constraints

∂A

∂F p
+
∂ψ∗

∂Ḟ p
= 0,

∂A

∂Q
+
∂ψ∗

∂Q̇
= 0 (13)

arising from (10) and (11). Alternatively, the effective potential defined as

Deff(Ḟ ) = min
Ḟ p,Q̇

{ ∂A
∂F

· Ḟ +
∂A

∂F p
· Ḟ p +

∂A

∂Q
· Q̇ + ψ∗(Ḟ p, Q̇)

}
(14)

plays the role of a rate potential for the stresses, since it follows directly that:

P =
∂Deff

∂Ḟ
. (15)

The large deformation plasticity model used in this work to illustrate the DG formulation
in the context of nonlinear, history-dependent material behavior is based on this variational
framework. Specific details of the model and the incremental constitutive integration algorithm
are provided in Appendix I.

2.1. Discontinuous Galerkin discretization

A finite element discretization B0h =
⋃E

e=1 Ω̄e
0, where Ω̄e

0 is the union of the open domain Ωe
0

with its boundary ∂Ωe
0, of the reference configuration B0 is considered, with

∂Ωe
0 = ∂DΩe

0 ∪ ∂NΩe
0 ∪ ∂IΩe

0 ,

∂DΩe
0 = ∂Ωe

0 ∩ ∂DB0h ,

∂NΩe
0 = ∂Ωe

0 ∩ ∂NB0h ,

∂IB0h =

[
E⋃

e=1

∂Ωe
0

]
\∂B0h , (16)
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EXPLICIT TIME INTEGRATION OF DISCONTINUOUS GALERKIN METHODS FOR SOLIDS 5

where subscript I is used to refer to the boundary between the elements. A finite-dimensional
piecewise polynomial approximation ϕh, Ph of the solution is defined in the spaces

Xk
h =

{
ϕh ∈ L2 (B0h) |

[
ϕh|Ωe

0
∈ Pk (Ωe

0) ∀Ωe
0 ∈ B0h

]}
⊂ Xf (B0h) =

∏
e

(
H1(Ωe

0)
)
, (17)

Sk
h =

{
Ph ∈

[
L2 (B0h)

]2 |[Ph|Ωe
0
∈ Pk (Ωe

0)
2 ∀Ωe

0 ∈ B0h

]}
⊂ Sf (B0h) =

∏
e

([
H1(Ωe

0)
]2)

,

(18)

where Pk (Ωe
0) is the set of polynomial functions up to degree k ≥ 1. Let δϕh ∈ Xk

hc be an
arbitrary test function defined in the space

Xk
hc =

{
δϕh ∈ Xk

h|[δϕh = 0 ∀X ∈ ∂DB0h, ∀t ∈ T and δϕh (t0) = 0 ∀X ∈ B0h

and δϕh (tf ) = 0 ∀X ∈ B0h]} . (19)

Integration over the body in the reference configuration of Eq. (4) multiplied by this test
function leads to a weak formulation of the problem, which consists of finding ϕ ∈ Xk

h and
Ph ∈ Sk

h such that∑
e

∫
Ωe

0

(ρ0ϕ̈h −∇0 · Ph) · δϕhdV =
∑
e

∫
Ωe

0
ρ0BδϕhdV ∀δϕh ∈ Xk

hc, ∀t ∈ T . (20)

Using Eqs. (6) and (19), the divergence theorem applied to this equation leads to finding
ϕh ∈ Xk

h and Ph ∈ Sk
h such that∑

e

∫
Ωe

0
(ρ0ϕ̈h · δϕh + Ph : ∇0δϕh) dV −

∑
e

∫
∂IΩe

0
N · Ph · δϕhdS =∑

e

∫
∂NΩe

0
T̄ · δϕhdS +

∑
e

∫
Ωe

0
ρ0B · δϕhdV ∀δϕh ∈ Xk

hc, ∀t ∈ T . (21)

In this last equation, the term on the interior boundary ∂IΩe
0 involves fields that are

discontinuous and can take two distinct values on opposite sides of this surface. In order to
describe discontinuous fields across element boundaries, the jump J•K and mean 〈•〉 operators
defined on the space of the trace of functions which can possibly adopt multiple values on the

interior boundary TR(∂IB0h) =
E∏

e=1

(
L2 (∂IΩe

0)
)

and defined by

J•K , 〈•〉 : [TR(∂IB0h)]1 or 2 →
[
L2 (∂IB0h)

]1 or 2
: J•K = •+−•−, 〈•〉 =

1
2

[
•+ + •−

]
, (22)

are introduced. In these expressions,

•± = lim
ε→0+

•
(
X ± εN−)

∀ X ∈ ∂IB0h , (23)

the bullet represents a generic field, and N− is conventionally defined as the reference outward
unit normal to ∂Ωe

0. Although the outward unit normal of the considered element is unique,
superscript − is used to refer to the element on the − sign of the boundary in order to avoid
any confusion when the whole mesh is considered. The defining characteristic of discontinuous
Galerkin methods is that the discrete fields ϕh, δϕh, and Ph may have finite jumps on ∂IB0h.
The main idea of the discontinuous Galerkin method is to address the contribution of the
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6 L. NOELS AND R. RADOVITZKY

interelement discontinuity terms by introducing a numerical flux h
(
P +

h ,P
−
h ,N

−)
dependent

on the limit values on the surface in the neighboring elements, such that∑
e

∫
∂IΩe

0

δϕh · Ph ·NdS → −
∫

∂IB0h

JδϕhK · h
(
P−

h ,P
+
h ,N

−)
dS . (24)

Although there is, in principle, significant freedom in the choice of h, a consistent formulation
requires

h (P ,P ,N) = P ·N and h
(
P−

h ,P
+
h ,N

−)
= −h

(
P +

h ,P
−
h ,N

+
)
, (25)

where P is the exact solution. The boundary term can be rewritten using (22) and (23), as∑
e

∫
∂IΩe

0
δϕh · Ph ·NdS = −

∫
∂IB0h

Jδϕh · PhK ·N−dS

= −
∫

∂IB0h
JδϕhK · 〈Ph〉 ·N−dS −

∫
∂IB0h

〈δϕh〉 · JPhK ·N−dS . (26)

Comparing this relation with Eq. (24), an obvious choice for h is

h
(
P−

h ,P
+
h ,N

−)
= 〈Ph〉 ·N− . (27)

The last term of Eq. (26) is not considered because only compatibility of the displacements
needs to be enforced. This form of the numerical flux was proposed by Bassi and Rebay [18]
in the first discontinuous Galerkin contribution concerning elliptic equations. Other forms of
the numerical flux are possible. The average flux was also naturally obtained from a functional
in [9]. We refer to the work of Arnold et al. [19] and to the new framework proposed by
Brezzi et al. [20] for a complete discussion on numerical fluxes for space-discontinuous Galerkin
discretizations of the elliptic scalar equation. With the choice of average numerical flux (27),
the weak formulation (20) simplifies to finding ϕh ∈ Xk

h and Ph ∈ Sk
h such that∫

B0h
(ρ0ϕ̈h · δϕh + Ph : ∇0δϕh) dV +

∫
∂IB0h

JδϕhK · 〈Ph〉 ·N−dS =
∫

B0h
ρ0B · δϕhdV

+
∫

∂N B0h
δϕh · T̄ dS ∀δϕh ∈ Xk

hc, ∀t ∈ T . (28)

In the present formulation, it will be assumed that the constitutive law is enforced strongly
from the deformation gradient. I.e., that the deformation gradient used to compute the
stress tensor from Eq. (74) is directly computed from the compatible deformation gradient
Fh = ∇0ϕh. In addition, displacement compatibility must be enforced weakly, which also
ensures numerical stability. To this end, the compatibility equation ϕ−h − ϕ+

h = 0 on ∂IB0h

is enforced through a (sufficiently large) quadratic stabilization term in JϕhK, JδϕhK. Whereas
in scalar problems this can be achieved by simply adding a term proportional to the scalar
product JϕhK · JδϕhK, an appropriate term in the context of non-linear mechanics must be
proportional to JϕhK⊗N− : C : JδϕhK⊗N−, where C = ∂P

∂F is the tangent material moduli.
In this way, general displacement jumps are stabilized in the numerical solution, and the
influence of material relations in the presence of large displacements is properly considered.
The final formulation of the problem consists of finding ϕh ∈ Xk

h such that∫
B0h

ρ0ϕ̈h · δϕh + Ph : ∇0δϕhdV +
∫

∂IB0h
JδϕhK · 〈Ph〉 ·N−dS +∫

∂IB0h
JδϕhK⊗N− :

〈
β
hs

C
〉

: JϕhK⊗N−dS =∫
B0h

ρ0B · δϕhdV +
∫

∂N B0h
δϕh · T̄ dS ∀δϕh ∈ Xk

hc, ∀t ∈ T , (29)
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EXPLICIT TIME INTEGRATION OF DISCONTINUOUS GALERKIN METHODS FOR SOLIDS 7

where hs is the element size and β > 0 is the stabilization parameter. This approach to
the stabilization of the discontinuous Galerkin formulation is similar to the so-called Interior
Penalty method [21] in which β plays the role of a penalty parameter, but without the
symmetrization term. As explained in [9, 22] for the case of non-linear elastostatics, the
formulation could be extended to a symmetric method by adding the symmetrization term∫

∂IB0h
JϕhK · 〈C : ∇0δϕh〉 ·N−dS to the interface terms of Eq. (29), where C = ∂Ph

∂Fh
are the

tangent moduli. This symmetric method has the advantage of having an optimal convergence
rate in the L2-norm for linear problems. However, it also leads to a more involved and
computationally-costly parallel implementation since the symmetric interface term results in
forces on all the nodes of the bulk elements adjacent to the interface elements.

In the presence of plasticity, only the elastic tangent moduli are considered in the
stabilization term:

C =
∂Ph

∂F e
h

, (30)

as in the limit of perfectly-plastic material the use of the elasto-plastic moduli would lead to a
vanishing contribution to stabilizing the DG scheme. The static forces resulting from the weak
discontinuous Galerkin formulation (29) are identical to the ones obtained from the three-field
Hu-Washizu-de Veubeke formulation for non-linear elasticity [9]. Consequently the consistency
and stability of the method, as demonstrated in this reference, apply without modification.

2.2. Finite element discretization

The weak formulation of the dynamics problem (29) is taken as a basis for finite element
discretization. To this end, the deformation mapping, its first variation and the material
acceleration field are respectively approximated by the interpolations

ϕh (X) = Na (X) xa , (31)
δϕh (X) = Na (X) δxa , (32)
ϕ̈h (X) = Na (X) ẍa , (33)

where Na is the conventional shape function corresponding to node a ∈ [1, N ], N being the
number of nodes. Similarly, the deformation gradient is approximated by

Fh (X) = ∇0Na (X) xa . (34)

In the three-dimensional calculations conducted in this paper, we adopt quadratic ten-node
tetrahedral elements. The inertial, internal and external forces then follow directly from (29)
as

Mabẍb =
∫

B0h

ρ0NaNbdV ẍb , (35)

finta =
∫

B0h

Ph : ∇0NadV , (36)

fexta =
∫

B0h

ρ0BNadV +
∫

∂N B0h

T̄NadS , (37)

where Mab is the mass matrix. The interelement consistency and stabilization forces arising

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–1
Prepared using nmeauth.cls



8 L. NOELS AND R. RADOVITZKY

(a) (b) (c)

Figure 1. Interface element: (a) illustration of the interface element between two quadratic tetrahedra,
(b-c) illustration of a spurious penetration mode between two respectively, linear and quadratic 2D-

elements. Crosses represent the Gauss point where the computed jump is equal to zero.

from the discontinuous Galerkin formulation are evaluated from the jump approximations

JϕhK = Na

[
x+

a − x−a
]
, (38)

JδϕhK = Na

[
δx+

a − δx−a
]
, (39)

where superscripts + and - refer to the boundaries of the two elements sharing the same
interface. When interpolations (38)-(39) are inserted in (29), the expression for the interface
forces becomes

fi
±
a = ±

∫
∂IB0h

〈Ph〉 ·N−NadS ±
∫

∂IB0h

[〈
β

hs
C

〉
: JxbK⊗N−

]
·N−NaNbdS , (40)

where JxaK = x+
a − x−a are the jumps in the deformed nodal coordinates. In [9] an

implementation of the interface forces (40) in terms of an interface element as illustrated in
Figure 1a was proposed. The average Piola-Kirchhoff stresses and elastic Lagrangian tangent
moduli in Eq. (30) are computed by extrapolation from their values on the Gauss points of
the adjacent elements to the interface element nodes. Higher order quadrature is required to
integrate the interelement forces in order to avoid spurious penetration modes; see Figures 1a-
b. In calculations, we use 6-point Gauss quadrature. An alternative implementation of a similar
discontinuous Galerkin formulation based on a modification of the deformation gradients using
the lifting operators has been proposed by Ten Eyck and Lew [8]. The relation between the
lifting operator and the inter-element forces has been discussed at length by the authors in
[9]. In the present context, the interface elements approach is appealing because it provides a
natural framework for modeling fracture via a cohesive theory. By virtue of Eqs. (35-37) and
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(40), the finite element approximation of the weak problem (29) results in the semi-discrete
system on non-linear ordinary differential equations

Mabẍb + finta (x) + fia (x) = fexta, ∀t ∈ T , (41)
xa (t = 0) = X0a , (42)
ẋa (t = 0) = v0a , (43)

where x0 are the undeformed nodal coordinates and v0 are the initial nodal velocities.

3. EXPLICIT TIME INTEGRATION

The objective of this paper is to develop scalable algorithms for fast dynamics problems
enjoying the properties of discontinuous Galerkin formulations. For this reason, attention is
restricted to explicit time integration of the dynamics equations (41). The conventional second-
order central-difference scheme [23] with mass lumping is adopted. For completeness, the
algorithm is briefly summarized. The integration is accomplished via an incremental solution
procedure in which the time interval of interest T is discretized into nf time steps such that
T =

⋃n=nf−1
n=0

[
tn, tn+1

]
and 4t = tn+1 − tn is the time step size. Knowing the solution at

configuration n, the solution at configuration n+ 1 is given by the expressions

xn+1
a = xn

a +4t ẋn
a +

4t2

2
ẍn

a , (44)

ẋn+1
a = ẋn

a +
4t
2

(
ẍn

a + ẍn+1
a

)
, (45)

Mabẍ
n+1
b = [fext − fint − fi]

n+1
a , (46)

for each node a. This time-stepping scheme can also be rewritten in the more succinct form

xn+1
a = xn

a +4t ẋn+ 1
2

a , (47)

ẋ
n+ 1

2
a = ẋ

n− 1
2

a +4tẍn
a , (48)

Mabẍ
n+1
b = [fext − fint − fi]

n+1
a , (49)

where the mid-time velocity ẋ
n+ 1

2
a is equal to ẋn+1

a − 4t
2 ẍn+1

a . The evaluation of the Piola-
Kirchhoff stress at configuration n + 1 follows from the integration of the constitutive model
which is based on the so-called variational updates, section 2 and appendix I. The space-
discontinuous Galerkin formulation imposes an additional time-stability restriction beyond
the usual condition

4t ≤ 4tcrit =
l

c
, (50)

in the conventional continuous Galerkin approach [24], where l is the smallest characteristic
mesh element size and c is the sound speed of the material. In what follows, the implications
of the space-discontinuous Galerkin formulation on the time integration stability are analyzed,
and a new expression for the critical time step 4tcrit is derived. The stability analysis is based
on the linearized system [23], in which case the residual forces may be written as

[fint + fi − fext]a = Kabxb , (51)
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where K is the stiffness matrix. Then, Eqs. (44-46) may be rewritten as

Mab

[
xn+2

b − 2xn+1
b + xn

b

4t2

]
= Kabx

n+1
b . (52)

Since both the stiffness and the mass matrix are semi-positive definite, there are Ndof linearly
independent eigenvectors Φj and Ndof positive eigenvalues λj , where Ndof is the number of
degrees of freedom. These eigenvectors and eigenvalues verify

λjMΦj = KΦj ∀j ∈ [1, Ndof] . (53)

If the unknown field in the base of the eigenvectors is represented by ξ, with x =
∑
j

ξjΦj , Eq.

(52) becomes ∑
j

[
M

[
ξn+2
j − 2ξn+1

j + ξn
j

4t2

]
Φj + Mλjξ

n+1
j Φj

]
= 0 , (54)

which decomposes mode by mode as[
ξn+2
j − 2ξn+1

j + ξn
j

4t2

]
+ λjξ

n+1
j = 0 ∀j ∈ [0, Ndof] , (55)

since the eigenvectors are linearly independent. This set of one-degree-of-freedom equations
can be written in matrix form as(

ξn+2
j

ξn+1
j

)
=

(
2− λj4t2 −1

1 0

) (
ξn+1
j

ξn
j

)
∀j ∈ [1, Ndof] . (56)

This recursive system is stable and second order accurate providing

4t ≤ min
j

2√
λj

. (57)

The critical time step size is therefore determined by the maximum eigenvalue resulting from
a linearization of the weak formulation (29), i.e.

a (ϕh −X, δϕh) = b (δϕh) . (58)

In this expression,

a (uh, δϕh) =
∫

Bh

ρüh · δϕhdV +
∫

Bh

∇uh : C : ∇δϕhdV +∫
∂IBh

JδϕhK⊗ n− :
〈
β

hs
C

〉
: JuhK⊗ n−dS +∫

∂IBh

n− · 〈C : ∇uh〉 · JδϕhK dS , (59)

b (δϕh) =
∫

Bh

ρBδϕhdV +
∫

∂N Bh

T̄ · δϕhdS , (60)

where C is the elasticity tensor, n the deformed normal and uh = ϕh −X can be interpreted
as a displacement field. For simplicity, the corresponding autonomous unidimensional problem
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Figure 2. 1D discretization with discontinuous elements.

is considered. To this end, the discretization of a bar of cross-sectional area A, Young modulus
E and length l is analyzed, Figure 2. In this system, the characteristic length hs is obviously
equal to the length l. As detailed in Appendix II, the amplification matrix resulting from a
first order polynomial approximation is given by

M−1K =
E

ρl2



. . . . . . . . .

. [1+2β] −1 0 0 0 0 0 .

. −1 [1+2β] [1−2β] −1 0 0 0 .

. −1 [1−2β] [1+2β] −1 0 0 0 .

. 0 0 −1 [1+2β] [1−2β] −1 0 .

. 0 0 −1 [1−2β] [1+2β] −1 0 .

. 0 0 0 0 −1 [1+2β] [1−2β] .

. 0 0 0 0 −1 [1−2β] [1+2β] .

. . . . . . . . .



(a−2)+

(a−1)−

(a−1)+

(a)−

(a)+

(a+1)−

(a+1)+

. (61)

Assuming β ≥ 1, as required for stability of the spatial discontinuous Galerkin formulation [9],
the maximum eigenvalue of this matrix, is

λmax =
E

ρl2
4β . (62)

It is therefore concluded that the time step restriction (57) of the discontinuous Galerkin
method is given by the condition

4t ≤ 4tcrit =
2√
λmax

=
l√
β

√
ρ

E
=

l√
βc

. (63)

As is clear from (63), the discontinuous Galerkin method reduces the critical time step by a
factor

√
β when compared to a continuous Galerkin method. In practice [9], a stabilization

parameter between 1 and 10 can be chosen in order to ensure both accuracy and stability, and
therefore, the additional time restriction is not severe. The explosion of the number of degrees
of freedom of the discontinuous Galerkin method and the restriction on the time step size
are partly compensated by the high scalability of the method, as shown in the next section.
Moreover, Ten Eyck and Lew [8] have shown that the discontinuous Galerkin method can
reach the same order of accuracy as the continuous method with coarser meshes.

4. PARALLEL IMPLEMENTATION

In this section, the parallel implementation of the discontinuous Galerkin method developed
above is described. The parallelization approach is based on mesh partitioning and message
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12 L. NOELS AND R. RADOVITZKY

passing using MPI, as is commonly done for continuous Galerkin finite-element methods, e.g.
[25]. This basic approach is extended to compute the interface forces (40) in a scalable way.
Figure 3a shows schematically the continuous finite-element discretization B0h =

⋃
e

Ωe
0 of the

(a) Initial discretization (b) Partitioned mesh

(c) Interfaces inside partitions (d) Interfaces between partitions

Figure 3. Creation of the partitioned discontinuous mesh (schematic).

problem domain B0. This mesh is partitioned into Nprocs meshes Bi
0h, i ∈ [0;Nprocs − 1]

using METIS [26], Figure 3b. At this point, the mid-nodes of the second order elements are
introduced. Interface elements are then inserted between two adjacent solid elements of the
same processor by duplicating the common nodes (Figure 3c). Then, both the discontinuous
Galerkin interface elements at partition boundaries and the necessary communication maps
are created. To this end, a unique global identification number (gId) is assigned to all
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EXPLICIT TIME INTEGRATION OF DISCONTINUOUS GALERKIN METHODS FOR SOLIDS 13

the nodes of all the partitions, Figure 3c. Next, the element faces belonging to the
boundary of each partition are identified and matched to their unique corresponding face
in the neighboring partition. The face-matching algorithm consists of the following steps:

for all partitions Bi
0h, i ∈ [0; Nprocs − 1]:

for all faces f ⊂ ∂pB
i
0h:

for all neighboring partitions Bj
0h of Bi

0h, with j > i (to avoid duplication):

find g ⊂ Bj
0h geometrically matching f

exchange gIds of f and g nodes
create new interface element ∂IΩe

0 ⊂ Bi
0h (Figure 3d)

create global-local communication maps at partition boundary nodes using gIds.
return
The arbitrary decision to assign the new interface element ∂IΩe

0 to Bi
0h can in principle lead

to load imbalance. However, the practical consequences of that choice are negligible owing
to the small number of interface elements on the boundaries, relative to the overall number
of elements in each partition. After the mesh has been partitioned, each processor has only
information associated with its local mesh partition. The time integration is achieved following
the algorithm described below and summarized in Figure 4. Assuming the solution has been
computed up to time tn, each partition computes its critical time step according to Eq. (63).
This value is broadcast to all the processors and the minimum value is selected. Velocities
and positions are then computed from Eqs. (44-45) stated in the mid-step velocity form. With
these actual positions, the internal forces fint of the solid elements can be computed from Eq.
(36). During the assembly of the internal forces, the elements extrapolate their stresses Ph,
elastic moduli C and critical length l to their nodes leading to Pa, Ca and la respectively. These
values are exchanged with neighboring partitions by using the communication mapping. This
results in an exchange of 91 values per node in 3D (the symmetries properties of the tangent
moduli can be exploited to reduce the message size). These 91 values are exchanged in one
operation. At this point, all of the interface elements, in all of the partitions, know the values
needed to compute the interface forces fi from Eq. (40). The residual force arrays finta + fia

can then be computed in each partition. The incomplete residuals at the partition boundary
nodes require the usual assembly across partitions via a reduction operation. Accelerations
are then computed from Eq. (46), and the simulation can proceed to the next time step. As
can be seen, the discontinuous Galerkin method involves the exchange between the partitions
of 91 more nodal values than does a continuous Galerkin method. However, owing to the
significant relative increase of computation inside each partition, the scalability properties are
not affected, as discussed in section 5.3.
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14 L. NOELS AND R. RADOVITZKY

Figure 4. Time integration on one partition.
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(a) t = 0 ms (b) t = 0.5 ms

(c) t = 0.95 ms (d) t = 1.5 ms

Figure 5. Propagation of a uniaxial stress wave in an elastic medium: results shown correspond to
β = 1.

5. NUMERICAL EXAMPLES

In this section, the accuracy, robustness and scalability of the method are demonstrated
through of three numerical examples involving wave propagation and high strain-rate plastic
deformations.

5.1. Wave propagation

In this example, the propagation of a uniaxial stress wave in an elastic medium is considered,
Figure 5a. Faces “c” and “d” are constrained along X, faces “e” and “f” along Y and face
“b” along Z. The specimen has an initial velocity ẋ0. The material model corresponds to a
neo-Hookean model extended to the compressible range without Poisson effect so that the
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16 L. NOELS AND R. RADOVITZKY

Table I. Geometric dimensions and material properties used in the simulation of uniaxial stress wave
propagation in an elastic medium.

Properties Values

Length L = 1 m
Height h = 0.1 m
Density ρ0 = 10000 kg·m−3

Young modulus E = 10000 N·mm−2

Poisson ratio ν = 0
Sound speed c = 1000 m·s−1

Initial velocity ẋ0 = (0; 0;−1 m·s−1)

Figure 6. Comparison of the velocity history on face “a” extracted from the simulations using the
continuous (CG) and discontinuous (DG) Galerkin methods and the exact velocity history

wave propagation is uniaxial. The strain energy density function is

W =
(
λ

2
log J − µ

)
log J +

µ

2
(I1 − 3) , (64)

where λ and µ are the Lamé constants, J = det (F ) and I1 = tr(C). The geometric dimensions,
material properties and initial velocity are given in Table I. At time t = 0 ms a compression
wave originates in face “b” upon impact and propagates toward face “a” at a speed of 1000
m/s. At time t = 0.5 ms, the wave reaches the center of the beam, Figure 5b. At time t = 1
ms, this wave reaches face “a”, and the beam is fully under compression, Figure 5c. At this
point, the wave reflects on the unconstrained end, the velocity of face “a” changes from −1
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(a) Coarse mesh (b) Fine mesh (c) Finest mesh

Figure 7. Mesh discretizations used in Taylor’s impact test simulations.

m/s to 1 m/s and the compressive stress is relieved. At time t = 1.5 ms the wave reaches the
center of the beam again (Figure 5d).

We compare the discontinuous Galerkin method for β successively taken equal to 1, 100 and
10000, to the continuous Galerkin solution in Figure 6. It can be seen, that the continuous
Galerkin methods and the discontinuous Galerkin methods with β > 1 lead to an essentially
identical evolution of the velocity at face “a”. The oscillations of the numerical solutions are
similar in the continuous and discontinuous spatial discretization and caused by the integration
method. For β = 1, the solution starts to deviate from the continuous Galerkin result, which
indicates the onset of instability, as expected due to the low value of the stabilization parameter
[9]). It can be concluded that, as long as β & 1, the results provided for the propagation of a
uniaxial elastic wave by the discontinuous Galerkin method are consistent with those of the
continuous method.

5.2. Taylor’s impact test

Taylor’s impact test [27], provides a good basis for verification and validation of numerical
methods for simulating large, dynamic plastic deformations, as it has been extensively used
for characterizing the dynamic response of materials and in numerical studies, e.g. [28]. The
test consists of a cylindrical metallic bar impacting a rigid wall at a high velocity. We adopt the
specific configuration of the numerical test presented in [29]. In this test, the cylinder material is
copper, which is modeled as elasto-plastic with linear isotropic hardening. The impact velocity
is 227 m·s−1. The geometric dimensions of the cylinder and the material properties are shown
in Table II. Three different meshes consisting of 1216, 6610 and 8238 tetrahedral elements
are used in simulations, Figure 7a-c. The simulations were conducted on 10 processors. The
mesh partitions distributed to the ten processors used in the simulations are also shown in the

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–1
Prepared using nmeauth.cls



18 L. NOELS AND R. RADOVITZKY

Table II. Geometric dimensions and material properties of cylindrical bar used in Taylor’s impact test
simulations.

Properties Values

Radius R = 0.0032 m
Length L = 0.0324 m
Initial velocity ẋ0=(0; 0; -227 m·s−1)
Initial density ρ0 = 8930 kg·m−3

Bulk modulus K = 130000 N·mm−2

Shear modulus G = 43333 N·mm−2

Initial yield stress Σ0 = 400 N·mm−2

Linear hardening h = 1004 N·mm−2

Table III. Results for Taylor’s impact test simulation at tf = 80µs.

Scheme Radius Length εp Maximal jump

DG, coarse, β = 4 6.811 mm 21.46 mm 2.91 4.1 µm
DG, coarse, β = 16 6.795 mm 21.45 mm 2.89 1.2 µm
DG, coarse, β = 100 6.785 mm 21.44 mm 2.84 0.23 µm
CG, coarse 6.791 mm 21.47 mm 2.40 -
DG, fine, β = 4 7.139 mm 21.46 mm 3.27 2.6 µm
CG, fine 7.130 mm 21.46 mm 2.94 -
DG, finest, β = 4 7.139 mm 21.46 mm 3.44 -
CG, finest 7.129 mm 21.46 mm 3.30 -
Simo [29] 6.97mm - - -

figure. Three simulations were performed using the discontinuous Galerkin method with the
coarse mesh and different values of β (4, 16 and 100) in order to compare the method with the
continuous Galerkin method. In these simulations, the critical time step size is reduced by a
factor of 0.9. The final configurations of the bar and contours of equivalent plastic strain are
illustrated in Figure 8. The final radius of the impacting face of the cylinder, cylinder length
and maximum equivalent plastic strains are reported in Table III. It can be seen that the radius
and length match the continuous Galerkin method with an accuracy within 1%. However, the
maximum equivalent plastic strain is larger in the discontinuous Galerkin results. From these
simulations, it can be concluded that a stability parameter β = 4 leads to accurate results
with a reduction of the time step only by a factor of 2. It also bears emphasis that in all the
discontinuous Galerkin simulations, the jumps remain small, of the order of 1µm, compared
to the displacements, which are of the order of 1 mm, Table III. Figures 9 and 10 show the
solutions obtained with the finer meshes and β = 4. The relevant numerical values obtained
in these cases have been added to Table III. It can be seen that the maximum plastic strain
obtained both with CG and DG methods increases when the mesh size is reduced, as expected.
However for any of the given meshes the maximum equivalent plastic strain is always larger
with the DG method than with the CG method, thus suggesting that the DG method allows
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(a) DG, β = 4 (b) DG, β = 16

(c) DG, β = 100 (d) CG

Figure 8. Comparison of Taylor impact test simulations using the DG method with different values
of β and continuous Galerkin simulations: Final deformed meshes and contours of equivalent plastic

strain corresponding to coarse mesh simulations at time tf = 80µs.
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(a) DG, β = 4 (b) CG

Figure 9. Comparison of Taylor impact test simulations using the DG method with different values
of β and continuous Galerkin simulations: Final deformed meshes and contours of equivalent plastic

strain corresponding to finer mesh simulations at time tf = 80µs.

(a) DG, β = 4 (b) CG

Figure 10. Comparison of Taylor impact test simulations using the DG method with different values
of β and continuous Galerkin simulations: Final deformed meshes and contours of equivalent plastic

strain corresponding to finest mesh simulations at time tf = 80µs.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–1
Prepared using nmeauth.cls



EXPLICIT TIME INTEGRATION OF DISCONTINUOUS GALERKIN METHODS FOR SOLIDS 21

Table IV. Geometric dimensions and material properties of the elastic rod used in the scalability tests

Properties Values

Length L = 1 m
Height h = 0.1 m
Density ρ0 = 7800 kg·m−3

Young modulus E = 200000 N·mm−2

Poisson ratio ν = 0.3

a better resolution of plastic gradients.

5.3. Scalability

In order to ascertain the potential penalties on scalability incurred by the use of the
discontinuous Galerkin method due to additional communication requirements, the following
scalability test has been conducted: A uniform tensile test of an elastic rod is simulated using
the baseline discretization with 9984 quadratic tetrahedral finite elements, as illustrated in
Figure 11. The specimen is clamped on face “b” and uniform displacements are applied on face
“a”. The material model corresponds to a neo-Hookean model extended to the compressible
range, Equation (64). The material parameters and the geometric dimensions of the beam used
in calculations are listed in Table IV. Two tests are performed:

(i) Scaled speed-up test (T1): In this case, the number of tetrahedra per processor is kept
constant. The initial mesh is used on a single processor run. Subsequently, the problem
size and number of processing units (cores) is incremented by a factor of eight and sixty
four, respectively, thus maintaining the work load per core. The problem size is increased
each time by uniformly subdividing each element into eight tetrahedra.

(ii) Constant size test (T2): In this case, the total number of tetrahedra is kept constant and
the number of cores is increased in turn to 4, 8, 16, 32 and 64.

The scalability tests are performed on three different computer cluster configurations:

(i) Opteron-mpich (C1): AMD Opteron nodes, dual processor, dual core, 2.2 Ghz; Com-
pilation done with PathScale 2.3 and mpich 1.2.7; Interconnects: Infiniband; 64-bit
architecture;

(ii) Opteron-openmpi (C2): AMD Opteron nodes, dual processor, dual core, 2.2 Ghz;
Compilation done with PathScale 2.3 and openmpi 1.0.2; Interconnects: Infiniband; 64-
bit architecture;

(iii) IBM Power 5 (C3): 8 Power5 processors/node; 1.9 GHz; Compilation done with IBM
AIX 5.3 and openMP; Interconnects: Federation switch, IBM high performance switch.
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Figure 11. Baseline discretization of the elastic rod used in the scalability test.

Figure 12. Scaled speed-up (T1) and constant problem size (T2) scalability results: The figure shows
the computational time per element needed to compute one time step as a function of the number of

cores Ncores.
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In all these simulations, it was found that the computational time for the slowest processor
was only 1.005 times the average computational time for all the processors, which indicates
that the waiting time of a processor does not exceed 0.5% of the overall computational time.
The time per element needed to compute one time step is reported in Figure 12 as a function
of the number of cores for the two different types of tests (T1-T2) and the three machine
configurations (C1-C3). The results show speed-up rates between 0.83 and 0.94, which are
close to the ideal value of 1. In particular, it is found that the speed-up rates are slightly
better than in the same calculations performed with the continuous Galerkin method. For
example, test (T2-C2) gives a rate of 0.94 using the discontinuous Galerkin method and 0.90
in the continuous Galerkin case. It can therefore be concluded that, despite the additional
communication requirements of the discontinuous Galerkin method, its scalability properties
are excellent. This can be explained by the even more significant increase of computational
time in each processor associated with the DG approach.

6. CONCLUSIONS

In this paper, a scalable explicit time integration algorithm of a space-discontinuous Galerkin
formulation for non-linear dynamics was proposed with focus on problems involving large
dynamic plastic deformations. The spatially discontinuous Galerkin formulation involves
average numerical fluxes and quadratic stabilization terms which ensure consistency and
stability of the spatial discretization. An implementation based on interface elements is
described. The numerical fluxes and stabilization terms affect the numerical high-frequency
eigenmodes, leading to a modification of the time stability criterion. Time integration stability
is shown to require a reduction of the usual critical time step by the square root of the
stabilization parameter. However, this reduction is not significant in practice, as a stabilization
parameter of order one is sufficient to ensure accurate results. An efficient parallelization of the
scheme based on interface elements, is also described. Scalability tests show that the method
is highly scalable, which compensates for the increased computation requirements.

Numerical examples involving large dynamic plastic deformations and wave propagation
demonstrate the accuracy of the computational method. Results obtained with the
discontinuous Galerkin method seem to more accurately capture strain gradients for a given
mesh.
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APPENDIX

I. VARIATIONAL UPDATE FOR FINITE PLASTICITY

The material model for large plastic deformation used in this work follows closely the model of Ortiz
and Stainier presented in [11]. The starting point is the general framework of section 2, Equations
(9-15). The kinetic relations are assumed to derive from an inelastic potential Ψ(Y , Q) such that

Q̇ = Ψ,Y (Y , Q) , (65)

with the dual potential defined by the Legendre transformation

Ψ∗ (Q) = max
Y

“
Y Q̇−Ψ(Y , Q)

”
. (66)

In these expressions,

Y = −A,Q (F , Q) , (67)

are the thermodynamic forces conjugate to Q. The free energy density follows in the form

A = A(F e, εp, Mp) , (68)

where εp denotes an equivalent plastic deformation and Mp a plastic flow direction. The plastic flow
is directly characterized by an explicit expression of the form (11), with

Ḟ
p

= ε̇pMpF p . (69)

from where it follows that the complete set of internal variables is reduced to Q = (F p, εp).
Correspondingly, the complete set of thermodynamic forces is now Y = (−T , Y ), where

T = A,F p is the backstress and (70)

Y = −A,εp is the overstress. (71)

Relation (70) characterizes the direction of the stress tensor, while relation (71) describes the plastic
flow criterion (e.g. von Mises yield surface). This previous formulation can be stated in a variational
form by defining a functional

D
“
Ḟ , ε̇p, Mp

”
= A,F : Ḟ + Y ε̇p + Ψ∗ (ε̇p) . (72)

Assuming sufficient convexity properties for the physical potentials A and Ψ∗, the stationary point of
D corresponds to a minimum [11]. An effective potential Deff is defined at the minimum of D with
respect to ε̇p and Mp:

∆Deff

“
Ḟ

”
= min

ε̇p,Mp
D

“
Ḟ , ε̇p, Mp

”
. (73)

Therefore ∆Deff automatically satisfies (66) and the normality rule. From these definitions, it directly
follows that

∂∆Deff

“
Ḟ

”
∂Ḟ

= A,F = P , (74)
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demonstrating that the Piola stress tensor can be obtained from a variational formulation, even for
complex material behavior. In the special case of metals, in which the elastic response is ostensibly
independent of the plastic processes, the free energy (68) decomposes additively in the form

A = W e(FF p−1) + W p(F p, εp) . (75)

The function W e determines the elastic response of the metal, e.g., upon unloading, whereas the
function W p describes the hardening of the material. In the special case of power-law viscosity and
hardening it follows that

W p =
nY0ε

p
0

n + 1

„
εp

εp
0

«(n+1)/n

, (76)

Ψ∗ =

8<: mY0ε̇
p
0

m+1

“
ε̇p

ε̇
p
0

” m+1
m

, ε̇p ≥ 0;

∞ otherwise ,
(77)

where ε̇p
0 is a reference strain rate, εp

0 is a reference strain, Y0 is the yield stress, m is the rate-
sensitivity exponent and n is the hardening exponent. If the material has a purely elastic behavior,
the formulation (74) is reduced to

P =
∂W e

`
F T F

´
∂F

, (78)

which is the traditional hyperelastic formulation and confirms the consistency of the formulation. The
variational constitutive update described above is integrated in time by recourse to an incremental
solution procedure. To this end the plastic flow rule (69) is integrated using the exponential mapping

F pn+1
= exp

“h
εpn+1 − εpn

i
Mp

”
F pn

, (79)

where ∆εp = εpn+1− εpn is the equivalent plastic strain increment and Mp is the flow direction. The
energy function (72) is redefined as a discrete functional

∆D
“
F n+1, F n, εpn+1, εpn, Mp

”
≡ A

“
F n+1, F pn+1

“
εpn+1

”
, εpn+1

”
−

A (F n, F pn
(εpn) , εpn) + ∆tΨ∗

„
εpn+1 − εpn

∆t

«
. (80)

In this expression, A is the Helmholtz free energy function defined from the elastic energy W e and
the plastic dissipation W p by

A (F , F p, εp) ≡ W e
“
FF p−1

”
+ W p (F p (εp) , εp) . (81)

As is common practice in problems involving large plastic deformations in metals, we adopt an elastic
model based on the extension of linear elasticity to large deformations using a logarithmic expression
of the elastic strain tensor F eT F e. The incremental version of the effective potential (73) becomes

∆Deff (F ) ≡ min
εpn+1,Mp

∆D
“
F n+1, F n, εpn+1, εpn, Mp

”
, (82)

whereas the discrete stresses arise from (74) and (82) as

P n+1 =
∂∆Deff

`
F n+1

´
∂F n+1

=
∂A

`
F n+1

´
∂F n+1

. (83)
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II. AMPLIFICATION MATRIX OF THE 1D SYSTEM

Assuming a first order polynomial approximation, the inertial term of Eq. (59) can be rewritten asZ
Bh

ρüh · δϕhdV =
P
a

ρAl

6

ˆ
2ü−a+1 + ü+

a

˜
δϕ−

a+1 +
ρAl

6

ˆ
ü−a+1 + 2ü+

a

˜
δϕ+

a , (84)

where u±a and δϕ±
a are respectively the displacement and the admissible variation at node a±. Using

mass lumping, this expression simplifies toZ
Bh

ρüh · δϕhdV =
X

a

ρAl

2

ˆ
ü−a+1δϕ

−
a+1 + ü+

a δϕ+
a

˜
, (85)

resulting in the equivalent mass matrix

M =
ρAl

2

0BBBBBBBBBB@

. . . . . . . . .

. 1 0 0 0 0 0 0 .

. 0 1 0 0 0 0 0 .

. 0 0 1 0 0 0 0 .

. 0 0 0 1 0 0 0 .

. 0 0 0 0 1 0 0 .

. 0 0 0 0 0 1 0 .

. 0 0 0 0 0 0 1 .

. . . . . . . . .

1CCCCCCCCCCA

(a−2)+

(a−1)−

(a−1)+

(a)−

(a)+

(a+1)−

(a+1)+

, (86)

where the right column gives the node to which the line is related. The volume term of Eq. (59) can
be rewritten as Z

Bh

∇uh : C : ∇δϕhdV =
X

a

EA

l

ˆ
u−a+1 − u+

a

˜ ˆ
δϕ−

a+1 − δϕ+
a

˜
, (87)

and the stabilization term asZ
∂IBh

JδϕhK ⊗ n− :

fi
β

hs
C

fl
: JuhK ⊗ n−dS =

X
a

βEA

hs

ˆ
u+

a − u−a
˜ ˆ

δϕ+
a − δϕ−

a

˜
. (88)

The consistency term of Eq. (59) depends on the average value of a gradient on the interface. On
interface a (between nodes a− and a+), one has

〈∇uh〉a =
1

2l

ˆ
u−a − u+

a−1 + u−a+1 − u+
a

˜
, (89)

leading toZ
∂IBh

n− · 〈C : ∇uh〉 · JδϕhK dS =
X

a

EA

2l

ˆ
u−a − u+

a−1 + u−a+1 − u+
a

˜ ˆ
δϕ+

a − δϕ−
a

˜
. (90)

The forces at nodes a± can be derived by extracting the coefficients of δϕ±
a in Eqs. (87), (88) and

(90), leading to

l

EA
[fint + fi]

+
a = −1

2
u+

a−1 +

»
1

2
− βl

hs

–
u−a +

»
1

2
+

βl

hs

–
u+

a −
1

2
u−a+1 , (91)

l

EA
[fint + fi]

−
a = −1

2
u+

a−1 +

»
1

2
+

βl

hs

–
u−a +

»
1

2
− βl

hs

–
u+

a −
1

2
u−a+1 . (92)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–1
Prepared using nmeauth.cls



28 L. NOELS AND R. RADOVITZKY

If the characteristic length hs is taken equal to the length l, the stiffness matrix resulting from Eqs.
(91)-(92) is

K =
EA

l

0BBBBBBBBBB@

. . . . . . . . .

. [ 1
2+β] − 1

2 0 0 0 0 0 .

. − 1
2 [ 1

2+β] [ 1
2−2β] −1

2 0 0 0 .

. −1
2 [ 1

2−β] [ 1
2+β] − 1

2 0 0 0 .

. 0 0 − 1
2 [ 1

2+β] [ 1
2−β] −1

2 0 .

. 0 0 −1
2 [ 1

2−β] [ 1
2+β] − 1

2 0 .

. 0 0 0 0 − 1
2 [ 1

2+β] [ 1
2−β] .

. 0 0 0 0 −1
2 [ 1

2−β] [ 1
2+β] .

. . . . . . . . .

1CCCCCCCCCCA

(a−2)+

(a−1)−

(a−1)+

(a)−

(a)+

(a+1)−

(a+1)+

. (93)

Equations (86) and (93) finally lead to the amplification matrix

M−1K =
E

ρl2

0BBBBBBBBBB@

. . . . . . . . .

. [1+2β] −1 0 0 0 0 0 .

. −1 [1+2β] [1−2β] −1 0 0 0 .

. −1 [1−2β] [1+2β] −1 0 0 0 .

. 0 0 −1 [1+2β] [1−2β] −1 0 .

. 0 0 −1 [1−2β] [1+2β] −1 0 .

. 0 0 0 0 −1 [1+2β] [1−2β] .

. 0 0 0 0 −1 [1−2β] [1+2β] .

. . . . . . . . .

1CCCCCCCCCCA

(a−2)+

(a−1)−

(a−1)+

(a)−

(a)+

(a+1)−

(a+1)+

. (94)
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