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email:M.Rigo@ulg.ac.be

2010 Mathematics Subject Classification: 68Q45, 68R15, 11B85, 11A67, 11U05, 37B20

Key words: Numeration systems, recognizable sets of integers, Cobham’s theorem, ultimate peri-

odicity, substitutions, dynamical systems.

Contents

1 Introduction 897

2 Numeration basis 899

3 Automatic sequences 903

4 Multidimensional extension and first-order logic 905

4.1 Subsets of Nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

4.2 Logic and k-definable sets . . . . . . . . . . . . . . . . . . . . . . . . . 906

5 Numeration systems and substitutions 908

5.1 Substitutive sets and abstract numeration systems . . . . . . . . . . . . . 908

5.2 Cobham’s theorem for substitutive sets . . . . . . . . . . . . . . . . . . . 910

5.3 Density, syndeticity and bounded gaps . . . . . . . . . . . . . . . . . . . 914

5.3.1 The length of the iterates . . . . . . . . . . . . . . . . . . . . . . 914

5.3.2 Letters and words appear with bounded gaps . . . . . . . . . . . 915

5.4 Ultimate periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917

5.5 The case of fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

5.6 Back to numeration systems . . . . . . . . . . . . . . . . . . . . . . . . 919

5.6.1 Polynomially-growing abstract numeration systems . . . . . . . . 919

5.6.2 Bertrand basis and ωα-substitutive words . . . . . . . . . . . . . 919

6 Cobham’s theorem in various contexts 920

6.1 Regular sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920

6.2 Algebraic setting and quasi-automatic functions . . . . . . . . . . . . . . 920

fabien.durand@u-picardie.fr
M.Rigo@ulg.ac.be


On Cobham’s theorem 897

6.3 Real numbers and verification of infinite-state systems . . . . . . . . . . . 921

6.4 Dynamical systems and subshifts . . . . . . . . . . . . . . . . . . . . . . 922

6.5 Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924

6.5.1 From definable sets . . . . . . . . . . . . . . . . . . . . . . . . . 924

6.5.2 Self-similar tilings . . . . . . . . . . . . . . . . . . . . . . . . . 925

6.6 Toward Cobham’s theorem for the Gaussian integers . . . . . . . . . . . . 925

6.7 Recognizability over Fq[X] . . . . . . . . . . . . . . . . . . . . . . . . . 926

7 Decidability issues 926

8 Acknowledgments 927

References 927

1 Introduction

In this chapter we essentially focus on the representation of non-negative integers in a

given numeration system. The main role of such a system — like the usual integer base-

k numeration system — is to replace numbers, or more generally sets of numbers, by

their corresponding representations, i.e., by words or languages. First we consider integer

base numeration systems to present the main concepts, but rapidly we will introduce non-

standard systems and their relationship with substitutions.

Let k ∈ N>2 be an integer, where N>2 denotes the set of non-negative integers greater

than or equal to 2. The set {0, . . . , k} is denoted by [[0, k]]. If we do not allow leading

zeroes when representing numbers, the function mapping a non-negative integer n onto its

k-ary representation repk(n) ∈ [[0, k − 1]]∗ is a one-to-one correspondence. In particular,

0 is assumed to be represented by the empty word ε. In the literature, one also finds

notation such as 〈n〉k, (n)k, or ρk(n) instead of repk(n). Hence every subset X ⊆ N

is associated with the language repk(X) consisting of the k-ary representations of the

elements of X .

It is natural to study the relation between the arithmetic or number-theoretic proper-

ties of integers and the syntactical properties of the corresponding representations in a

given numeration system. We focus on those sets X ⊆ N for which a finite automaton

can be used to decide, for any given word w over [[0, k − 1]], whether or not w belongs

to repk(X). Sets having the property that repk(X) is regular1 are called k-recognizable

sets. Such a set can be considered as a particularly simple set, because using the k-ary nu-

meration system it has a somehow elementary algorithmic description. In the framework

of infinite-state system verification, one also finds the terminology of Number Decision

Diagram or NDD [130].

The essence of Cobham’s theorem is to express that the property of being recognizable

by a finite automaton strongly depends on the choice of the base and more generally on the

considered numeration system. Naturally, this fact leads to and motivates the introduction

and the study of recognizable sets in non-standard numeration systems. Considering al-

ternative numeration systems may provide new recognizable sets and these non-standard

systems also have applications in computer arithmetic [63]. Last but not least, the proof

1We use the terminology of regular language, instead of rational language.
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of Cobham’s theorem is non-trivial and relies on quite elaborate arguments.

Now let us state Cobham’s celebrated result from 1969 and give all the needed details

and definitions. Several surveys have been written on the same subject; see [25, 26, 29,

28, 104].

Definition 1.1. Let α, β > 1 be two real numbers. If the equation αm = βn with

m,n ∈ N has only the trivial integer solution m = n = 0, then α and β are said

to be multiplicatively independent. Otherwise, α and β are said to be multiplicatively

dependent.

Definition 1.2. A subset of N is ultimately periodic if it is the union of a finite set and a

finite number of infinite arithmetic progressions. In particular, X is ultimately periodic if

and only if there exist N > 0 and p > 1 such that for all n > N , n ∈ X ⇔ n+ p ∈ X .

Recall that an arithmetic progression is a set of the form aN+ b := {an+ b | n > 0}.

Theorem 1.1 (Cobham’s theorem [37]). Let k, ℓ > 2 be two multiplicatively independent

integers. A set X ⊆ N is both k-recognizable and ℓ-recognizable if and only if it is

ultimately periodic.

In the various contexts that we will describe, showing that an ultimately periodic set

is recognizable is always the easy direction to prove (see Remark 1.3). So we focus on

the other direction.

Let k, ℓ > 2 be two integers. Notice that k and ℓ are multiplicatively independent if

and only if log k/ log ℓ is irrational. Note that for k and ℓ to be multiplicatively depen-

dent, it is not enough that k and ℓ share exactly the same prime factors occurring in their

decomposition. For instance, 6 and 18 are multiplicatively independent. But coprime

integers are multiplicatively independent.

The irrationality of log k/ log ℓ is a crucial point in the proof of Cobham’s theorem

(see Subsection 5.3). Recall that if θ > 0 is irrational, then the set {{nθ} | n > 0}
of fractional parts of the multiples of θ is dense in [0, 1]. For a proof of the so-called

Kronecker theorem; see [70].

Remark 1.2. Multiplicative dependence is an equivalence relation M over N>2. If k
and ℓ are multiplicatively dependent, then there exist a minimal q > 2 and two positive

integers m,n such that k = qm and ℓ = qn. Let us give the first (with respect to their

minimal element) few equivalence classes for M partitioning N>2 : [2]M, [3]M, [5]M,

[6]M, [7]M, [10]M, [11]M, [12]M, . . . .

Remark 1.3. We show that if a set X ⊆ N is ultimately periodic then, for all k > 2, X
is k-recognizable. In the literature, one also finds the terminology of a recognizable set

X (without any mention to a base), meaning that X is k-recognizable for all k > 2. Note

that a finite union of regular languages is again a regular language. Hence it is enough to

check that repk(aN + b) is regular with 0 6 b < a. We can indeed assume that b < a
because if we add a finite number of words to a regular language or if we or remove a finite

number of words from a regular language, we still have a regular language. Consider a

DFA having Q = [[0, a− 1]] as its set of states. For all state i ∈ Q and d ∈ [[0, k − 1]], the
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transitions are given by

i
d−→ ki+ d mod a.

The initial state is 0 and the unique final state is b. As an example, a DFA accepting

exactly the binary representations of the integers congruent to 3 mod 4 is given in Figure 1.

A study of the minimal automaton recognizing such divisibility criteria expressed in an

0

1

2 30

1 0

1

0

1

0

1

Figure 1. A finite automaton accepting rep2(4N+ 3).

integer base is given in [3]. Also see the discussion in [117, Prologue]. The fact that a

divisibility criterion exists in every base for any fixed divisor was already observed by

Pascal in [103, pp. 84–89].

2 Numeration basis

It is remarkable that the recognizability of ultimately periodic sets extends to wider con-

texts (see Proposition 2.6 and Theorem 5.1). Let us introduce our first generalization of

the integer base numeration system.

Definition 2.1. A numeration basis is a sequence U = (Un)n>0 of integers such that U
is increasing, U0 = 1 and that the set {Ui+1/Ui | i > 0} is bounded. This latter condition

ensures the finiteness of the alphabet of digits used to represent integers. If w = wℓ · · ·w0

is a word over a finite alphabet A ⊂ Z then the numerical value of w is

πA,U (w) =

ℓ
∑

i=0

wi Ui.

Using the greedy algorithm [61], any integer n has a unique (normal) U -representation

repU (n) = wℓ · · ·w0, which is a finite word over a minimal finite alphabet called the

canonical alphabet of U and denoted by AU . The normal U -representation satisfies

πAU ,U (repU (n)) = n and i ∈ [[0, ℓ− 1]], πAU ,U (wi · · ·w0) < Ui+1 for all i ∈ [[0, ℓ− 1]].

Again, repU (0) = ε. See [90, Chapter 7] or Ch. Frougny and J. Sakarovitch’s chapter in

[12, Chapter 2]. A subset X ⊆ N is U -recognizable if repU (X) is accepted by a finite

automaton. Let B ⊂ Z be a finite alphabet. If w ∈ B∗ is such that πB,U (w) > 0, then

the function mapping w onto repU (πB,U (w)) is called normalization.
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Definition 2.2. A numeration basis U is said to be linear if there exist k ∈ N \ {0},

d1, . . . , dk ∈ Z, dk 6= 0, such that, for all n > k, Un = d1Un−1 + · · · + dkUn−k. The

polynomial PU (X) = Xk − d1X
k−1 − · · · − dk−1X − dk is called the characteristic

polynomial of U .

Definition 2.3. Recall that a Pisot-Vijayaraghavan number is an algebraic integer β > 1
whose Galois conjugates have modulus strictly less than one. We say that U = (Un)n>0

is a Pisot numeration system if the numeration basis U is linear and PU (X) is the minimal

polynomial of a Pisot number β. Integer base numeration systems are particular cases of

Pisot systems. For instance, see [27] where it is shown that most properties related to

k-recognizable sets, k ∈ N>2, can be extended to Pisot systems. In such a case, there

exists some c > 0 such that |Un − c βn| → 0, as n tends to infinity.

Example 2.1. Consider the Fibonacci sequence defined by U0 = 1, U1 = 2 and Un+2 =
Un+1 + Un for all n > 0. A word over {0, 1} is a U -representation if and only if it

belongs to the language L = 1{0, 01}∗ ∪ {ε}. For instance, the word 10110 is not a U -

representation. Since πAU ,U (10110) = 13, the normalization maps 10110 to repU (13) =
100000. The characteristic polynomial of this linear numeration basis is the minimal

polynomial of the Pisot number (1 +
√
5)/2. This Pisot numeration system is presented

in [131].

The following result is an easy exercise, but also can be carried out in a wider context.

Theorem 2.1. [123] Let U be a numeration basis. If N is U -recognizable, then U is

linear.

Definition 2.4. [13] A Bertrand numeration basis U is a numeration basis satisfying the

following property: w ∈ repU (N) if and only if, for all n ∈ N, w0n ∈ repU (N). It is a

natural condition satisfied by all integer base k > 2 systems. For instance, the sequence

defined by U0 = 1, U1 = 3 and, for all n > 0, Un+2 = Un+1 + Un is not a Bertrand

numeration basis because repU (2) = 2, but πAU ,U (20) = 6 and repU (6) = 102.

Let α > 1 be a real number. The notion of α-expansion was introduced by Parry in

[102] (also see Rényi’s paper [111]), or again see [90, Chapter 7]. All x ∈ [0, 1] can be

uniquely written in the following way:

x =
∑

n>1

anα
−n, (2.1)

with x1 = x and for all n > 1, an = ⌊αxn⌋ and xn+1 = {αxn}, where ⌊·⌋ stands

for the integer part. The sequence dα(x) = (an)n>1 is the α-expansion of x and L(α)
denotes the set of finite words having an occurrence in some sequence dα(x), x ∈ [0, 1].
Let dα(1) = (tn)n>1. If there exist N > 0, p > 0 such that, for all n > N , we have

tn+p = tn then α is said to be a Parry number, sometimes called a β-number (for more

details about these numbers, see [102] or [62]). Observe that integers greater or equal to

2 are Parry numbers.

The following result relates Bertrand numeration systems to languages defined by

some real number.
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Theorem 2.2 (A. Bertrand-Mathis [14]). Let U be a numeration basis. It is a Bertrand

numeration basis if and only if there exists a real number α > 1 such that repU (N) =
L(α). In this case, if U is linear then α is a root of the characteristic polynomial of U .

Theorem 2.3 (A. Bertrand-Mathis [13]). Let α > 1 be a real number. The language

L(α) is regular if and only if α is a Parry number.

Associated with a Parry number β, one can define the notion of beta-polynomial. For

details, see [72] or [12, Chapter 2]. First we define the canonical beta-polynomial. If

dβ(1) is eventually constant and equal to 0: dβ(1) = t1 · · · tm0ω , with tm 6= 0, then

we set Gβ(X) = Xm −∑m

i=1 tiX
m−i and r = m. Otherwise, dβ(1) is eventually

periodic: dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω , with m and p being minimal. Then we

set Gβ(X) = Xm+p −∑m+p

i=1 tiX
m+p−i − Xm +

∑m

i=1 tiX
m−i and r = p. Let β

be a Parry number. An extended beta-polynomial is a polynomial of the form Hβ(X) =
Gβ(X)(1 +Xr + · · ·+Xrk)Xn for k, n ∈ N.

Proposition 2.4. [72] Let U be a linear numeration basis with dominant root β, i.e.,

limn→∞ Un+1/Un = β for some β > 1. If repU (N) is regular, then β is a Parry number.

Theorem 2.5 (M. Hollander [72]). Let U be a linear numeration basis whose dominant

root β is a Parry number.

• If dβ(1) is infinite and eventually periodic, then repU (N) is regular if and only if U
satisfies an extended beta-polynomial for β.

• If dβ(1) is finite of length m, then: if U satisfies an extended beta-polynomial

for β then repU (N) is regular; and conversely if repU (N) is regular, then U sat-

isfies either an extended beta-polynomial for β, Hβ(X), or a polynomial of the

form (Xm − 1)Hβ(X).

Ultimately periodic sets are recognizable for any linear numeration basis.

Proposition 2.6 (Folklore [12, 90]). Let a, b > 0. If U = (Un)n>0 is a linear numeration

basis, then

π−1
AU ,U (aN+ b) =

{

cℓ · · · c0 ∈ A∗
U |

ℓ
∑

k=0

ck Uk ∈ aN+ b

}

is accepted by a DFA that can be effectively constructed. In particular, if N is U -recogni-

zable, then any ultimately periodic set is U -recognizable.

To conclude this section, consider again the integer base numeration systems.

Example 2.2. The set P2 = {2n | n > 0} of powers of two is trivially 2-recognizable

because rep2(P2) = 10∗. Since the difference between any two consecutive elements in

P2 is of the form 2n, the set P2 is not ultimately periodic. As a consequence of Cobham’s

theorem, the set P2 is, for instance, neither 3-recognizable nor 5-recognizable.

One could also consider the case when the two bases k and ℓ are multiplicatively

dependent. This case is much easier and can be considered as an exercise.
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Proposition 2.7. Let k, ℓ > 2 be two multiplicatively dependent integers. A set X ⊆ N

is k-recognizable if and only if it is ℓ-recognizable.

The theorem of Cobham implies that ultimately periodic sets are the only infinite sets

that are k-recognizable for every k > 2. We have seen so far that there exist sets (like the

set P2 of powers of two) that are only recognizable for some specific bases: exactly all

bases belonging to a unique equivalence class for the equivalence relation M over N>2.

To see that a given infinite ordered set X = {x0 < x1 < x2 < · · · } is k-recognizable

for no base k > 2 at all, we can use results like the following one, where the behavior of

the ratio (resp., difference) of any two consecutive elements in X is studied through the

quantities

RX = lim sup
i→∞

xi+1

xi
and DX = lim sup

i→∞
(xi+1 − xi) .

Theorem 2.8 (Gap theorem [38]). Let k > 2. If X ⊆ N is a k-recognizable infinite

subset of N, then either RX > 1 or DX < +∞.

Corollary 2.9. Let a ∈ N>2. The set of primes and the set {na | n > 0} are not

k-recognizable for any integer base k > 2.

Proofs of the gap theorem and its corollary can also be found in [55]. For more results

on primes; also see Chapter 25 “Automata in number theory” of this handbook.

Definition 2.5. An infinite ordered set X = {x0 < x1 < x2 < · · · } such that DX <
+∞ is said to be syndetic or with bounded gaps: there exists C > 0 such that for all

n > 0, xn+1 − xn < C. In particular, any ultimately periodic set is syndetic. The

converse does not hold; see, for instance Example 3.1.

Remark 2.10. Note that syndeticity occurs in various contexts, such as ergodic theory.

As an example, a subset of an Abelian group G is said to be syndetic if finitely many

translates of it cover G. The term “syndetic” was first used in [66]. Note that in [68] the

following result is proved. Let α, β > 1 be multiplicatively independent real numbers. If

a set X ⊆ N is α-recognizable and β-recognizable, for the Bertrand numeration systems

based, respectively, on the real numbers α and β in the sense of [14] and Theorem 2.2,

then X is syndetic.

Cobham’s original proof of Theorem 1.1 appeared in [37] and we quote [55]: “The

proof is correct, long and hard. It is a challenge to find a more reasonable proof of this

fine theorem”. Then G. Hansel provided a simpler presentation in [67], and one can see

[104] or the dedicated chapter in [9] for an expository presentation. Prior to these last two

references, one should read [116]. Usually the first step to prove Cobham’s theorem is to

show the syndeticity of the considered set. See Section 5.3. T. Krebs recently presented a

short proof of Cobham’s theorem without using Kronecker theorem [82].
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3 Automatic sequences

As explained in Corollary 3.3 presented in this section, the formalism of k-recognizable

sets is equivalent to that of of k-automatic sequences2. Let us recall briefly what they are.

An infinite word x = (xn)n>0 ∈ BN over an alphabetB is said to be k-automatic if there

exists a DFAO (deterministic finite automaton with output) over the alphabet [[0, k − 1]],
(Q, [[0, k − 1]], ·, q0, B, τ) such that, for all n > 0,

xn = τ(q0 · repk(n)) .
The transition function is · : Q × [[0, k − 1]] → Q and can easily be extended to Q ×
[[0, k − 1]]∗ by q · ε = q and q · wa = (q · w) · a. The output function is τ : Q →
B. Roughly speaking, the nth term of the sequence is obtained by feeding a DFAO

with the k-ary representation of n. For a complete and comprehensive exposition on k-

automatic sequences and their applications, see the book [9]. We equally use the terms of

sequences or (right-) infinite words. For more information about combinatorics on words,

see [89, 90] or also J. Cassaigne and F. Nicolas’ chapter in [12, Chapter 4].

Definition 3.1. Let σ : A∗ → A∗ be a morphism, i.e., σ(uv) = σ(u)σ(v) for all u, v ∈
A∗. Naturally such a map can be defined on Aω . A finite or infinite word x such that

σ(x) = x is said to be a fixed point of σ. A morphism σ : A∗ → A∗ is completely

determined by the images of the letters in A. In particular, if there exists k > 0 such

that |σ(a)| = k for all a ∈ A, then σ is said to be of k-uniform or simply uniform. A

1-uniform morphism is called a coding. If there exist a letter a ∈ A and a word u ∈ A+

such that σ(a) = au and moreover, if limn→+∞ |σn(a)| = +∞, then σ is said to be

prolongable on a or to be a substitution. Let σ : A∗ → A∗ be a morphism prolongable on

a. We have

σ(a) = a u, σ2(a) = a uσ(u), σ3(a) = a uσ(u)σ2(u), . . . .

Since for all n ∈ N, σn(a) is a prefix of σn+1(a) and because |σn(a)| tends to infinity

when n → +∞, the sequence (σn(a))n>0 converges (for the usual product topology on

words — see, for instance (6.2)) to an infinite word denoted by σ∞(a) and given by

σ∞(a) := lim
n→+∞

σn(a) = a uσ(u)σ2(u)σ3(u) · · · .

This infinite word is a fixed point of σ. An infinite word obtained by iterating a pro-

longable morphism in this way is said to be purely substitutive (or pure morphic). If

σ : A∗ → B∗ is a non-erasing morphism, it can be extended to a map from AN to BN

as follows. If x = x0x1 · · · is an infinite word over A, then the sequence of words

(σ(x0 · · ·xn−1))n>0 is easily seen to converge to an infinite word over B. Its limit

is denoted by σ(x) = σ(x0)σ(x1)σ(x2) · · · . If x ∈ AN is purely substitutive and if

τ : A→ B is a coding, then the word y = τ(x) is said to be substitutive.

Another result due to A. Cobham is the following; see [38]. The idea is to associate a

DFA over [[0, k − 1]] with every k-uniform morphism.

2We indifferently use the terms sequence and infinite word.
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Theorem 3.1. Let k > 2. A sequence x = (xn)n>0 ∈ BN is k-automatic if and only

if there exist a k-uniform morphism σ : A∗ → A∗ prolongable on a letter a ∈ A and a

coding τ : A→ B such that x = τ(σ∞(a)).

Theorem 3.2 (Eilenberg [55]). A sequence x = (xn)n>0 is k-automatic if and only if its

k-kernel Nk(x) = {(xken+d)n>0 | e > 0, 0 6 d < ke} is finite.

Definition 3.2. The characteristic sequence 1X ∈ {0, 1}N of a set X ⊆ N is defined by

1X(n) = 1 if and only if n ∈ X .

An infinite word x ∈ Aω is ultimately periodic if there exist two finite words u ∈ A∗

and v ∈ A+ such that x = uvω. If u = ε, then x is periodic. Obviously, a set X ⊆ N

is ultimately periodic if and only if 1X is an ultimately periodic word over {0, 1}. In that

case, there exist two finite words u ∈ {0, 1}∗ and v ∈ {0, 1}+ such that 1X = uvω. In

particular, |v| is a period of X . If u and v are chosen of minimal length, then |u| (resp.,

|v|) is said to be the preperiod or index of X (resp., the period of X). If u = ε, then X is

(purely) periodic. Periodic sets are, in particular, ultimately periodic.

Corollary 3.3. Let k > 2. If x = (xn)n>0 ∈ BN is a k-automatic sequence, then the

set {n > 0 | xn = b} is k-recognizable for all b ∈ B. Conversely, if a set X ⊆ N is

k-recognizable, then its characteristic sequence is k-automatic.

Theorem 3.4 (Cobham’s theorem, version 2). Let k, ℓ > 2 be two multiplicatively in-

dependent integers. An infinite word x = (xn)n>0 ∈ BN is both k-automatic and ℓ-
automatic if and only if it is ultimately periodic.

Remark 3.5. Using the framework of k-automatic sequences instead of the formalism of

k-recognizable sets turns out to be useful. For instance, consider the complexity function

of an infinite word x, which maps n ∈ N onto the number px(n) of distinct factors of

length n occurring in x. The Morse–Hedlund theorem states that x is ultimately periodic

if and only if px is bounded by some constant. This result appeared first in [96]. Proofs

can be found in classical textbooks such as [9, 89].

It is also well known that for a k-automatic sequence x, px ∈ O(n); again see the

seminal paper [38]. This latter result can be used to show that particular sets are not k-

recognizable for any k > 2: for instance, those sets whose characteristic sequence 1X

has a complexity function such that limn→+∞ p
1X

(n)/n = +∞. For the behavior of px
in the substitutive case, see the survey [4] or [12, Chapter 4].

Example 3.1. Iterating the morphism σ : 0 7→ 01, 1 7→ 10, we get the Thue–Morse

word (tn)n>0 = σ∞(0) = 0110100110010110100101100110 · · · . For an account of this

celebrated word, see [8] and [60, Chapter 2]. It is a 2-automatic word; the nth letter in the

word is 0 if and only if rep2(n) contains an even number of 1’s. This word is generated

by the DFAO represented in Figure 2. In particular, the set

X2 =

{

n ∈ N | rep2(n) = ct · · · c0 and

t
∑

i=0

ci ≡ 0 (mod 2)

}
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0 1

0 0

1

1
Figure 2. A DFAO generating the Thue–Morse word.

is 2-recognizable. The Thue–Morse word is not ultimately periodic (see, for instance [23]

or [41] where the complexity function of this word is studied carefully) and therefore X2

is k-recognizable only for those k of the form 2m,m ∈ N>1. Nevertheless, one can notice

that X2 is syndetic.

4 Multidimensional extension and first-order logic

4.1 Subsets of Nd

To extend the concept of k-recognizability to subsets of Nd, d > 2, it is natural to con-

sider d-tuples of k-ary representations. To be self-contained, we repeat the discussions of

Chapter 25 “Automata in number theory” of this handbook. To get d words of the same

length that have to be read simultaneously by an automaton, the shortest ones are padded

with leading zeroes. We extend the definition of repk to a map of domain Nd as follows.

If n1, . . . , nd are non-negative integers, then we consider the word

repk(n1, . . . , nd) :=







0m−| repk(n1)| repk(n1)
...

0m−| repk(nd)| repk(nd)






∈
(

[[0, k − 1]]d
)∗

where m = max{| repk(n1)|, . . . , | repk(nd)|}. A subset X of Nd is k-recognizable if

the corresponding language repk(X) is accepted by a finite automaton over the alphabet

[[0, k − 1]]d which is the Cartesian product of d copies of [[0, k − 1]]. This automaton is

reading d digits at a time (one for each component): this is why we need d words of the

same length.

Example 4.1. Consider the automaton depicted in Figure 3 (the sink is not represented).

It accepts (ε, ε) and all pairs of words of the form (u0, 0u) where u ∈ 1{0, 1}∗. This

means that the set {(2n, n) | n > 0} is 2-recognizable.

Note that the notion of k-automatic sequence and Theorem 3.1 have been extended

accordingly in [119, 120] where the images by a morphism of letters are d-dimensional

cubes of size k.

Extending the concept of ultimately periodic sets to subsets of Nd, with d > 2, is

at first glance not so easy. We use bold face letters to represent elements in Nd. For

instance, one could take the following definition of a (purely) periodic subset X ⊆ Nd.
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(

0
0

) (

1
1

)

(

1
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)

(

0
1

)

(

1
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)

Figure 3. A DFA recognizing {(2n, n) | n > 0}.

There exists a non-zero element p ∈ Nd such that x ∈ X if and only if x+p ∈ X . As we

will see (Remark 4.2, Proposition 6.9 and Theorem 6.11), it turns out that this definition

is not compatible with the extension of Cobham’s theorem in d dimensions. Therefore

we will consider sets definable in 〈N,+〉. Let us mention Nivat’s conjecture connecting

such a notion of periodicity in higher dimensions with the notion of block complexity as

introduced in Remark 3.5: let X ⊂ Z2. If there exist positive integers n1, n2 such that

pX(n1, n2) 6 n1n2, then X is periodic, where pX(n1, n2) counts the number of distinct

blocks of size n1 × n2 occurring in X . See [98] and, in particular, [109] for details and

pointers to the existing bibliography. The reference [53] establishes a connection with the

next section.

4.2 Logic and k-definable sets

The formalism of first-order logic is probably the best suited to present a natural exten-

sion (in the sense of Cobham’s theorem) of the definition of ultimately periodic sets in d
dimensions. See [107, 108] or the survey [16]. For a textbook presentation, see [114].

In Presburger arithmetic 〈N,+〉, the variables range over N and we have at our disposal

the connectives ∧,∨,¬,→,↔, the equality symbol = and the quantifiers ∀ and ∃ that can

only be applied to variables. This is the reason we speak of first-order logic; in second-

order logic, quantifiers can be applied to relations, and in monadic second-order logic,

only variables and unary relations, i.e., sets, may be quantified. If a variable is not within

the scope of any quantifier, then this variable is said to be free. Formulas are built induc-

tively from terms and atomic formulas. Here details have been omitted; see, for instance

[29, 28, Section 3.1]. For example, order relations <, 6, > and > can be added to the

language by noticing that x 6 y is equivalent to

(∃z)(y = x+ z). (4.1)

In the same way, constants can also be added. For instance, x = 0 is equivalent to

(∀y)(x 6 y) and x = 1 is equivalent to ¬(x = 0) ∧ (∀y)(¬(y = 0) → (x 6 y)). In

general, the successor function S(x) = y of x is defined by

(x < y) ∧ (∀z)((x < z) → (y 6 z)) .

For a complete account on the interactions between first-order logic and k-recognizable

sets, see the excellent survey [29, 28].
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Remark 4.1. We mainly discuss the case 〈N,+〉, but similar results are obtained for

〈Z,+,6〉. Note that if the variables belong to Z, then it is no longer possible to define 6

as in (4.1). So this order relation has to be added to the structure. The constant 0 can be

defined by x+ x = x.

Let ϕ(x1, . . . , xd) be a formula with d free variables x1, . . . , xd. Interpreting ϕ in

〈N,+〉 permits one to define the set of d-tuples of non-negative integers for which the

formulas hold:

{(r1, . . . , rd) | 〈N,+〉 |= ϕ[r1, . . . , rd]}.
We write 〈N,+〉 |= ϕ[r1, . . . , rd] whenever ϕ(x1, . . . , xd) is satisfied in 〈N,+〉 when

interpreting xi by ri for all i ∈ {1, . . . , d}. For the reader having no background in logic

and model theory, the first chapters of [54] are worth reading.

Remark 4.2. The ultimately periodic sets of N are exactly the sets that are definable

in Presburger arithmetic. It is obvious that ultimately periodic sets of N are definable.

For instance, the set of even integers can be defined by ϕ(x) ≡ (∃y)(x = y + y). Since

constants can easily be defined, it is easy to write a formula for any arithmetic progression.

As an example, the formula ϕ(x) ≡ (∃y)(x = S(S(y + y + y))) defines the progression

3N+ 2. In particular, multiplication by a fixed constant is definable in 〈N,+〉. Note that

it is a classical result that the theory of 〈N,+,×〉 is undecidable; see, for instance [15].

Adding congruences modulo any integer m permits quantifier elimination, which

means that any formula expressed in Presburger arithmetic is equivalent to a formula

using only ∧, ∨, =, < and congruences; see [107, 108]. Presentations can also be found

in [56, 85].

Theorem 4.3 (Presburger). The structure 〈N,+, <, (≡m)m>0〉 admits elimination of

quantifiers.

This result can be used to prove that the theory of 〈N,+〉 is decidable. This can be

done using the formalism of automata; see, for instance [29, 28].

Corollary 4.4. Any formula ϕ(x) in Presburger arithmetic 〈N,+〉 defines an ultimately

periodic set of N.

Let k > 2. We add to the structure 〈N,+〉 a function Vk defined by Vk(0) = 1
and for all x > 0, Vk(x) is the greatest power of k dividing x. As an example, we

have V2(6) = 2, V2(20) = 4 and V2(2
n) = 2n for all n > 0. Again the theory of

〈N,+, Vk〉 can be shown to be decidable [29, 28]. The next result shows that, as for the

k-automatic sequences, the logical framework within the richer structure 〈N,+, Vk〉 gives

an equivalent presentation of the k-recognizable sets in any dimension. Proofs of the

next three theorems can again be found in [29, 28], where a full account of the different

approaches used to prove Theorem 4.5 is presented. For Büchi’s original paper; see [30].

Theorem 4.5 (Büchi theorem). Let k > 2 and d > 1. A set X ⊆ Nd is k-recognizable if

and only if it can be defined by a first-order formula ϕ(x1, . . . , xd) of 〈N,+, Vk〉.
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For instance, the set P2 introduced in Example 2.2 can be defined by the formula

ϕ(x) ≡ V2(x) = x. Note that Theorem 4.5 holds for Pisot numeration systems given in

Definition 2.3; see [27] where the function Vk is modified accordingly. This is partially

based on the fact that in a Pisot numeration system the normalization function is realized

by a finite automaton (see [62]), which allows one to consider addition of integers: first

perform addition digit-wise without any carry, then normalize the result.

Theorem 4.6 (Cobham’s theorem, version 3). Let k, ℓ > 2 be two multiplicatively in-

dependent integers. A set X ⊆ N can be defined by a first-order formula in 〈N,+, Vk〉
and by a first-order formula in 〈N,+, Vℓ〉 if and only if it can be defined by a first-order

formula in 〈N,+〉.

This theorem still holds in higher dimensions, and is called the Cobham–Semenov

theorem. In this respect, the notion of subset of Nd definable in Presburger arithmetic

〈N,+〉 is the right extension of periodicity in a multidimensional setting. For Semenov’s

original paper; see [121].

Theorem 4.7 (Cobham–Semenov theorem). Let k, ℓ > 2 be two multiplicatively inde-

pendent integers. A set X ⊆ Nd can be defined by a first-order formula in 〈N,+, Vk〉
and by a first-order formula in 〈N,+, Vℓ〉 if and only if it can be defined by a first-order

formula in 〈N,+〉.

Subsets of Nd defined by a first-order formula in 〈N,+〉 are characterized in [65]. The

nice criterion of Muchnik appeared first in 1991 and is given in [97]. See Proposition 6.9

for its precise statement. Using this latter characterization, a proof of Theorem 4.7 is

presented in [29, 28]. The logical framework has given rise to several works. Let us

mention chronologically [126, 127] and [93, 94]. In [94, Section 5] the authors interest-

ingly show how to reduce Semenov’s theorem to Cobham’s theorem: “Nothing new in

higher dimensions”. Also extensions to non-standard numeration systems are considered

in [105] and [15]. In this latter paper, the Cobham–Semenov theorem is proved for two

Pisot numeration systems.

5 Numeration systems and substitutions

5.1 Substitutive sets and abstract numeration systems

In Sections 4.1 and 4.2, we have mainly extended the notion of recognizability to subsets

of Nd. Now we consider another extension of recognizability. In Corollary 3.3, we have

seen that a k-recognizable set has a characteristic sequence generated by a uniform sub-

stitution and the application of an extra coding. It is rather easy to define sets of integers

encoded by a characteristic sequence generated by an arbitrary substitution and an extra

coding; that is, those for which the characteristic sequence is morphic. This generaliza-

tion permits one to obtain a larger class of infinite words, and hence a larger class of sets

of integers.
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Example 5.1. Consider the morphism σ : {a, b, c}∗ → {a, b, c}∗ given by σ(a) = abcc,
σ(b) = bcc, σ(c) = c and the coding τ : a, b 7→ 1, c 7→ 0. We get

σ∞(a) = abccbccccbccccccbccccccccbccccccccccbcc · · ·

and τ(σ∞(a)) = 010010000100000010000000010000000000100 · · · . Using the special

form of the images by σ of b and c, it is not difficult to see that the difference between

the position of the nth and (n + 1)st b in σ∞(a) is 2n + 1. Hence τ(σ∞(a)) is the

characteristic sequence of the set of squares and it is substitutive. From Corollary 2.9 the

set of squares is never k-recognizable for any integer base k.

Definition 5.1. As a natural extension of the concept of recognizability, we may consider

setsX ⊆ N having a characteristic sequence 1X which is (purely) substitutive. Such a set

is said to be a (purely) substitutive set. In particular, k-recognizable sets are substitutive.

With Theorem 5.2 it will turn out that the formalism of substitutive sets is equivalent

to the one of abstract numeration systems.

Definition 5.2. [86] An abstract numeration system (or ANS) is a triple S = (L,A,<)
where L is an infinite regular language over a totally ordered alphabet (A,<). The map

repS : N → L is the one-to-one correspondence mapping n ∈ N onto the (n + 1)th
word in the genealogically ordered language L, which is called the S-representation of

n. In particular, a set X ⊆ N is S-recognizable if repS(X) is regular, and N is trivially

S-recognizable because repS(N) = L. Recall that in the genealogical order (also called

radix or military order), words are first ordered by increasing length and for words of the

same length, one uses the lexicographic ordering induced by the order < on A.

Example 5.2. Consider the language L = a∗b∗ ∪ a∗c∗ with a < b < c. The first few

words in L are ε, a, b, c, aa, ab, ac, bb, cc, aaa, aab, aac, abb, . . .. This means that for the

ANS S built on L, the integer 0 is represented by ε, the integer 1 by a, the integer 2 by

b, the integer 3 by c, the integer 4 by aa, etc. Since L contains exactly 2n + 1 words of

length n for all n > 0, we have that n2 is represented by an for all n > 0. In particular,

the set {n2 | n > 0} is S-recognizable because a∗ is regular. It is well known that in

a regular language L, the set of the lexicographically first words of each length in the

genealogically ordered language L is regular; see [123].

Pisot numeration systems are special cases of ANS. Indeed, if the numeration basis

U = (Un)n>0 defines a Pisot numeration system, then repU (N) is regular.

Example 5.3. Consider the Fibonacci sequence and the language L = 1{0, 01}∗ ∪ {ε}
defined in Example 2.1. To get the representation of an integer n, one can either decom-

pose n using the greedy algorithm or, order the words in L genealogically and take the

(n+ 1)th element.

Theorem 5.1. [86] Let S = (L,A,<) be an abstract numeration system. Any ultimately

periodic set is S-recognizable.
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Note that in [83], it is, in particular, proved that this latter result cannot be extended to

context-free languages. Specific cases of S-recognizable sets are discussed in P. Lecomte

and M. Rigo’s chapter in [12, Chapter 3]. We have an extension of Theorem 3.1.

Theorem 5.2. Let x = (xn)n>0 be an infinite word over an alphabet B. This word

is substitutive if and only if there exists an abstract numeration system S = (L,A,<)
such that x is S-automatic, i.e., there exists a DFAO (Q,A, ·, {q0}, B, τ) such that for all

n > 0, xn = τ(q0 · repS(n)).

A proof of this result is given in [112, 115] and a comprehensive treatment is given in

[12, Chapter 3]. In that context, we also obtain an extension of Corollary 3.3.

Corollary 5.3. Let x = (xn)n>0 be an infinite substitutive word over an alphabet B.

There exists an ANS S such that for all b ∈ B, {n > 0 | xn = b} is S-recognizable.

Conversely, if a set X ⊆ N is S-recognizable, then its characteristic sequence is S-

automatic.

Corollary 5.4. A set X ⊆ N is substitutive if and only if there exists an ANS S such that

X is S-recognizable.

5.2 Cobham’s theorem for substitutive sets

In the context of substitutive sets of integers, how could a Cobham-like theorem be ex-

pressed, i.e., what is playing the role of a base? Assume that there exist two purely

substitutive infinite words x ∈ Aω and y ∈ Bω, respectively, generated by the morphisms

σ : A∗ → A∗ prolongable on a ∈ A and τ : B∗ → B∗ prolongable on b ∈ B, i.e.,

σ∞(a) = x and τ∞(b) = y. Consider two codings λ : A → {0, 1} and µ : B → {0, 1}
such that λ(x) = µ(y). This situation corresponds to the case where a set (here, given by

its characteristic word) is recognizable in two a priori different numeration systems.

If A = B and τ = σm for some m > 1, then nothing particular can be said about

the infinite word λ(x): iterating σ or σm from the same prolongable letter leads to the

same fixed point. So we must introduce a notion analogous to the one of multiplicatively

independent bases related to the substitutions σ and λ.

Definition 5.3. Let σ : A∗ → A∗ be a substitution over an alphabet A. The matrix

Mσ ∈ NA×A associated with σ is called the incidence matrix of σ and is defined as

follows:

for all a, b ∈ A, (Mσ)a,b = |σ(b)|a .
A square matrix M ∈ Rn×n with entries in R>0 is irreducible if, for all i, j, there exists

k such that (Mk)i,j > 0. A square matrix M ∈ Rn×n with entries in R>0 is primitive if

there exists k such that, for all i, j, we have (Mk)i,j > 0. Similarly, a substitution over

the alphabet A is irreducible (resp., primitive) if its incidence matrix is irreducible (resp.,

primitive). Otherwise stated, a substitution σ : A∗ → A∗ is primitive if there exists an

integer n > 1 such that, for all a ∈ A, all the letters in A appear in the image of σn(a).



On Cobham’s theorem 911

Let us denote by P the abelianisation map (or Parikh map) that maps a word w over

A = {a1, . . . , ar} to the r-tuple t(|w|a1
, . . . , |w|ar

). The matrix Mσ can be defined by

its columns:

Mσ =
(

P(σ(a1)) · · · P(σ(ar))
)

,

and it satisfies the condition

for all w ∈ A∗, P(σ(w)) = MσP(w) .

Remark 5.5. If a matrix M is primitive, the celebrated theorem of Perron can be used; see

standard textbooks [76] or [64, 122]. A presentation is also given in [88]. To recap some

of the key points, M has a unique dominant real eigenvalue β > 0 and there exists an

eigenvector with positive entries associated with β. Also, for all i, j, there exists ci,j such

that (Mn)i,j = ci,jβ
n + o(βn). For instance, primitivity of Mσ implies the existence of

the frequency of any factor occurring in any fixed point of σ. Note that

if P(w) = t(p1, . . . , pr), then |w| =
r
∑

i=1

pi. (5.1)

Hence, the value |σn(aj)| is obtained by summing up the entries in the jth column of

Mn
σ for all n > 0. If σ is primitive, then there exists some Cj such that |σn(aj)| =

Cjβ
n + o(βn). In particular, if σ is prolongable on a, then |σn(a)| ∼ Cβn, for some

C > 0.

In the general case of a matrix M with non-negative entries, one can use the Perron–

Frobenius theorem for each of the irreducible components of M (they correspond to the

strongly connected components of the associated graph and are also called communicat-

ing classes). Thus any non-negative matrix M has a real eigenvalue α which is greater

or equal to the modulus of any other eigenvalue. We call α the dominant eigenvalue of

M. Moreover, if we exclude the case where α = 1, then there exists a positive integer p
such that Mp has a dominant eigenvalue αp which is a Perron number; see [88, p. 369].

A Perron number is an algebraic integer α > 1 such that all its algebraic conjugates have

modulus less than α. In particular, if we replace a prolongable substitution σ such that

Mσ has a dominant eigenvalue α > 1, with a convenient power σp of σ, then we can

assume that the dominant eigenvalue of σ is a Perron number.

Definition 5.4. Let σ : A∗ → A∗ be a substitution prolongable on a ∈ A such that

all letters of A have an occurrence in σ∞(a). Let α > 1 be the dominant eigenvalue

of the incidence matrix of σ. Let φ : A → B∗ be a coding. We say φ(σ∞(a)) is an

α-substitutive infinite word (with respect to σ). In view of Definition 5.1, this notion can

be applied to subsets of N. If, moreover, σ is primitive, then φ(σ∞(a)) is said to be a

primitive α-substitutive infinite word (w.r.t. σ).

Observe that k-automatic infinite words are k-substitutive infinite words.

Example 5.4. Consider the substitution σ defined by σ(a) = aa0a, σ(0) = 01 and

σ(1) = 10. Its dominant eigenvalue is 3. It is prolongable on a, 0 and 1. The fixed point

x of σ starting with 0 is the Thue-Morse sequence (see Example 3.1). Definition 5.4 does

not imply that x is 3-substitutive because a does not appear in x. But the fixed point y of

σ starting with a is 3-substitutive.
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Example 5.5. Consider the so-called Tribonacci word, which is the unique fixed point of

σ : a 7→ ab, b 7→ ac, c 7→ a. See [125, 60]. The incidence matrix of σ is

Mσ =





1 1 1
1 0 0
0 1 0



 .

One can check that M3
σ contains only positive entries. So the matrix is primitive. Let

αT ≃ 1.839 be the unique real root of the characteristic polynomial −X3 +X2 +X +1
of Mσ . The Tribonacci word T = abacabaab · · · is primitive αT -substitutive. Let τ :
a 7→ 1, b, c 7→ 0 be a coding. The word τ(T ) is the characteristic sequence of a primitive

αT -substitutive set of integers {0, 2, 4, 6, 7, . . .}.

To explain the substitutive extension of Cobham’s theorem we need the following

definition.

Definition 5.5. Let S be a set of prolongable substitutions and x be an infinite word. If

x is an α-substitutive infinite word w.r.t. a substitution σ belonging to S , then x is said to

be α-substitutive with respect to S .

Let us consider the following Cobham-like statement depending on two sets S and S ′

of prolongable substitutions. It is useful to chronologically describe known results gener-

alizing Cobham’s theorem in terms of substitutions leading to the most general statement

for all substitutions.

Statement (S,S ′). Let S and S ′ be two sets of prolongable substitutions. Let α and β
be two multiplicatively independent Perron numbers. Let x ∈ Aω where A is a finite

alphabet. Then the following are equivalent:

(1) the infinite word x is both α-substitutive w.r.t. S and β-substitutive w.r.t. S ′;

(2) the infinite word x is ultimately periodic.

Note that this statement excludes 1-substitutions, i.e., substitutions with a dominant

eigenvalue equal to 1, because Perron numbers are larger than 1. The case of 1-substitutive

infinite words will be mentioned in Subsection 5.6. Also notice that the substitutions we

are dealing with can be erasing, i.e., at least one letter is sent onto the empty word. But

from a result in [36, 9, 75], we can assume that the substitutions are non-erasing. Note

that α and αk are multiplicatively dependent.

Proposition 5.6. [52] Let x be an α-substitutive infinite word. Then there exists an integer

k > 1 such that x is αk-substitutive with respect to a non-erasing substitution.

The implication (2) ⇒ (1) in the above general statement is not difficult to obtain, as

mentioned in Remark 1.3 for the uniform situation.

Proposition 5.7. [48] Let x be an infinite word over a finite alphabet and α be a Perron

number. If x is periodic (resp., ultimately periodic), then x is primitive α-substitutive

(resp., α-substitutive).
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Definition 5.6. Let σ : A∗ → A∗ and τ : B∗ → B∗ be two substitutions. We say that σ
projects on τ if there exists a coding φ : A→ B such that

φ ◦ σ = τ ◦ φ . (5.2)

The implication (1) ⇒ (2) in Statement (S,S ′) is known in many cases described

below:

(i) When S = S ′ is the set of uniform substitutions, this is the classical theorem of

Cobham.
(ii) In [57] S. Fabre proves the statement when S is the set of uniform substitutions and

S ′ is a set of non-uniform substitutions related to some non-standard numeration

systems.
(iii) When S = S ′ is the set of primitive substitutions, the statement is proved in [45].

The proof is based on a characterization of primitive substitutive sequences using

the notion of return word [44]. A word w is a return word to u if wu ∈ L(x), u is

a prefix of wu and u has exactly two occurrences in wu.
(iv) When S = S ′ is the set of substitutions projecting on primitive substitutions, the

statement is proved in [46]. This result is applied to generalize (ii). Using a char-

acterization of U -recognizable sets of integers for a Bertrand numeration basis U
[58], the main result of [46] extends Cobham’s theorem for a large family of non-

standard numeration systems. This latter result includes a result obtained previously

in [15] for Pisot numeration systems.
(v) Definition 5.8 and Theorem 5.17 describe the situation where S = S ′ = Sgood

(defined later). It includes all known and previously described situations for substi-

tutions.
(vi) In [50], Statement (S,S ′) is proven for the most general case that is S and S ′ are

both the set of all substitutions. The final argument is based on a careful study of

return words for non-primitive substitutive sequences.

Example 5.6. The Tribonacci word T is purely substitutive, but is k-automatic for no

integer k > 2. Proceed by contradiction. Assume that there exists an integer k > 2 such

that T is k-automatic. Then T is both k-substitutive and primitive αT -substitutive. By

Theorem 5.17, T must be ultimately periodic, but it is not the case. The factor complexity

of T is pT (n) = 2n + 1. By the Morse–Hedlund theorem (see Remark 3.5), T is not

ultimately periodic.

Let L(x) be the set of all factors of the infinite word x. In [59], the following general-

ization of Cobham’s theorem is proved.

Theorem 5.8. Let k, ℓ > 2 be two multiplicatively independent integers. Let x be a k-

automatic infinite word and y be a ℓ-automatic infinite word. If L(x) ⊂ L(y), then x is

ultimately periodic.

The same result is valid in the primitive case.

Theorem 5.9. [45] Let x and y be, respectively, a primitive α-substitutive infinite word

and a primitive β-substitutive infinite word such that L(x) = L(y). If α and β are

multiplicatively independent, then x and y are periodic.
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Note that under the hypothesis of Theorem 5.9, x and y are primitive substitutive

infinite words. Thus L(x) = L(y) whenever L(x) ⊂ L(y). Observe that if y is the fixed

point starting with a, and x the fixed point starting with 0 of the substitution σ defined in

Example 5.4, then L(x) ⊂ L(y), but x is not ultimately periodic.

In Sections 5.3 and 5.4 we give the main arguments to prove Statement (Sgood,Sgood).

5.3 Density, syndeticity and bounded gaps

The proofs of most of the generalizations of Cobham’s theorem are divided into two parts.

(i) Dealing with a subset X of integers, we have to prove that X is syndetic. Equiva-

lently, dealing with an infinite word x, we have to prove that the letters occurring

infinitely many times in x appear with bounded gaps.

(ii) In the second part, the proof of the ultimate periodicity of X or x has to be carried

out.

This section is devoted to the description of the main arguments that lead to the com-

plete treatment of (i).

In the original proof of Cobham’s theorem one of the main arguments is that as k and

ℓ are multiplicatively independent (we refer to Theorem 1.1) the set {kn/ℓm | n,m ∈ N}
is dense in [0,+∞). In the uniform case, these powers refer to the length of the iterates

of the substitutions. Indeed, suppose σ : A∗ → A∗ is a k-uniform substitution. Then for

every a ∈ A we have |σn(a)| = kn. Unsurprisingly, to be able to treat the non-uniform

case, it is important to know that the set
{ | σn(a) |
| τm(b) | | n,m ∈ N

}

is dense in [0,+∞), for some a, b ∈ A. We explain below that |σn(a)| and |τm(b)| are

governed by the dominant eigenvalue of their incidence matrices. First we focus on part

(i) and consider infinite words.

5.3.1 The length of the iterates The length of the iterates are described in the follow-

ing lemma. Note that it includes erasing substitutions and substitutions with a dominant

eigenvalue equal to 1. Observe that for the substitution σ defined by 0 7→ 001 and 1 7→ 11
we have |σn(0)| = (n+ 2)2n−1 and |σn(1)| = 2n, showing that the situation is different

from the uniform case. It can easily be described using the Jordan normal form of the

incidence matrix Mσ . Discussion of the following result can be found in [12, Section

4.7.3].

Lemma 5.10 (Chapter III.7 in [118]). Let σ : A → A∗ be a substitution. For all a ∈ A
one of the two following situations occurs

(1) there exists N ∈ N such that for all n > N , |σn(a)| = 0, or,

(2) there exist d(a) ∈ N and real numbers c(a), θ(a) such that

lim
n→+∞

|σn(a)|
c(a)nd(a) θ(a)n

= 1.
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Moreover, in the case (2), for all i ∈ {0, . . . , d(a)} there exists a letter b ∈ A appear-

ing in σj(a) for some j ∈ N and such that

lim
n→+∞

|σn(b)|
c(b)ni θ(a)n

= 1.

Definition 5.7. Let σ be a non-erasing substitution. For all a ∈ A, the pair (d(a), θ(a))
defined in Lemma 5.10 is called the growth type of a. If (d, θ) and (e, β) are two growth

types, then we say that (d, θ) is less than (e, β) (or (d, θ) < (e, β)) whenever θ < β or,

θ = β and d < e.

Consequently, if the growth type of a ∈ A is less than the growth type of b ∈ A, then

limn→+∞ |σn(a)|/|σn(b)| = 0. We say that a ∈ A is a growing letter if (d(a), θ(a)) >
(0, 1) or equivalently, if limn→+∞ |σn(a)| = +∞.

We set Θ := max{θ(a) | a ∈ A}, D := max{d(a) | ∀a ∈ A : θ(a) = Θ} and

Amax := {a ∈ A | θ(a) = Θ, d(a) = D}. The dominant eigenvalue of Mσ is Θ. We

say that the letters of Amax are of maximal growth and that (D,Θ) is the growth type of

σ. Consequently, we say that a substitutive infinite word y is (D,Θ)-substitutive if the

underlying substitution is of growth type (D,Θ). Observe that, due to Lemma 5.10, any

substitutive sequence is (D,Θ)-substitutive for some pair (D,Θ).
Observe that if Θ = 1, then in view of the last part of Lemma 5.10, there exists at least

one non-growing letter of growth type (0, 1). Otherwise stated, if a letter has polynomial

growth, then there exists at least one non-growing letter. Consequently σ is growing (i.e.,

all its letters are growing) if and only if θ(a) > 1 for all a ∈ A. We define

λσ : A∗ → R, u0 · · ·un−1 7→
n−1
∑

i=0

c(ui)1Amax
(ui) ,

where c : A→ R+ is defined in Lemma 5.10. From Lemma 5.10 we deduce the following

lemma.

Lemma 5.11. For all u ∈ A∗, we have limn→+∞ |σn(u)|/nDΘn = λσ(u).

We say that the word u ∈ A∗ is of maximal growth if λσ(u) 6= 0.

Corollary 5.12. Let σ be a substitution of growth type (D,Θ). For all k > 1, the growth

type of σk is (D,Θk).

5.3.2 Letters and words appear with bounded gaps Recall that the first step in the

proof of Cobham’s theorem is to prove that the letters occurring infinitely many times

appear with bounded gaps. In our context, this implies the same property for words.

Moreover, we can relax the multiplicative independence hypothesis in order to include

1-substitutions. Note that 1 and α > 1 are multiplicatively dependent.

Theorem 5.13. [52] Let d, e ∈ N \ {0} and α, β ∈ [1,+∞) such that (d, α) 6= (e, β)
and satisfying one of the following three conditions:

(i) α and β are multiplicatively independent;
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(ii) α, β > 1 and d 6= e;

(iii) (α, β) 6= (1, 1) and, β = 1 and e 6= 0, or, α = 1 and d 6= 0.

Let C be a finite alphabet. If x ∈ Cω is both (d, α)-substitutive and (e, β)-substitutive,

then the words occurring infinitely many times in x appear with bounded gaps.

The main argument used to prove this in [52] is the following.

Theorem 5.14. Let d, e ∈ N and α, β ∈ [1,+∞). The set

Ω =

{

αnnd

βmme
| n,m ∈ N

}

is dense in [0,+∞) if and only if one of the following three conditions holds:

(i) α and β are multiplicatively independent;

(ii) α, β > 1 and d 6= e;

(iii) β = 1 and e 6= 0, or, α = 1 and d 6= 0.

Sketch of the proof of Theorem 5.13. We only consider the case where α and β are multi-

plicatively independent.

Let σ : A∗ → A∗ be a substitution prolongable on a letter a′ having growth type

(d, α). Let τ : B∗ → B∗ be a substitution prolongable on a letter b′ having growth

type (e, β). Let φ : A → C and ψ : B → C be two codings such that φ(σ∞(a′)) =
ψ(τ∞(b′)) = x. Using Proposition 5.6 we may assume that σ and τ are non-erasing.

Suppose there is a letter a having infinitely many occurrences in x, but that appears with

unbounded gaps. Then the letters in φ−1({a}) appear with unbounded gaps. To avoid

extra technicalities (a complete treatment is considered in [52]), we assume that there is

a letter in φ−1({a}) having maximal growth. Then it is quite easy to construct for all

n ∈ N, a word wn of length c1n
dαn, appearing in y at the index c2n

dαn, that does not

contain any letter of φ−1({a}). On the other hand, using a kind of pumping lemma for

substitutions, one can show that there is a letter of ψ−1({a}) in z at the index c3n
eβn.

Therefore, using Theorem 5.14, the letter a appears in a word φ(wn) for some n. This is

not possible.

Now let us explain how to extend this result for a single letter to words. It uses what

is called in [110] the substitutions of the words of length n. Let u be a word of length n
occurring infinitely often in x. To prove that u appears with bounded gaps in x, it suffices

to prove that the letter 1 appears with bounded gaps in the infinite word t ∈ {0, 1}N
defined by

ti =

{

1, if xi · · ·xi+n−1 = u;
0, otherwise.

LetAn be the set of words of length n overA. The infinite word y(n) = (yi · · · yi+n−1)i>0

over the alphabet An is a fixed point of the substitution σn : (An)∗ → (An)∗ defined, for

all (a1 · · · an) in An, by

σn((a1 · · · an)) = (b1 · · · bn)(b2 · · · bn+1) · · · (b|σ(a1)| · · · b|σ(a1)|+n−1)

where σ(a1 · · · an) = b1 · · · bk. For details; see Section V.4 in [110].
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Let ρ : An → A∗ be the coding defined by ρ((b1 · · · bn)) = b1 for all (b1 · · · bn) ∈
An. We have ρ ◦ σn = σ ◦ ρ, and then ρ ◦ σk

n = σk ◦ ρ. Hence, if σ is of growth type

(d, α), then y(n) is (d, α)-substitutive. Let f : An → {0, 1} be the coding defined by

f((b1 · · · bn)) =
{

1, if b1 · · · bn = u;
0, otherwise.

It is easy to see that f(y(n)) = t, and hence t is (d, α)-substitutive. Then one proceeds in

the same way with τ and uses the result for letters to conclude the proof.

5.4 Ultimate periodicity

Definition 5.8. Let σ : A∗ → A∗ be a substitution. If there exists a sub-alphabet B ⊆ A
such that for all b ∈ B, σ(b) ∈ B∗, then the substitution τ : B∗ → B∗ defined by

the restriction τ(b) = σ(b), for all b ∈ B, is a sub-substitution of σ. Note that σ is, in

particular, a sub-substitution of itself.

The substitution σ having α as dominant eigenvalue is a “good” substitution if it has

a primitive sub-substitution whose dominant eigenvalue is α. So let us stress the fact that

to be a “good” substitution, the sub-substitution has to be primitive and have the same

dominant eigenvalue as the original substitution. We let Sgood denote the set of good

substitutions.

Remark 5.15. For all growing substitutions σ, there exists an integer k such that σk has

a primitive sub-substitution. Hence by taking a convenient power of σ, the substitution

can always be assumed to have a primitive sub-substitution.

Note that primitive substitutions and uniform substitutions are good substitutions.

Now consider the substitution σ : {a, 0, 1}∗ → {a, 0, 1}∗ given by σ : a 7→ aa0, 0 7→
01, 1 7→ 0. Its dominant eigenvalue is 2 and it has only one primitive sub-substitution

(0 7→ 01, 1 7→ 0) whose dominant eigenvalue is (1 +
√
5)/2, and hence it is not a good

substitution.

Remark 5.16. Let σ : A∗ → A∗ and τ : B∗ → B∗ be two substitutions such that σ
projects on τ ; recall (5.2) for the definition of projection. There exists a coding φ : A →
B such that φ ◦ σ = τ ◦ φ. Note that φ ◦ σn = τn ◦ φ. If τ is primitive, then it follows

that σ belongs to Sgood.

Theorem 5.17. Let α and β be two multiplicatively independent Perron numbers. Let

x ∈ Aω where A is a finite alphabet. Then the following are equivalent:

(i) the infinite word x is both α-substitutive w.r.t. Sgood and β-substitutive w.r.t. Sgood;

(ii) the infinite word x is ultimately periodic.

Proof. Let σ : B∗ → B∗ (resp., τ : C∗ → C∗) be a substitution in Sgood having α (resp.,

β) as its dominant eigenvalue and φ (resp., ψ) be a coding such that x = φ(σ∞(b)) for

some b ∈ B (resp., x = ψ(τ∞(c)) for some c ∈ C).

Let us first suppose that both substitutions are growing. In this way, taking a power if

needed, we can suppose that they have primitive sub-substitutions.
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By Theorem 5.13, the factors occurring infinitely many times in x appear with bounded

gaps. Hence for any primitive and growing sub-substitutions σ and τ of σ and of τ re-

spectively, we have φ(L(σ)) = ψ(L(τ)) = L. Using Theorem 5.9 it follows that L is

periodic, i.e., there exists a shortest word u, appearing infinitely many times in x, such

that L = L(uω). Thus u appears with bounded gaps. Let Ru be the set of return words

to u. We recall that a word w is a return word to u if wu belongs to L(x), u is a prefix of

wu and u has exactly two occurrences in wu. Since u appears with bounded gaps, the set

Ru is finite. There exists an integer N such that all words wu ∈ L(xNxN+1 · · · ) appear

infinitely many times in x for all w ∈ Ru. Hence these words appear with bounded gaps

in x. We set t = xNxN+1 · · · and we will prove that t is periodic. Consequently x would

be ultimately periodic. We can suppose that u is a prefix of t. Then t is a concatenation

of return words to u. Let w be a return word to u. It appears with bounded gaps; hence it

appears in some φ(σn(a)), where σ is a primitive and growing sub-substitution, and there

exist two words, p and q, and an integer i such that wu = puiq. As |u| is the least period

of L, it must be that wu = ui. It follows that t = uω .

If, for example, σ is non-growing, then a result of J.-J. Pansiot [100] asserts that either

by modifying σ and φ in a suitable way (in that case α could be replaced by a power

of α) we can suppose σ is growing or L(σ∞(b)) contains the language of a periodic

infinite word. We have treated the first case before. For the second case it suffices to use

Theorem 5.13.

Suppose α and β are multiplicatively independent real numbers and that x is a α-

substitutive infinite word w.r.t. Sgood and y is a β-substitutive infinite word w.r.t. Sgood

satisfying L(x) ⊂ L(y). Then the conclusion of Theorem 5.8 is far from true. It suffices

to look at Example 5.4 and the observation made after Theorem 5.9.

Remark 5.18. The Statement (S,S ′) remains open when S is the set of substitutions

which are not good. Nevertheless there are cases where we can say more. For example, if

x is both α-substitutive and β-substitutive (with α and β being multiplicatively indepen-

dent), and, L(x) contains the language of a periodic sequence, then, from Theorem 5.13,

we deduce that x is ultimately periodic.

Moreover, as we will see in the next section, this statement holds in the purely substi-

tutive context.

5.5 The case of fixed points

Now let restrict ourselves to the purely substitutive case. In this setting Cobham’s theorem

holds. Note that in the statement of the following result, α and β are necessarily Perron

numbers. Moreover, since the substitutions are growing, then α and β must be larger than

one.

Theorem 5.19. Let σ : A∗ → A∗ and τ : A∗ → A∗ be two non-erasing growing sub-

stitutions prolongable on a ∈ A with respective dominant eigenvalues α and β. Suppose

that all letters of A appear in σ∞(a) and in τ∞(a) and that α and β are multiplicatively

independent. If x = σ∞(a) = τ∞(a), then x is ultimately periodic.
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Proof. Thanks to Remark 5.15, we may assume that σ has a primitive sub-substitution.

Using Theorem 5.13, the letters appearing infinitely often in x appear with bounded gaps.

Let σ : A→ A be a primitive sub-substitution of σ. Let c ∈ A. Suppose that there exists

a letter b, appearing infinitely many times in x, which does not belong to A. Then the

word σn(c) = σn(c) does not contain b and b could not appear with bounded gaps. Con-

sequently all letters (and, in particular, a letter of maximal growth) appearing infinitely

often in x belong to A. Hence σ also has α as dominant eigenvalue and σ is a “good”

substitution. In the same way τ is a “good” substitution. Theorem 5.17 concludes the

proof.

5.6 Back to numeration systems

Let S be an abstract numeration system. There is no reason for the substitutions describ-

ing characteristic words of S-recognizable sets (see Corollary 5.4) to be primitive. To

obtain a Cobham-type theorem for families of abstract numeration systems, one has to

interpret Theorem 5.17 in this formalism.

5.6.1 Polynomially-growing abstract numeration systems Here we only mention the

following result. The paper [42] is also of interest. It is well-known that the growth func-

tion counting the number of words of length n in a regular language is either polynomial,

i.e., in O(nk) for some integer k or exponential, i.e., in Ω(θn) for some θ > 1.

Proposition 5.20. [52] Let S = (L,A,<) (resp., T = (M,B,≺)) be an abstract nu-

meration system where L is a polynomial regular language (resp., M is an exponential

regular language). A set X of integers is both S-recognizable and T -recognizable if and

only if X is ultimately periodic.

5.6.2 Bertrand basis and ωα-substitutive words LetU be a Bertrand numeration basis

such that repU (N) = L(α) where α is a Parry number which is not an integer. In [58]

a substitution denoted by ωα is defined. The importance of this substitution is justified

by Theorem 5.21. If dα(1) = t1 · · · tn0ω , tn 6= 0, then ωα is defined on the alphabet

{1, . . . , n} by

1 7→ 1t12, . . . , n− 1 7→ 1tn−1n, n 7→ 1tn .

If dα(1) = t1 · · · tn(tn+1tn+2 · · · tn+m)ω , where n andm are minimal and where tn+1+
tn+2 + · · ·+ tn+m 6= 0, then ωα is defined on the alphabet {1, · · · , n+m} by

1 7→ 1t12, . . . , n+m− 1 7→ 1tn+m−1(n+m), n+m 7→ 1tn+m(n+ 1) .

In both cases the substitution ωα is primitive and has α as dominant eigenvalue. A sub-

stitution that projects (see Definition 5.6) on ωα is called a ωα-substitution, and we call

each infinite word which is the image under a coding of a fixed point of a ωα-substitution

a ωα-substitutive infinite word (α-automatic infinite word in [58]).

Theorem 5.21. [58, Corollary 1] Let U be a Bertrand numeration basis such that

repU (N) = L(α) where α is a Parry number. A set X ⊂ N is U -recognizable if and

only if its characteristic sequence 1X is ωα-substitutive.
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Remark 5.16 and Theorem 5.17 imply the following result.

Theorem 5.22. [46] Let U and V be two Bertrand numeration systems. Let α and

β be two multiplicatively independent Parry numbers such that repU (N) = L(α) and

repV (N) = L(β). A set X ⊆ N is U -recognizable and V -recognizable if and only if X
is ultimately periodic.

6 Cobham’s theorem in various contexts

6.1 Regular sequences

Regular sequences as presented in [6, 7, 9] are a generalization of automatic sequences to

sequences taking infinitely many values. Many examples of such sequences are given in

the first two references. Also see [43] for a generalization of the notion of automaticity

in the framework of group actions. Let R be a commutative ring. Let k > 2. Consider a

sequence x = (xn)n>0 taking values in some R-module. If the R-module generated by

all sequences in the k-kernel Nk(x) is finitely generated (recall Theorem 3.2), then the

sequence x is said to be (R, k)-regular.

Theorem 6.1 (Cobham–Bell theorem [10]). Let R be a commutative ring3. Let k, ℓ be

two multiplicatively independent integers. If a sequence x ∈ RN is both (R, k)-regular

and (R, ℓ)-regular, then it satisfies a linear recurrence over R.

6.2 Algebraic setting and quasi-automatic functions

In [34] G. Christol characterized p-recognizable sets in terms of formal power series.

Theorem 6.2. Let p be a prime number and Fp be the field with p elements. A subset

A ⊂ N is p-recognizable if and only if f(X) =
∑

n∈AX
n ∈ Fp[[X]] is algebraic over

Fp(X).

This was applied to Cobham’s theorem in [35] to obtain an algebraic version.

Theorem 6.3. Let A be a finite alphabet, x ∈ AN, and, K1 and K2 be two finite fields

with different characteristics. Let α1 : A → K1 and α2 : A → K2 be two one-to-one

maps. If f(X) =
∑

n∈N
α1(xn)X

n ∈ K1[[X]] is algebraic over K1(X) and f(X) =
∑

n∈N
α2(xn)X

n ∈ K2[[X]] is algebraic over K2(X), then f(X) is rational.

Quasi-automatic functions were introduced by Kedlaya in [78]. Also see [79], where

Christol’s theorem is generalized to Hahn’s generalized power series. In this algebraic

setting, an extension of Cobham’s theorem is proved by Adamczewski and Bell in [1].

Details are given in the chapter “Automata in number theory” of this handbook.

3Note that in [6] the ground ring R is assumed to be Noetherian (every ideal in R is finitely generated), but

this extra assumption is not needed in the above statement.
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6.3 Real numbers and verification of infinite-state systems

Sets of numbers recognized by finite automata arise when analyzing systems with un-

bounded mixed variables taking integer or real values. Therefore systems such as timed

or hybrid automata are considered [17]. One needs to develop data structures representing

sets manipulated during the exploration of infinite state systems. For instance, it is often

needed to compute the set of reachable configurations of such a system. Let k > 2 be an

integer. Considering separately integer and fractional parts, a real number x > 0 can be

decomposed as

x =

d
∑

i=0

ci k
i +

+∞
∑

i=1

c−i k
−i, ci ∈ [[0, k − 1]], i 6 d, (6.1)

and gives rise to the infinite word cd · · · c0 ⋆ c−1c−2 · · · over [[0, k − 1]] ∪ {⋆}, which is

a k-ary representation of x. Note that rational numbers of the form p/kn have two k-ary

representations, one ending with 0ω and one with (k − 1)ω . For the representation of

negative elements, one can consider base k-complements or signed number representa-

tions [81], the sign being determined by the most significant digit which is thus 0 or k−1
(and this digit may be repeated an arbitrary number of times). For definition of Büchi and

Muller automata, see the first part of this handbook.

Definition 6.1. A set X ⊆ R is k-recognizable if there exists a Büchi automaton accept-

ing all the k-ary representations of the elements in X . Such an automaton is called a Real

Number Automaton or RNA.

These notions extend naturally to subsets of Rd and to Real Vector Automata or RVA.

Also the Büchi theorem 4.5 holds for a suitable structure 〈R,Z,+, <, Vk〉; see [22].

Theorem 6.4. [21] If X ⊆ Rd is definable by a first-order formula in 〈R,Z,+, <〉, then

X written in base k > 2 is accepted by a weak deterministic RVA A.

Weakness means that each strongly connected component of A contains only accept-

ing states or only non-accepting states.

Theorem 6.5. [18] Let k, ℓ > 2 be two multiplicatively independent integers. If X ⊆
R is both k- and ℓ-recognizable by two weak deterministic RVA, then it is definable in

〈R,Z,+, <〉.

The extension of the Cobham–Semenov theorem for subsets of Rd in this setting is

discussed in [20]; also see [24] for a comprehensive presentation. The case of two coprime

bases was first considered in [18]. Surprisingly, if the multiplicatively independent bases

k, ℓ > 2 share the same prime factors, then there exists a subset of R that is both k- and ℓ-
recognizable, but not definable in 〈R,Z,+, <〉; see [19]. This shows the main difference

between recognizability of subsets of real numbers written in base k for (general) Büchi

automata and weak deterministic RVA. Though written in a completely different language,

a similar result was independently obtained in [2]. This latter paper is motivated by the

study of some fractal sets. For extension to non-integer bases and graph directed iterated

systems; see [32].
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6.4 Dynamical systems and subshifts

In this section we would like to express a Cobham-type theorem in terms of dynamical

systems called substitutive subshifts. Theorem 5.9 will appear as a direct corollary.

We first need some definitions.

A dynamical system is a pair (X,S) where X is a compact metric space and S a

continuous map from X onto itself. The dynamical system (X,S) is minimal whenever

X and the empty set are the only S-invariant closed subsets of X , that is, S(X) = X .

We say that a minimal system (X,S) is periodic whenever X is finite.

Let (X,S) and (Y, T ) be two dynamical systems. We say that (Y, T ) is a factor of

(X,S), or that (X,S) factorizes to (Y, S), if there is a continuous and onto map φ : X →
Y such that φ ◦ S = T ◦ φ (φ is called a factor map). If φ is one-to-one we say that φ is

an isomorphism and that (X,S) and (Y, T ) are isomorphic.

Let A be an alphabet. We endow Aω with the infinite product of the discrete topolo-

gies. It is a metric space where the metric is given by

d(x, y) =
1

2n
with n = inf{k | xk 6= yk}, (6.2)

where x = (xn)n>0 and y = (yn)n>0 are two elements of Aω . A subshift on A is a pair

(X,T|X) where X is a closed T -invariant subset of Aω and T is the shift transformation

T : Aω → Aω, (xn)n>0 7→ (xn+1)n>0.

Let u be a word over A. The set [u]X = {x ∈ X | x0 · · ·x|u|−1 = u} is a cylinder.

The family of these sets is a base of the induced topology on X . When there is no

misunderstanding, we write [u] and T instead of [u]X and T|X .

Let x ∈ Aω . The set {y ∈ Aω | L(y) ⊆ L(x)} is denoted Ω(x). It is clear that

(Ω(x), T ) is a subshift. We say that (Ω(x), T ) is the subshift generated by x. When x is

a sequence, we have Ω(x) = {Tnx | n ∈ N}. Observe that (Ω(x), T ) is minimal if and

only if x is uniformly recurrent, i.e., all its factors occur infinitely often in x and for each

factor u of x, there exists a constant K such that the distance between two consecutive

occurrences of u in x is bounded by K.

Let φ be a factor map from the subshift (X,T ) on the alphabet A onto the subshift

(Y, T ) on the alphabet B. Here x[i,j] denotes the word xi · · ·xj , i 6 j. The Curtis–

Hedlund–Lyndon theorem [88, Thm. 6.2.9] asserts that φ is a sliding block code: there

exists an r-block map f : Ar → B such that (φ(x))i = f(x[i,i+r−1]) for all i ∈ N and

x ∈ X . We shall say that f is a block map associated to φ and that f defines φ. If u =
u0u1 · · ·un−1 is a word of length n > r, then we define f(u) by (f(u))i = f(u[i,i+r−1]),
i ∈ {0, 1, · · · , n − r + 1}. Let C denote the alphabet Ar and Z = {(x[i,r+i−1])i>0 |
(xn)n>0 ∈ X}. It is easy to check that the subshift (Z, T ) is isomorphic to (X,T ) and

that f induces a 1-block map (a coding) from C onto B which defines a factor map from

(Z, T ) onto (Y, T ).
We can now state a Cobham-type theorem for subshifts generated by substitutive se-

quences. Observe that it implies Theorem 5.9 and Statement (S,S ′) when S = S ′ is the

set of primitive substitutions.

Theorem 6.6. Let (X,T ) and (Y, T ) be two subshifts generated, respectively, by a prim-

itive α-substitutive sequence x and by a primitive β-substitutive sequence y. Suppose

(X,T ) and (Y, T ) both factorize to the subshift (Z, T ). If α and β are multiplicatively
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independent, then (Z, T ) is periodic.

Below we give a sketch of the proof, which involves the concept of an ergodic mea-

sure. An invariant measure for the dynamical system (X,S) is a probability measure

µ, on the σ-algebra B(X) of Borel sets, with µ(S−1B) = µ(B) for all B ∈ B(X);
the measure is ergodic if every S-invariant Borel set has measure 0 or 1. The set of

invariant measures for (X,S) is denoted by M(X,S). The system (X,S) is uniquely

ergodic if #(M(X,S)) = 1. For expository books on subshifts and/or ergodic theory,

see [39, 80, 88, 110, 84].

It is well known that the subshifts generated by primitive substitutive sequences are

uniquely ergodic [110].

Let φ : X → Z and ψ : Y → Z be two factor maps. Suppose that (Z, T ) is not

periodic. We will prove that α and β are multiplicatively independent.

Let µ and λ be the unique ergodic measures of (X,T ) and (Y, T ) respectively. It

is not difficult to see that (Z, T ) is also generated by a primitive substitutive sequence

and consequently is uniquely ergodic. Let δ be its unique ergodic measure. We notice

that φµ defined by φµ(A) = µ(φ−1(A)), for all Borel sets A of Z, and ψλ defined by

ψλ(A) = µ(ψ−1(A)), for all Borel setsA of Z, are invariant measures for (Z, T ). Hence

φµ = δ = ψλ. Let us give more details about both measures in order to conclude the

proof.

Theorem 6.7. [73] Let (Ω, T ) be a subshift generated by a primitive purely γ-substitutive

sequence and m be its unique ergodic measure. Then, the measures of cylinders in Ω lie

in a finite union of geometric progressions. There exists a finite set F of positive real

numbers such that

{m(C) | C cylinder of X} ⊂
⋃

n∈N

γ−nF .

In conjunction with the next result and using the pigeonhole principle we will conclude

the proof.

Proposition 6.8. [47] Let (Ω, T ) be a subshift generated by a primitive substitutive se-

quence on the alphabet A. There exists a constant K such that for any block map

f : A2r+1 → B, we have #(f−1({u})) 6 K for all u appearing in some sequence

of f(Ω).

From these last two results we deduce that there exist two sets of numbers FX and

FY such that

{δ(C) | C cylinder of Z} ={µ(φ−1(C)) | C cylinder of Z}
={λ(ψ−1(C)) | C cylinder of X}

⊂
(

⋃

n∈N

α−nFX

)

⋂

(

⋃

n∈N

β−nFY

)

.

The sets FX and FY being finite, there exist two cylinder sets U and V of Z, a ∈ FX ,

b ∈ FY and n,m, r, s four distinct positive integers, such that

aα−n = δ(U) = bβ−m and aα−r = δ(V ) = bβ−s .
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Consequently α and β are multiplicatively dependent.

6.5 Tilings

6.5.1 From definable sets Let A be a finite alphabet. An array in Nd is a map T :

Nd → A. It can be viewed as a tiling of Rd
+. The collection of all these arrays is AN

d

.

For all x ∈ Nd, let |x| denote the sum of the coordinates of x and B(x, r) be the set

{(y1, . . . , yd) ∈ Nd | 0 6 yi − xi < r, 1 6 i 6 d}.

We say T is periodic (resp., ultimately periodic) if there exists p ∈ Nd such that

T (x + p) = T (x) for all x ∈ Nd (resp., for all large enough x). We also need another

notion of periodicity. We say that Z ⊂ Nd is p-periodic inside X ⊂ Nd if for any x ∈ X
with x+ p ∈ X we have

x ∈ Z if and only if x+ p ∈ Z .

We say that Z is locally periodic if there exists a non-empty finite set V ⊂ Nd of non-zero

vectors such that for some K > max{|v| | v ∈ V } and L > 0 one has

(∀x ∈ Nd, |x| > L)(∃v ∈ V )(Z is v-periodic inside B(x,K)) .

Observe that for d = 1, local periodicity is equivalent to ultimate periodicity. We

say T is pseudo-periodic if for all a ∈ A, T −1(a) is locally periodic and every (d − 1)-
section of T −1(a), say S(i, n) = {x ∈ T −1(a) | xi = n}, 1 6 i 6 d and n ∈ N, is

pseudo-periodic (ultimately periodic when d − 1 = 1). The following criterion is due to

Muchnik; see [97] for the proof.

Proposition 6.9. Let E ⊂ Nd and T : Nd → {0, 1} be its characteristic function. The

following are equivalent:

(i) E is definable in Presburger arithmetic;

(ii) T is pseudo-periodic;

(iii) for all a ∈ {0, 1}, there exist n ∈ N, vi ∈ Nd and finite sets Vi ⊂ Nd, 0 6 i 6 n
such that

T −1(a) = V0 ∪





⋃

16i6n

(

vi +
∑

v∈Vi

Nv

)



 .

Let p be a positive integer and A be a finite alphabet. A p-substitution (or substitu-

tion if we do not need to specify p) is a map S : A → ABp where Bp = B(0, p) =

Πd
i=1{0, · · · , p − 1}. The substitution S can be considered as a function from AN

d

into

itself by setting

S((T (x)) = [S(T (y))](z), for all T ∈ AN
d

where y ∈ Nd and z ∈ Bp are the unique vectors satisfying x = py + z.

In the same way, we can define S : ABpn → AB
pn+1 . We remark that Sn(a) =

S(Sn−1(a)) for all a ∈ A and n > 0. We say T is generated by a p-substitution if there

exist a coding φ and a fixed point T0 of a p-substitution such that T = φ ◦ T0.

In [31] the authors proved the following theorem, which is analogous to Theorem 3.1.
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Theorem 6.10. Let p > 2 and d > 1. A set E ⊂ Nd is p-recognizable if and only if the

characteristic function of E is generated by a p-substitution.

Hence we can reformulate the Cobham–Semenov theorem as follows [121].

Theorem 6.11 (Cobham–Semenov theorem, Version 2). Let p and q be two multiplica-

tively independent integers greater or equal to 2. Then the array T is generated by both

a p-substitution and a q-substitution if and only if T is pseudo-periodic.

A dynamical proof of this can be given as for the unidimensional case; see [49] for the

primitive case.

6.5.2 Self-similar tilings In [40], a Cobham-like theorem is expressed in terms of self-

similar tilings of Rd with a proof using ergodic measures; see [124] for more about self-

similar tilings. From the point of view of dynamical systems, the main result in [99] is

also a Cobham-like theorem for self-similar tilings.

6.6 Toward Cobham’s theorem for the Gaussian integers

I. Kátai and J. Szabó proved [77] that the sequences ((−p+ i)n)n>0 and ((−p− i)n)n>0

give rise to numeration systems whose set of digits is {0, 1, . . . , p2}, p ∈ N \ {0}. It is

an exercise to check that when p ∈ N \ {0} and q ∈ N \ {0} are different then −p + i
and −q + i are multiplicatively independent. Therefore one could expect a Cobham-type

theorem for the set of Gaussian integers G = {a + ib | a, b ∈ Z}. A subset S ⊂ G is

periodic if there exists h ∈ G such that, for all g ∈ G, s ∈ S if and only if s + gh ∈ S.

G. Hansel and T. Safer conjectured the following [69]:

Conjecture 6.12. Let p and q be two different positive integers and S ∈ G. Then the

following are equivalent.

(i) The set S is (−p+ i)-recognizable and (−q + i)-recognizable;

(ii) There exists a periodic set P such that the symmetric difference set S∆P is finite.

The proof that (ii) implies (i) is easy. They tried to prove the other implication using

the following (classical) steps:

(1) Dp,q =
{

(−p+i)n

(−q+i)m | n,m ∈ Z

}

is dense in C.

(2) S is syndetic

(3) S is periodic up to some finite set.

They succeeded in proving (ii) as given by the next result.

Theorem 6.13. Let p and q be two positive integers such that the set Dp,q is dense in C.

Let S ⊂ G be (−p+ i)-recognizable and (−q + i)-recognizable. Then, S is syndetic.

Let us make some observations about the density of the set Dp,q . Let −p + i = aeiθ

and −q + i = beiφ.
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Proposition 6.14. The following are equivalent.

(i) The set Dp,q is dense in C;

(ii) The set Dp,q is dense on the circle: {eiθ | θ ∈ R} ⊂ Dp,q;

(iii) The following numbers are rationally independent (or linearly dependent over Q):

ln b

ln a
,
θ

2π

ln b

ln a
− φ

2π
, 1 .

The equivalence between (i) and (iii) is proven in [69] from an easy computation.

The equivalence between (i) and (ii) comes from the fact that p2 + 1 and q2 + 1 are

multiplicatively independent; see [69, Prop. 2]. As an example, take p = 1 and p = 2.

Then, a =
√
2, b =

√
5, θ = 3π

4 and φ = arctan(− 1
2 ). Proving the density of D1,2

is equivalent to proving that ln 5/ ln 2 , arctan(1/2)/π and 1 are rationally independent.

In [69] the authors observe that the four exponentials conjecture (see [128]) would imply

that Dp,q is dense in C.

Conjecture 6.15 (“four exponentials conjecture”). Let {λ1, λ2} and {x1, x2} be two

pairs of rationally independent complex numbers. Then, one of the numbers eλ1x1 , eλ1x2 ,

eλ2x1 , eλ2x2 is transcendental.

6.7 Recognizability over Fq[X]

Using the analogy existing between Z and the ring of polynomials over a finite field Fq

of positive characteristic, one can easily define B-recognizable sets of polynomials [113].

In [129, 106] characterization of these sets in a convenient logical structure analogous to

Theorem 4.5 is given. A family of sets of polynomials recognizable in all polynomial

bases is described in [113, 129]. Again, we can conjecture a Cobham-like theorem.

7 Decidability issues

So far we have seen that ultimately periodic sets have a very special status in the context

of numeration systems (recall Proposition 2.6, Theorem 5.1 or Theorems 5.17 and 5.19).

They can be described using a finite amount of data (two finite words for the preperiodic

and the periodic parts). Let us settle down once more to the usual integer base numera-

tion system. Let X ⊆ N be a k-recognizable set of integers given by a DFA accepting

repk(X). Is there an algorithmic decision procedure which permits one to decide for any

such set X , whether or not X is ultimately periodic? For an integer base, the problem

was solved positively in [74]. The main ideas are the following ones. Given a DFA A
accepting a k-recognizable set X ⊆ N, the number of states of A gives an upper bound

on the possible index and period for X . Consequently, there are finitely many candidates

to check. For each such pair (i, p) of candidates, produce a DFA for all possible corre-

sponding ultimately periodic sets and compare it with A. Using non-deterministic finite

automata, the same problem was solved in [5]. With the formalism of first-order logic

the problem becomes trivial. If a set X ⊆ N is k-recognizable, then using Theorem 4.5
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it is definable by a formula ϕ(x) in 〈N,+, Vk〉 and X is ultimately periodic if and only

if (∃p)(∃N)(∀x)(x > N ∧ (ϕ(x) ↔ ϕ(x + p))). Since we have a decidable theory, it

is decidable whether this latter sentence is true [29, Prop. 8.2]. The problem can be ex-

tended to Zd and was discussed in [97]. It is solved in polynomial time in [87]. In view of

Theorem 5.1 the question is extended to any abstract numeration system. Let S be an ab-

stract numeration system. Given a DFA accepting an S-recognizable set X ⊆ N, decide

whether or not X is ultimately periodic. Some special cases have been solved positively

in [33, 11]. Using Corollary 5.3, the same question can be asked in terms of morphisms.

Given a morphism σ : A∗ → A∗ prolongable on a letter a and a coding τ : A → B,

decide whether or not τ(σ∞(a)) is ultimately periodic. The is the HD0L (ultimate) pe-

riodicity problem. The purely substitutive case was solved independently in [101] and

[71]. The general substitutive case is solved positively in [51] and [95]. Also see [91, 92]

where decidability questions about almost-periodicity are considered. A word is almost

periodic if factors occurring infinitely often have a bounded distance between occurrences

(but some factors may occur only finitely often).

8 Acknowledgments

We would like to warmly thank Valérie Berthé, Alexis Bès, Véronique Bruyère, Christiane
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J. Richard Büchi, Springer-Verlag, 1990, pp. 398–424. 907
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10(1):65–84, 1998. 913, 920

[47] F. Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors.

Ergodic Theory Dynam. Systems, 20(4):1061–1078, 2000. 923

[48] F. Durand. A theorem of Cobham for non primitive substitutions. Acta Arith., 104:225–241,

2002. 912

[49] F. Durand. Cobham-Semenov theorem and Nd-subshifts. Theoret. Comput. Sci., 391(1-

2):20–38, 2008. 925

[50] F. Durand. Cobham’s theorem for substitutions. J. Eur. Math. Soc. (JEMS), 13:1799–1814,

2011. 913

[51] F. Durand. Decidability of the HD0L ultimate periodicity problem. RAIRO Theor. Inform.

Appl., 47:201–214, 2013. 927

[52] F. Durand and M. Rigo. Syndeticity and independent substitutions. Adv. in Appl. Math.,

42:1–22, 2009. 912, 915, 916, 919

[53] F. Durand and M. Rigo. Multidimensional extension of the Morse-Hedlund theorem. Europ.

J. Combin., 34:391–409, 2013. 906

[54] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Undergraduate Texts in

Mathematics. Springer-Verlag, New York, second edition, 1994. 907

[55] S. Eilenberg. Automata, languages, and machines, volume A. Academic Press, 1974. 902,

904

[56] H. B. Enderton. A mathematical introduction to logic. Academic Press, New York, 1972.

907
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[100] J.-J. Pansiot. Complexité des facteurs des mots infinis engendrés par morphismes itérés. In

Automata, languages and programming (Antwerp, 1984), volume 172 of Lecture Notes in

Computer Science, pages 380–389. Springer, Berlin, 1984. 918

[101] J.-J. Pansiot. Decidability of periodicity for infinite words. RAIRO Inform. Théor. App.,
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[107] M. Presburger. Über die Volständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt. C. R. Premier congrès

des Mathématiciens des pays slaves, Varsovie, pages 92–101, 1929. 906, 907

[108] M. Presburger. On the completeness of a certain system of arithmetic of whole numbers in

which addition occurs as the only operation. Hist. Philos. Logic, 12:225–233, 1991. 906,

907



On Cobham’s theorem 933

[109] A. Quas and L. Zamboni. Periodicity and local complexity. Theoret. Comput. Sci., 319:229–

240, 2004. 906
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