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Abstract. Bovine aortic endothelial cell (BAEC) at- 
tachments to laminin, fibronectin, and fibrinogen are 
inhibited by soluble arginine-glycine-aspartate 
(RGD)-containing peptides, and YGRGDSP activity is 
responsive to titration of either soluble peptide or ma- 
trix protein. To assess the presence of RGD-dependent 
receptors, immunoprecipitation and immunoblotting 
studies were conducted and demonstrated integrin/~1, 
/33, and associated t~ subunits as well as a/31 precur- 
sor. Immunofluorescence of BAECs plated on laminin, 
fibronectin, and fibrinogen reveals different matrix- 
binding specificities of each of these integrin sub- 
classes. By 1 h after plating, organization of/~1 inte- 
grin into fibrillar streaks is influenced by laminin and 
fibronectin, whereas/~3 integrin punctate organization 
is influenced by fibrinogen and the integrin spatial dis- 
tribution changes with time in culture. In contrast, the 
nonintegrin laminin-binding protein LB69 only or- 
ganizes after cell-substrate contact is well established 
several hours after plating. Migration of BAECs is 
also mediated by both integrin and nonintegrin matrix- 

binding proteins. Specifically, BAEC migration on 
laminin is remarkably sensitive to RGD peptide inhibi- 
tion, and, in its presence,/~1 integrin organization dis- 
sipates and reorganizes into perinuclear vesicles. How- 
ever, RGD peptides do not alter LB69 linear 
organization during migration. Similarly, agents that 
block LB69-e.g. ,  antibodies to LB69 as well as 
YIGSR-NH2 pept ide-do not inhibit attachment of 
nonmotile BAECs to laminin. However, both 
anti-LB69 and YIGSR-NH2 inhibit late adhesive 
events such as spreading. Accordingly, we propose that 
integrin and nonintegrin extracellular matrix-binding 
protein organizations in BAECs are both temporally 
and spatially segregated during attachment processes. 
High affinity nonintegrin interaction with matrix may 
create necessary stable contacts for longterm attach- 
ment, while lower affinity integrins may be important 
for initial cell adhesion as well as for transient con- 
tacts of motile BAECs. 

NOOTHELIAL cells are generally nonproliferative sta- 
tionary polar cells that create a highly metabolic 
nonthrombogenic luminal surface within blood ves- 

sels. In intimate contact with the basal aspect of the en- 
dothelium is a complex basement membrane comprised of 
a variety of glycoproteins and proteoglycans (Madri et al., 
1980a). In response to an injury, such as balloon catheter 
denudation, endothelial cells migrate over and proliferate on 
this matrix to reconstitute a nonthrombogenic vascular lining 
(Haudenschild and Schwartz, 1979). The matrix, itself, is a 
dynamic surface whose composition changes in response to 
synthetic and degradatory properties of endothelial, smooth 
muscle, and inflammatory cells (Pratt et al., 1985). 

In vitro, extracellular matrix components such as fibronec- 
tin (Fn),~ laminin (Ln), interstitial collagens, and basement 

1. Abbreviations used in this paper: BAEC, bovine aortic endothelial cell; 
Fb, fibrinogen; Fn, fibronectin; HIFCS, heat-inactivated FCS; HUVEC, 

membrane collagens can all modulate the shape and behavior 
of bovine aortic endothelial cells (BAECs) (Madri et al., 
1988). BAEC-substratum interaction may differ from many 
other cell systems since workers have long recognized that 
chelators such as EDTA are insufficient to detach BAECs 
from tissue culture vessels, and even routine tissue culture 
requires a combination of trypsin and EDTA (Pratt et al., 
1984). Nevertheless, the cellular binding proteins for extra- 
cellular matrix proteins that investigators have documented 
in other systems may also be potential mediators of BAEC 
interaction with matrix elements (Rao et al., 1983; Van 
Mourik et al., 1985; Ruoslahti and Pierschbacher, 1987). In 
earlier studies (Yannariello-Brown et al., 1988), this labora- 
tory has demonstrated the presence of a previously described 

human umbilical vein endothelial cell; Ln, laminin; Sulfo-MBS, male- 
imidobenzoyl-sul fosuccinimido ester. 
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69-kD Ln-binding protein (Rao et al., 1983; Malinoff and 
Wicha, 1983; Wewer et al., 1987; Yow et al., 1988) on the 
BAEC surface. This protein, referred to as LB69, exhibits an 
organization modulated by extracellular Ln, can be radioac- 
tively labeled at the cell surface, and binds to Ln immobi- 
lized on Sepharose (Yannariello-Brown et al., 1988). Some 
investigators have suggested that LB69 may bind Ln via a B1 
chain tyrosine-isoleucine-glycine-serine-arginine (YIGSR) 
sequence (Graf et al., 1987a,b). However, the observation 
that LB69 is not the only species purified by such Ln affinity 
chromatography (Yannariello-Brown et al., 1988) suggested 
the existence of other Ln-binding proteins. Furthermore, the 
relative specificity of LB69 for Ln implied the existence of 
different binding proteins for other matrix components such 
as Fn and fibrinogen (Fb). 

The "integrin" class of proteins are good candidates for 
such binding proteins (Hynes, 1987). Integrins have been 
shown to bind largely in a divalent cation-dependent manner 
to extracellular matrix proteins such as Fn, Fb, and Ln via 
an arginine-glycine-aspartate (RGD) ligand sequence (Ruos- 
lahti and Pierschbacher, 1986). This sequence appears in a 
presumed/3 turn of Fn in the sequence GRGDSP (Piersch- 
bacher and Ruoslahti, 1984) and in the Ln A chain as well 
(Sasaki et al., 1988). Fb also contains such an RGD se- 
quence (Plow et al., 1985). Previously described integrin 
receptors (Buck et al., 1986; Tamkun et al., 1986; Argraves 
et al., 1987; Fitzgerald et al., 1987a,b; Hynes, 1987) are 
comprised of two disulfide-linked subunits, an ot and smaller 
/$, and the molecular weights of several bands purified from 
BAECs by Ln affinity chromatography in addition to LB69 
(Yannariello-Brown et al., 1988) are not inconsistent with 
those of integrin subunits. Moreover, others have documented 
that two classes of integrins, referred to as/~1 and 83 for their 
class of/~ subunits (Hynes, 1987), are present in human um- 
bilical vein endothelium (Plow et al., 1986; Newman et al., 
1986; Charo et al., 1987; Cheresh, 1987; Fitzgerald et al., 
1987b; Dejana et al., 1988a,b) and in rat liver endothelial 
cells (Johansson et al., 1987) and they have noted their in- 
volvement in cell attachment to extracellular matrix. Fitzger- 
ald et al. (1985) and Hayman et al. (1985) have identified/~3 
integrins in bovine aortic endothelium. 

In this communication, we have used RGD peptides and 
specific antisera to integrins to demonstrate that BAECs do 
express/$1 and/33 class integrin proteins and that they partic- 
ipate in BAEC attachment to Ln, Fn, and Fb. Furthermore, 
despite sharing a common ligand sequence (RGD) these inte- 
grins possess certain binding specificities for their extracel- 
lular matrix ligands which can in turn modulate integrin or- 
ganization. We also confirm that nonintegrin-dependent 
mechanisms contribute to BAEC adhesion to extracellular 
matrix and we show that integrin and nonintegrin BAEC pro- 
teins exhibit a spatiotemporal segregation during attach- 
ment, spreading, and migration on Ln. 

Materials and Methods 

Cells 
BAECs were harvested and cultured from bovine calf aortae as previously 
described (Madri et al., 1980a; Yannariello-Brown et al., 1988). BAECs 
used for these studies were all between passages 8 and 14. 

For certain experiments, FCS was replaced with either dialyzed heat- 

inactivated FCS (HIFCS) or defibronectinized HIFCS. Defibronectinized 
HIFCS was produced by adsorbing Fn from the HIFCS by incubation over- 
night at 4°C with gelatin-Sepharose and then by further passing the serum 
over an affinity matrix of anti-Fn antibody coupled to Sepharose CI-4B 
(Pharmacia Fine Chemicals, Piscataway, NJ). Quantitative ELISA inhibi- 
tion assay (Madri et al., 1988) with specific anti-Fn antibodies demon- 
strated that this defibronectinized HIFCS contained <0.2 ng/ml Fn. 

Matrix Proteins 
Plasma Fn was isolated and purified as previously described (Madri et al., 
1980b; Yannariello-Brown et al., 1988). Ln was isolated from the 
Engelbreth-Holm-Swarm tumor grown subcutaneously in lathrytic mice as 
previously described by Yannariello-Brown et al. (1988). ELISA with anti- 
bodies for entactin (generous gift of Drs. H. Steiner and J. Lwehuga- 
Mukasa, Yale School of Medicine, New Haven, CT) demonstrated that the 
preparation contained only 3 % contaminating entactin, and resultant coat- 
ing concentrations of entactin are not sufficient to support any cell attach- 
ment. Fb was purchased from Calbiochem-Behring Corp. (La Jolla, CA). 
ELISA with antibodies to Fn demonstrated that this Fb preparation con- 
tained only 0.8% Fn. 

Synthetic Peptides 
Peptides, YGRGDSP, YGRGESE YGRGDSPC, and YIGSR-NH2, were 
synthesized on a synthesizer (403A; Applied Biosystems, Inc., Foster City, 
CA) using standard t-butoxycarbonyl chemistry and were deprotected and 
released from their solid-phase support by using hydrogen fluoride methods 
with appropriate scavengers. Purification of peptides was done by reverse- 
phase HPLC on a Dynamax Macro CI 8 preparative column (Rainin Instru- 
ment Co. Inc., Woburn, MA) with a trifluoroacetic acid and acetonitrile 
gradient, and residual trifluoroacetate was removed from peptides by ex- 
change for chloride salts. Composition of all peptides was confirmed by 
amino acid analysis. In addition, for the YIGSR-NH2 peptide, methylbenz- 
hydrylamine resin (Applied Biosystems, Inc.) was used to synthesize the 
amide form of the peptide, and the peptide composition and sequence and 
the presence of COOH-terminal amide were confirmed with mass spec- 
trophotometry by Drs. L. Haddad, P. Lyons, and S. Hunt (3M Corp., Min- 
neapolis, MN). Peptide concentrations were precisely determined by mea- 
suring the optical density at 274 run of peptide solutions and by using a 
specific extinction coefficient for tyrosine at this wavelength. 

The COOH terminus of YGRGDSPC peptide was coupled to keyhole 
limpet hemocyanin (Calbiochem-Behring Corp.) via a maleimidobenzoyl- 
sulfosuccinimido ester linker (sulfo-MBS; Pierce Chemical Co., Rockford, 
IL) by the instructions of the manufacturer. Assay (Anderson and Wetlaufer, 
1975) with dithio-bis-(2-nitrobenzoic acid) (Pierce Chemical Co.) demon- 
strated four to six active thiol groups on the keyhole limpet hemocyanin 
linker complex before the addition of peptide. Similar procedures were used 
to couple YGRGDSPC via sulfo-MBS to Sepharose CI-4B (Pharmacia Fine 
Chemicals) with a hexane diamine spacer arm (Hashida et al., 1984). 

The COOH terminus of YGRGDSP peptide was coupled to BSA (Sigma 
Chemical Co., St. Louis, MO) via an l-ethyl-3-(3-dimethyipropyl)-car- 
bodiimide (Sigma Chemical Co.)-mediated condensation reaction using the 
methods of Tamura et al. (1983). Affinity-purified antibodies to YGRGDS- 
PC, generated as described below, were used in a quantitative ELISA inhibi- 
tion assay to quantitate the amount of synthetic peptide in the YGRGDSP- 
BSA complex, and YGRGDSP was shown to be in a 90:1 molar ratio 
to BSA. 

Antibodies 
Rabbits were immunized at 30-35 sites with a YGRGDSPC-keyhole limpet 
hemocyanin complex (described above) and boosted 4 wk later. Bleeding 
was performed 7 wk after primary injection. Antibodies specific for 
YGRGDSPC synthetic peptide were affinity purified with blocked sulfo- 
MBS-Sepharose CI-4B and YGRGDSPC-sulfo-MBS-Sepharose CI-4B re- 
sins (described above). Eluted antibody was shown in an ELISA assay to 
be specific for the YGRGDSP and YGRGDSPC peptides with a greatly de- 
creased (more than one order of magnitude) affinity for the YGRGESP pep- 
tide. Affinity-purified rabbit antibodies to human plasma Fn and Engel- 
breth-Holm-Swarm Ln were prepared and purified as previously described 
(Madri et al., 1980b). Anti-Fb rabbit IgG was purchased from Cappel 
Laboratories (Cochranviile, PA). 

Polyclonal rabbit antisera to chicken CSAT antigen band 3 (anti-GP3; 
Damsky et al., 1985), to rat integrin (anti-R140; Buck and Horwitz, 1987), 
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and to a/31 integrin cytoplasmic domain 10-amino acid synthetic peptide 
WDTGENPIYK (anti-/31/10P; Buck, C., personal communication) were all 
generous gifts of Dr. C. Buck OVistar Institute, Philadelphia, PA). Poly- 
clonal rabbit antibody (anti-GPIIIa) and monoclonal mouse antibody 
(22C4; Plow et al., 1986) to human platelet GPHIa were graciously donated 
by Dr. Mark Ginsberg (Research Institute of Scripps Clinic, La Jolla, CA). 
Polyclonal rabbit antisera to chicken CSAT Fn receptor (kindly donated by 
Dr. K. Yamada, National Cancer Institute, Bethesda, MD), to the hamster 
Fn receptor (anti-GPl40; donated by Dr. C. Damsky, University of Califor- 
nia at San Francisco, San Francisco, CA; Knudsen et al., 1981), and to the 
VLA/5 protein (Takada et al., 1987a; donated by Dr. M. Hemler, Dana Far- 
ber Cancer Institute, Boston, MA). Polyclonal antiserum was raised against 
human adult large vessd endothelium IFo/ffla-like protein (R838) as previ- 
ously described (Albelda et al., 1989). Mouse monoclonal antibody to hu- 
man p150,95 (Leu-M5) was obtained from Becton Dickinson Monoclonal 
Center, Inc. (Mountain View, CA). Dr. T. Springer(Harvard Medical School, 
Boston, MA) supplied mouse monoclonal antibody ascites TS1/22, anti- 
LFA-I ot subunit (TS1/22.1.1.13.3; American Type Culture Collection, Rock- 
ville, MD). Polyclonal rabbit antiserum to LB69 Ln-binding protein (anti- 
LB69-previously shown to recognize BAEC LB69 in vivo and in vitro 
(YannarieUo-Brown et al., 1988)-and to an LB69 exodomain peptide (P2OA, 
also known as 3801) were prepared and shown to exhibit similar antigenic 
specificities as already described (Wewer et al., 1987; Rao et al., 1989). 
These antisera were used in the experiments described as resources permit- 
ted. Previous work demonstrated that antibody reactivity to the 37-kD pro- 
tein represents activity against an internal (cytoplasmic) antigenic site and 
therefore does not contribute to functional properties in live cell assays 
(Wewer et al., 1987; Rao et al., 1989; Castronovo, V., A. P. Claysmith, 
H. C. Krutzsch, and M. E. Sobel, manuscript submitted for publication). 

Preparation of Matrix Protein Substrates for 
Cell Culture 
Bacteriologic plastic 60-ram-diameter dishes (Falcon Labware, Oxnard, 
CA) or 24-well elnster dishes (Costar, Cambridge, MA) were saturated with 
matrix proteins as previously described with minor modifications (Madri 
et al., 1988; Form et al., 1986), and nonspecific protein binding sites were 
pacifated with 1% heat-inactivated BSA. At protein-coating concentrations 
of 25 tzg/ml (Ln and Fb) or 12.5 pg/ml (Fn), the cluster dish bacteriologic 
plastic was shown by quantitative ELISA inhibition assay to be saturated 
with 49 ng/cm 2 Fn, 78 ng/cm 2 Ln, 66 ng/cm 2 Fb. Nonsaturating coatings 
were produced by coating with matrix protein solutions with decreased pro- 
tein concentrations, and absolute amounts of resultant protein adsorbed to 
the bacteriologic plastic were determined by ELISA. Dishes could also be 
coated with synthetic YGRGDSP peptide by incubation with 25 ~tg/ml solu- 
tions of YGRGDSP-BSA conjugates overnight as described above. 

Acid Phosphatase Index Cell Attachment Assays 
BAEC attachment was estimated by using acid phosphatase activity as an 
indicator of cell number-with a modification of the methods described by 
Connoily et al. (1986). Preliminary studies showed that acid phosphatase 
activity was linearly related to cell number as determined by Coulter count- 
ing. BAEC cultures were treated with trypsin/El3l'A (Falcon Labware) and 
resuspended in ice-cold DME supplemented with 10% defibronectinized 
FCS. 20,000 cells were plated into matrix-coated 16-ram-diameter wells of 
24-well cluster dishes in the presence of varying concentrations of synthetic 
peptides. To study the effects of antibodies, cells were pretreated for 1 h on 
ice with heat-inactivated (56"C for 30 min) antibodies at a final dilution of 
1:50. This dilution represents a functional titer for the antibodies studied 
as previously shown in Wewer et al. (1987), Damsky et al. (1985), and At- 
belda, S. M., and Buck, C. A. (unpublished observations). At the same 
time, serial dilutions of cells were plated without any peptides to provide 
standard curves of plating efficiency. Dishes were incubated for 1 h at 37°C 
and then washed twice with PBS. Acid phosphatase activity in each well 
was measured by incubation at 37°C for 2 or 3 h, depending on the matrix 
protein coating and the experimental conditions, in the presence of 200 #1 
of 10 mM p-nitrophenyl phosphate (Sigma Chemical Co.), 0.1% Triton 
X-100, 0.1 M sodium acetate, pH 5.5. Substrate hydrolysis was stopped, and 
the color was developed by the addition of 20 p.1 of 1 N NaOH. Samples 
were transferred to 96-well plates, and optical absorbances at 405 am were 
monitored with a Titertek multiskan (Flow Laboratories, Inc., McLean, 
VA). By using the standard curve of cell number serial dilutions, optical 
densities were converted to the percentage of cells attached to the matrix- 

coated plastic in the presence of peptide relative to those attached in un- 
treated wells. 

For spreading determination, cultures were prepared as above, allowed 
to incubate for 6 h, fixed, and stained with hematoxylin. Spreading was as- 
sessed as the percent of attached cells with spread profiles (deviation from 
round) in representative fields of quadruplicate wells relative to untreated 
controls. Cell size was measured on •90 cells per well by morphometric 
analysis with a digitizing tablet and expressed as an index ratio relative to 
untreated controls. (Madri et al., 1988). 

Cell Migration Assay 
BAEC radial sheet migration over matrix-coated 35-ram-diameter dishes 
(Falcon Labware) was assayed by release from contact inhibition using a 
Teflon fence previously described (Pratt et al., 1984; Madri et al., 1988). 
Migration rates were expressed as square millimeters covered per day. To 
assess the effects of synthetic YGRGDSP peptide on BAEC migration, 
YGRGDSP-BSA conjugate was added to cultures on days 1 and 4 at a final 
peptide concentration of 5 ttM in the presence of defibronectinized serum 
and an additional 10-fold excess of exogenous uncoupled BSA over BSA 
coupled to peptide. Adducts were determined by quantitative ELISA inhibi- 
tion assay with affinity-purified antibody to YGRGDSP to be composed of 
a 90:1 molar ratio of YGRGDSP/BSA, and addition of peptide-BSA adduct 
in the presence of free BSA prevented substantial cellular uptake and degra- 
dation of peptide during the course of the assay. Consistent with the in vivo 
observations of Gehlsen et al. (1988a), we have noted the half-life of uncom- 
plexed small RGD peptides in subconfluent BAEC cultures to be on the or- 
der of 10-15 min (data not shown). Control cultures received only uncou- 
pled BSA in the presence of defibronectinized serum. 

Indirect Immunofluorescence Analysis 
Cells were fixed for 90 min at 4°C with paraformaldehyde-lysine-periodate 
fixative, permeabilized with 0.2 % Triton X-100, and labeled with polyclonal 
rabbit antisera to matrix-binding proteins as described by Yannarielio- 
Brown et al. (1988). Bound antibodies were detected with a rhodamine- 
conjugated goat anti-rabbit secondary antibody (Cappel Laboratories). 
Samples were examined on a binocular microscope (14; Carl Zeiss, Inc., 
Thornwood, NY) or a confocal imaging system (MRC-500; Bio-Rad 
Laboratories, Richmond, CA). 

BAEC Lysate Preparation 
BAEC cultures were chilled on ice and washed twice with PBS supplement 
with a protease inhibitor mixture: 1 mM diisopropyl fluorophosphate (Al- 
drich Chemical Co., Milwaukee, Wl), 2 mM PMSF (Sigma Chemical Co.), 
0.16 TIU/ml aprotinin (Sigma Chemical Co.), 0.5 t~g/ml leupeptin (Sigma 
Chemical Co.), and 8 mM iodoacetamide (Sigma Chemical Co.). (lflysates 
were to be electrophoresed under reducing conditions, iodoacetamide was 
omitted.) Cells were removed with a teflon scraper from the dish and sus- 
pended in PBS/protease inhibitor mixture. The cells were centrifuged 
(2,000 rpm for 5 rain at 4"C), resuspended in 2 vol of TNC buffer (0.5% 
NP-40, 0.5 mM CaC12, 10 mM Tris-acetate, pH 8.0; Horwitz et al., 1985) 
supplemented with protease inhibitor mixture, and stirred for 30 min on ice. 
The cell mixture was spun in an Eppendorf microfuge (Brinkinann Instru- 
ments, Inc., Westbury, NY), and the superuatant was decanted and repre- 
sented the BAEC lysate. 

lmmunoblot Analysis of BAEC Lysates 
Freshly prepared lysates (200-300 #1) were electrophoresed on 6% 
SDS-polyacrylamide gels (Laemmli, 1970) under reducing or nonreducing 
conditions. Protein was then transferred to 0.45-pro pore nitrocellulose 
membranes (Schleicher & Schuell, Inc., Keene, NH) with a Polyblot ap- 
paratus (American Bionuclear, EmeryviUe, CA) according to the instruc- 
tions of the manufacturer. Total protein was detected by staining with Amido 
black. Membranes were blocked with 4% BSA in PBS containing 0.05% 
NaN3 overnight at 4"C. Membranes were then incubated with rabbit poly- 
clonal antisera or mouse monoclonai antibodies diluted in blocking solution 
for 2 h at room temperature with gentle agitation. Subsequently, nitrocellu- 
lose strips were washed with 0.05% Tween-20 in 50 mM Tris, 150 mM 
NaCI, pH 7.4, containing 0.05% NaN3 and then reacted with an alkaline 
phosphatase-conjugated goat anti-rabbit Fc or anti-mouse IgG secondary 
antibody (Promega Biotec, Madison, WI) diluted 1:7,500 in 0.05% Tween- 
20 in 50 mM Tris, 150 mM NaCI, pH 7.4, containing 0.05% NaN3 for 1 h 
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at room temperature. Strips were rewashed and incubated with AP buffer 
(100 mM NaCI, 5 mM MgCi2, 10 mM Tris, pH 9.5), and bound secondary 
antibody was detected in incubation at room temperature with a substrate 
solution of nitroblue tetrazolium (330 pg/mi) and 5-bromo-4-chioro-3- 
indolyl phosphate (165 /~g/ml) in AP buffer. Substrate hydrolysis was 
stopped by washing nitrocellulose with 5 mM EDTA, 20 mM Tris, pH 8.0. 

Integrin Imraunoprecipitation from BAEC Lysates 
BAECs were grown to subconfluence and washed with PBS. Cells to be sur- 
face labeled were treated for 10 min with 1 mCi/ml Na125I (15.5 mCi//~g; 
Amersham Corp., Arlington Heights, IL) in PBS containing 100 U/ml lac- 
toperoxidase (Sigma Chemical Co.) and 0.0048% hydrogen peroxide. The 
reaction was quenched with excess cold Nal. Cells to be metabolically la- 
beled were incubated at 37"C for 1 h with methioninc-free DME (Gibco 
Laboratories, Grand Island, NY) without serum. Cultures were then incu- 
bated at 37"C for 18 h with methionine-free DME supplemented with 
10% dialyzed HIFCS and 83/~Ci/ml L-[35S]methionine (186.4 mCi/mmol; 
Amersham Corp.). Cells were then grown in fresh complete medium with- 
out radioactivity for varying time periods as experimental conditions re- 
quired. Lysates were prepared as described above. 100/zl 4 % BSA-PBS, 150 
/~1 2 M NaCI, and 50/~1 of double-distilled water were added per milliliter 
of lysate. Lysates were then preabsorbed with 0.02 vol Sepharose CI-6B by 
incubation with agitation for 30 rain at 4°C. 50 t~l of rabbit polyelonal an- 
tiserum diluted 1:50 in 4% BSA-PBS were then added to 100/zl of preab- 
sorbed lysate and incubated with agitation for 1 h at 4°C. 20 #1 of protein 
A-Sepharose (Pierce Chemical Co.) were added to each sample and agitated 
for 1 h at 4"C. The Sepharose resin with bound antigen-antibody complex 
was pelleted in an Eppendorf microfuge (Brinkmann Instruments Co.) and 
washed five times with I ml 0.5% sodium deoxyeholate, 0.1% SDS, 1% Tri- 
ton X-100, 150 mM NaCI, 50 mM Tris, pH 7.4. Sepharose was then boiled 
for 3 min in sample buffer (Laemmli, 1970) and then electrophoresed on 
6% SDS-PAGE as above under nonreducing conditions. Gels were dried, 
treated with EN3HANCE (New England Nuclear, Wilmington, DE), and 
exposed on XAR-5 film (Eastman Kodak Co., Rochester, NY). 

Results 

Effects of Synthetic RGD Peptides on 
BAEC Attachment 
BAEC attachment to saturating coatings of Fn, Ln, and Fb 
was similar at 4 h after plating, but rates of  attachment during 
this period varied among these matrices. Specifically, at 1 h 
after plating, >95% of plated cells attached to Fn, and, rela- 
tive to this adhesion, 93 % attached to Fb but only 42 % to Ln. 

Moreover, BAEC attachment after 1 h to bacteriologic 
plastic surfaces saturated with Fn, Ln, or Fb exhibited 
differential sensitivities to RGD peptides. Compared with 
untreated controls, when BAECs were treated with 1 mM 
YGRGDSP during plating (n = 2-7), 77 + 3 % attached to 
Fn, 53 + 2% to Ln, and only 16 + 1% to Fb. These relative 
sensitivities to YGRGDSP were preserved over a broad range 
of  peptide concentrations (Fig. 1 A), with BAEC attachment 
to Fb being consistently extremely susceptible to RGD inhi- 
bition. The control peptide YGRGESP had relatively no 
effect at a 1 mM concentration on cell attachment to any of  
the matrix substrates assayed. Similarly, 1 mM YGRGESP 
had no effect on BAEC attachment to plastic saturated with 
a YGRGDSP-BSA adduct, whereas 1 mM YGRGDSP com- 
pletely inhibited all such attachment (data not shown). While 
the sensitivities of attachments to Fn and Ln to YGRGDSP 
are clearly different, the approximate RGD peptide doses for 
half-maximal inhibition of  BAEC attachment to these sub- 
strates were similar (0.4 and 0.3 raM, respectively). The 
half-maximal dose for inhibition of  attachment to Fb is ap- 
proximately an order of  magnitude lower at 0.04 mM (Fig. 
1 A). Attachment to Fn or Ln by untreated BAECs or by 
those treated with 1 mM YGRGESP was largely unaffected 
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Figure 1. Effects of YGRGDSP concentrations on BAEC attachment 
to Fn, Ln, and Fb. (A) Attachment assays were conducted on plastic 
coated with saturating amounts of Fn (squares), Ln (circles), and 
Fb (triangles) in the presence of a range of YGRGDSP concentra- 
tions. Note that half-maximal doses of YGRGDSP for inhibition of 
BAEC attachment to Fn and Ln are similar, whereas the half- 
maximal dose for Fb is an order of magnitude less. (B) Attachment 
assays were conducted on plastic coated with various concentra- 
tions of Fn or Ln in the presence of 1 mM YGRGDSP. Data is ex- 
pressed as the percentage of adherent cells relative to untreated cells 
plated in wells coated with saturating amounts of matrix protein. 
The amount of matrix protein adsorbed to the plastic well was deter- 
mined by quantitative ELISA inhibition assay. Inhibition of attach- 
ment was augmented at decreased coating concentrations of either 
Fn (squares) or Ln (circles). Data portrayed here represent means 
of duplicate wells in a typical assay, and standard errors do not ex- 
ceed +10%. 

by alterations of substrate coating over a 3-200-ng range. 
When the amount of  coated Fn or Ln was decreased over this 
same range, the effects of 1 mM YGRGDSP were greatly en- 
hanced and fewer cells attached (Fig. 1 B). Thus, the 
YGRGDSP peptide was shown to compete specifically with 
the coated matrix protein for cellular binding sites. 

Identification of BAEC lntegrins 
and LB69 by lmmunoprecipitation and 
Immunoblot Analysis 
Lysates of BAECs surface labeled with 1251 were immuno- 
precipitated with anti-integrin antibodies and analyzed elec- 
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in other systems as well (Albelda et al., 1989). Anti-R140 
also immunoprecipitated a 101-kD band further analyzed by 
immunoblot. 

/3 chain integrin subunits of molecular masses consistent 
with those identified by immunoprecipitation were observed 
on immunoblots. When probed against BAEC lysates, anti- 
body to /31 integrin synthetic peptide primary sequence 
(anti-~/10P) immunoblotted two protein species with ap- 
parent molecular masses of 101 and 117 kD under nonreduc- 
ing conditions (Fig. 3, lane a) and 113 and 130 kD under 
reducing conditions (Fig. 3, lane b). Similar bands were de- 
tected with other antibodies to/31 integrins such as anti-R140 
as well as polyclonal antibodies to the VLA/3 subunit and 
to the chicken CSAT antigen complex (data not shown). The 
immunoblot analyses described above suggested that the 101- 
and ll7-kD bands identified by anti-/~l/10P (as well as the 
other anti-ffl subunit antibodies) shared primary sequence 
and were therefore interrelated and unlikely to be related to 
the other integrin bands. Previous reports (Akiyama and 
Yamada, 1987; Roberts et al., 1988; Jaspers et al., 1988) 
have suggested the presence of a lower molecular mass im- 

Figure 2. Immunoprecipitation of integrin molecules from BAEC 
lysate. BAECs were grown to subconfluence on tissue culture plas- 
tic and either surface labeled with t2~I (lanes a-d) or metaboli- 
cally labeled for 18 h with [35S]methionine (lane e). Lysates were 
prepared, and proteins were immunoprecipitated with nonimmune 
serum (lane a), anti-R140 (lanes b and e), anti-GP3 (lane c), or 
R838 (lane d). Arrows indicate molecular mass markers of 212, 97, 
and 67 kD in decreasing order, and arrowheads indicate the molec- 
ular masses of the major immunoprecipitated bands. These bands 
represent integrin subunits and are identified in order of increasing 
molecular mass as/33, pre-/31, /~1, c~v,, and c~fn. 

trophoretically under nonreducing conditions. Anti-R140, 
raised against rat Fn receptor, and anti-GP3, raised against 
band 3 (the/31 subunit of the chicken CSAT complex), both 
immunoprecipitated a/~1 subunit of 117 kD and an associated 
ot subunit of 159 kD (Fig. 2, lanes b and c). On the other 
hand R838, raised against human endothelial IIIa-like pro- 
tein, immunoprecipitated a/33 subunit of 86 kD and an as- 
sociated ot subunit of 147 kD (Fig. 2, lane d). Nonimmune 
rabbit serum was nonreactive (Fig. 2, lane a). 

Immunoprecipitation with anti-integrin antibodies from 
[35S]methionine metabolically labeled BAEC lysates also 
demonstrated these integrin subunits. Specifically, anti-R140 
(Fig. 2, lanes b and e) immunoprecipitated both the/~l/c~ 
(117/159 kD) complex and the/~3/t~ (86/147 kD) complex. 
Such cross-reactivity between ~1 and 133 integrins in meta- 
bolically labeled lysates may reflect homologous epitopes 
that become cryptic during processing and transport of the 
molecules to functional cell surface complexes and is seen 

Figure 3. Immunoblot detection of BAEC integrins. BAEC lysates 
were electropboresed under nonreducing conditions (lanes a and 
c-e) or reducing conditions (lanes b and f )  and transferred to 
nitrocellulose. Arrows indicate molecular mass markers for 6% 
PAGE: (lanes a-e) 208, 193, 145, 132, 116, 97, 67, and 60 kD. Ar- 
rowheads indicate molecular mass markers for 10% PAGE: (lane 
f )  97, 67, 43, and 25 kD. Immunoblots were conducted with 
anti-/~l/10P (lanes a and b), anti-GPIIIa (lane c), R838 (lane d), 
22C4 (lane e), and anti-LB69 (P20A) (lane f).  
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Figure 4. Immunofluorescence localization of matrix-binding proteins in BAECs 1 h after plating. BAECs were plated on Fn (A, D, and 
G), Ln (B, E, and H), or Fb (C, F, and l),  fixed 1 h later, and stained with anti-/31/10P (A-C), anti-GPIIIa (D-F) ,  or anti-LB69 (G-l). Note 
the/~ 1 integrin organization into concentric arcs when the cells are plated onto Fn (A) or Ln (B) and the 133 integrin localization to cell periphery 
(arrows) when BAECs are plated onto Fb (F). In all cases at this point, LB69 (G-l)  remained in a perinuclear distribution and did not exhibit 
cytoplasmic process localization even in BAECs plated on Ln (/). Dashed lines in E and H denote cell borders of these representative cells. 
Bar, 5 ~m. 
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Figure 5. Immunofluorescence localization of 
matrix-binding proteins in confluent BAECs. 
BAECs plated on Fn (A), Ln (B and D), or Fb 
(C), grown to confluence over 3 d, fixed, and 
stained with anti-/~l/10P (A and B), anti-GPIHa 
(C), or anti-Ln receptor (D)./31 integrin orga- 
nization in response to Fn (A) and Ln (B) and 
/~3 integrin organization in response to Fb (C) 
are maintained. Note, however, the reorienta- 
tion of/~1 integrin fibrillar streaks (A and B). 
At this time point, LB69 now exhibits a diffuse 
punctate cytoplasmic pattern in BAECs plated 
on Ln (D). Bar, 5/zm. 

mature/5'1 precursor form, and, given that anti-GP3 only 
recognizes the ll7-kD band, it seemed that the 101-kD band 
represented such a precursor for a mature 117-kD fll subunit 
protein. Pulse-chase studies (data not shown) and the ab- 
sence of this/~1 species on the cell surface (Fig. 2, lane b) 
were consistent with such a hypothesis. 

Anti-/Sq/10P also recognized a smaller protein species of 
80 kD independent of reduction. This band may represent a 
nonglycosylated core protein (as proposed by Jaspers et al., 
1988), and this molecular mass is in agreement with that 
predicted by primary sequence deduced from eDNA clones 
(Argraves et al., 1987). 

Antibodies to B3 integrins (anti-GPllIa, R838, and 22C4) 
all immunoblotted a single band with an apparent molecular 
mass of 86 kD under nonreducing conditions (Fig. 3, lanes 
c-e). These antibodies were unable to recognize any material 
under reducing conditions. 

No proteins were detected (data not shown) with monoclo- 
nal antibodies specific for/~2 class integrins (anti-p150,95 
and anti-LFA-1 t~ subunit). 

In Yannariello-Brown et al. (1988), anti-LB69 was shown 
to immunoblot a 69-kD band. In this study we have also used 
an antibody (P2A) to a synthetic peptide comprising residues 

263-282, which immunoblots from whole cell lysates not 
only the mature 69-kD protein but also its cytoplasmic 37-kD 
precursor (Wewer et al., 1987; Rao et al., 1989; Castronovo, 
V., A, P. Claysmith, H. C. Krutzsch, and M. E. Sobel, 
manuscript submitted for publication) as illustrated here on 
10% PAGE (Fig. 3, lane f ) .  This particular antibody appears 
to stain the 37-kD band more intensely than the 69-kD band. 
However, interpretation of band intensity is difficult in West- 
ern blotting with anti-peptide probes due to possible vari- 
ability in epitope exposure in the two proteins bound to the 
membrane. 

ExtraceUular Matrix Alters BAEC lntegrin 
and Nonintegrin Binding Protein Organization in 
Static Cultures 
The above described peptide and antibody studies suggested 
an RGD/integrin-dependent BAEC attachment to Ln, Fn, 
and Fb. However, the presence of immunoreaetive LB69 as 
well as previous demonstration of cell surface LB69 (Yan- 
nariello-Brown et al., 1988) also suggested nonintegrin- 
mediated interactions with Ln. Therefore, immunofluores- 
cence studies of cultured BAECs with antibodies to these 
matrix-binding proteins were conducted to assess matrix- 
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driven integrin and nonintegrin binding protein organiza- 
tion. Anti-/~l/10P was used to assess/~1 integrin organiza- 
tion, and anti-GPIIIa/33 integrin organization in vitro, and 
both antibodies were shown to bind their antigens in en- 
dothelial and smooth muscle cells in bovine aorta in situ 
(data not shown). Immunofluorescence studies of cultured 
BAECs initially were conducted at 1 h after plating to assess 
the matrix-binding protein organization over the same time 
interval as the above described attachment assays. During 
this 1-h interval, staining for matrix components, Fn, Fb, and 
Ln, revealed stored intracellular material in a perinuclear 
halo but the absence of matrix protein deposited extracellu- 
larly. Thus, the dominant matrix protein remained the one 
initially coated on the dish. 

At 1 h, staining with anti-/~l/10P revealed that when 
BAECs were plated on Fn or Ln, the/~1 integrins organized 
into a linear stress fiber-type pattern in concentric arcs 
which were at or parallel to the ruffled border (Fig. 4, A and 
B). Anti-B1/10P only weakly stained BAECs plated on Fb 
(Fig. 4 C). On the other hand, staining with anti-GPllIa for 
/33 integrin demonstrated a lacy, interrupted linear organiza- 
tion of/~ 3 integrins, prominent at the borders of cell pro- 
cesses when cells were plated on Fb (Fig. 4 F). BAECs 
adherent to Fn did exhibit modest diffuse staining of cyto- 
plasmic processes (Fig. 4 D). However, when the BAECs 

were plated on Ln,/~3 integrins appeared to be localized in 
a Golgi-like perinuclear halo, and no cytoplasmic process 
staining was apparent (Fig. 4 E). These dramatic differences 
in staining intensity appear to be due to changes in integrin 
organization rather than differences in amount expressed on 
the cell surfaces as cell surface iodination followed by immu- 
noprecipitation reveals similar amounts of/51 and/33 inte- 
grins on the surfaces of BAECs cultured on Fn, Ln, and Fb 
(Basson, C. T., and J. A. Madri, manuscript in preparation). 
Finally, staining with anti-LB69 demonstrated no organiza- 
tion of LB69 in BAECs at 1 h after plating on any of the three 
substrates studied (Fig. 4, C_r-1). At this time, LB69 ap- 
peared to be localized to a perinuclear halo even when the 
cells were plated on Ln (Fig. 4 H). 

Localization of these matrix-binding proteins changed 
with time in culture. BAECs were stained with antibodies at 
confluence after 3 d in culture. In these confluent cultures, 
where de novo deposition of additional matrix proteins 
somewhat obscures specific patterns, anti-/~l/10P staining 
continued to demonstrate/~1 stress fiber-type organization 
in BAECs plated on Fn and Ln (Fig. 5, A and B). It was also 
apparent that on these substrates, the ~1 integrin linear pat- 
tern had reoriented with time to a longitudinal direction. 
Staining for/~3 integn'ns with anti-GPIIla persisted in BAECs 
plated on Fb, but had reoriented to a more punctate pattern 

Figure 6. Hoffman interference microscopy and immunofluorescence localization of/~1 integrin in BAECs migrating on Ln. BAECs were 
allowed to migrate over an Ln substrate in the absence (A and C) or presence (B and D) of YGRGDSP-BSA at a final peptide concentration 
of 5/~m. After 6 d, cultures were studied by Hoffman interference microscopy (A and B) and then fixed and stained with anti-/31/10P 
(C and D). C and D show cells at the leading edge of the migrating front. Arrows indicate direction of BAEC migration. Note that the 
cells at the migrating front of RGD-treated cultures (B and D) are smaller and more densely packed then untreated cells (,4 and C). Further- 
more, treatment with RGD causes a dramatic disorganization (D) of/~1 integrins in these cells when compared with the prominent/31 
integrin fibrillar streaks of untreated migrating cells (C). Bar, 25/~m. 
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(Fig. 5 C). Most obvious, at this time point, was the in- 
creased diffuse cytoplasmic staining for LB69 in BAECs 
grown to confluence on Ln (Fig. 5 D) as compared with those 
newly plated on Ln (Fig. 4 H). 

RGD Peptides Modulate BAEC Migration on Ln 
Further studies investigated the spatiotemporal segregation 
of Ln-binding proteins during BAEC migration over Ln in 
a 6-d radial migration assay (Madri et al., 1988). After 6 d, 
migrating cultures were fixed and stained, areas were mea- 
sured with a digitizing tablet, and daily migration rates were 
calculated. BAEC migration rates over Ln were clearly de- 
creased by the addition of 5 #m YGRGDSP from 36 + 1 to 
23 5= 1 mmVd (n = 5). YGRGDSP-treated and untreated 
BAECs migrating on Ln were further studied by Hotfman in- 
terference microscopy and immunofluorescence microscopy 
to localize matrix-binding proteins (Fig. 6). The cells at the 
migrating front of RGD-treated cultures (Fig. 7 B) were 
qualitatively more densely packed than those of untreated 
cultures (Fig. 6 A). Staining with anti-jSq/10P in untreated 
control migrating front BAECs reveals that the/31 integrins 
are organized into a prominent stress fiber-like pattern (sim- 
ilar to the fibrillar streaks visualized by Kelly et al. [1987] 

in fibroblasts with antibodies to smooth muscle integrins) 
oriented parallel to the axis of migration (Fig. 6 C). By con- 
trast, when these cultures are treated with YGRGDSP, the 
migrating front cells exhibit a striking loss of this staining 
pattern. In this instance, the bulk of the/31 integrin is local- 
ized in storage granules in a perinuclear halo, and what faint 
linear staining exists is parallel to the ruffled border (Fig. 6 
D). Regardless of the presence or absence of YGRGDSP, 
/33 integrins, visualized by immunofluorescence with anti- 
GPIIIa and not expected to bind Ln, remained localized in 
a perinuclear halo of storage granules (Fig. 7 A). 

However, in such BAECs migrating over Ln, LB69 did ex- 
hibit a marked cytoplasmic organizational pattern that was 
unaltered by the presence of YGRGDSP. As seen in Fig. 7 
B, LB69 organized into delicate lacy dotted linear patterns 
that were distributed throughout the cytoplasm of the cell. 
Thus, like static confluent BAECs, BAECs migrating on Ln 
for extended time periods displayed more intensely orga- 
nized LB69 patterns than the newly plated BAECs. 

Examination of B1 integrin and LB69 staining pattern in 
migrating BAECs with confocal microscopy revealed that 
both proteins were localized in basolateral domains (Fig. 8). 
LB69 organization insensitivity to RGD peptide treatment 

Figure 7. Immunofluorescence localization of /33 integrins and 
LB69 in BAECs migrating on Ln. Migrating BAEC cultures on 
Ln were established as in Fig. 6 in the presence or absence of 
YGRGDSP-BSA and processed for immunofluorescence staining 
with anti-GPIIIa (A) or anti-LB69 (B). No change in staining pattern 
was seen upon addition of RGD peptide, and cells from the leading 
edge of untreated migrations are shown here. Arrows indicate direc- 
tion of migration. The perinuclear localization of/33 integrins (A) is 
consistent with inability to bind Ln. Most notable is the lacy linear cy- 
toplasmic distribution ofnonintegrin LB69 in migrating BAECs (B). 
Bar, 25/zm. 

Figure 8. Confocal immunofluorescent microscopy localization of 
/31 integrins and LB69 in basal domains of BAECs migrating on Ln. 
BAEC cultures migrating over an Ln substrate were stained with 
anti-LB69 (A) or anti-/31/10P (B). z-sectioning analysis on a confo- 
cal imaging system was used to determine the matrix-binding protein 
distribution in basal domains. Arrowheads indicate cell filopodia. 
Bars, 25 tzm. 
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was also evident in these domains, and the LB69 linear ar- 
rays were oriented with respect to the direction of migration 
(Fig. 8 A). Interestingly, the fi'l integrin streaked paralleling 
the migration axis in the basal planes of the cells were absent 
from trailing filopodia, present in leading lamellopodia, and 
most prominent in the cell body (Fig. 8 B). 

Relative Contributions of  lntegrins and LB69 to 
BAEC Attachment and Spreading on Ln 
Given such morphologic evidence for matrix-binding protein 
spatiotemporal segregation in static and motile BAECs, we 
sought to assess the relative contributions of integrin and 
nonintegrin Ln-binding proteins in BAEC adhesion and 
spreading on an Ln substratum. BAEC integrin binding to 
Ln is shown here to be RGD dependent, presumably through 
an Ln A chain sequence. Others have proposed the Ln B1 
chain sequence YIGSR for the LB69 ligand, and, in certain 
cell systems, YIGSR-NH2 peptides can inhibit LB69 bind- 
ing to Ln (Graf et al., 1987a,b; Iwamoto et al., 1987; Kubota 
et al., 1988). 

A comparison of the effects of 1- and 2-mM doses of YGR- 
GDSP, YGRGESP, and YIGSR-NH2 peptides on BAEC ini- 
tial (1 h) attachment to Ln was conducted as well as a study 
of the effects of 2-mM doses of YGRGDSP and YIGSR- 
NH2 on BAEC spreading (Fig. 9 A). As previously noted, 
YGRGESP at either of these doses had no effect on BAEC 
attachment to Ln, while YGRGDSP at such doses markedly 
inhibited initial BAEC attachment to Ln. However, at either 
1- or 2-mM doses the putative LB69 binding peptide YIGSR- 
NH2 was completely unable to alter initial cell attachment 
to Ln. (The addition of 1 mM YIGSR-NH2 concomitant 
with 1 mM YGRGDSP did not significantly augment the 
effects of the RGD peptide.) However, 2-mM doses of either 
YGRGDSP or YIGSR-NH2 inhibited BAEC spreading on 
Ln, with the numbers of rounded cells increased •2.5-fold 
in either case. Furthermore, as shown in Fig. 9 A, the mean 
cell size was dramatically decreased by YIGSR-NH2 pep- 
tide as well as YGRGDSP. 

To further confirm that such differential effects on BAEC 
attachment and spreading were specific for the integrin and 
LB69 proteins, similar studies were undertaken with anti- 
bodies to these proteins as well as to Ln itself (Fig. 9 B). 
While antibodies to Ln matrix protein and to integrin 
(anti-GP140) were both able to inhibit BAEC attachment to 
Ln, antibody to nonintegrin LB69 was completely unable to 
inhibit attachment. Nevertheless, both antibody to integrin 
as well as antibody to LB69 significantly inhibited spreading. 
Nonimmune sera and antisera directed against human type 
III collagen had no effect on attachment or spreading (data 
not shown). Thus, functional studies with both antibodies 
and peptides confirmed roles for integrins and nonintegrins 
in adhesive events. 

Discuss ion  
Large vessel endothelial cells interact in vivo with a variety 
of extracellular matrix proteins, and differential expression 
of such proteins in the vessel wall correlates with endothelial 
cell response to injury (Madri et al., 1988). Our previous 
studies have demonstrated the presence of an Ln-binding 
protein LB69 on the surface of BAECs (Yannariello-Brown 
et al., 1988). Investigators have also documented integrin 

Figure 9. Comparison of integrin and LB69 contributions to BAEC 
attachment and spreading on Ln. BAECs were plated on an Ln sub- 
strate in the presence of either (A) synthetic peptides YGRGDSP 
and YIGSR-NH2 or (B) antibodies to integrin (anti-GP140), Ln, 
and LB69 (anti-LB69 [P20A]). A presents the etfects of peptides 
at 1-mM (light shaded bars) and 2-mM (dark shaded bars) doses 
on BAEC attachment after 1 h and at 2-raM doses on BAEC size 
(open bars) after 6 h. B presents the effects of heat-inactivated anti- 
bodies at a 1:50 dilution on BAEC attachment (shaded bars) after 
1 h or the fraction of spread BAECs (open bars) at 6 h. 

matrix-binding protein expression by other endothelial cell 
types (Dejana et al., 1988a; Cheresh, 1987), and a protein 
homologous to platelet GPIIIa has been found in BAECs as 
well (Fitzgerald et al., 1985). Therefore, BAECs are likely 
to interact with extracellular matrix proteins via many cellu- 
lar binding proteins, each of which may have more than one 
matrix protein ligand. Furthermore, each matrix protein may 
have multiple ligand domains for several different cellular 
binding proteins. In this study, we identify some of the com- 
plex array of BAEC matrix-binding proteins. We then further 
contrast differing roles of RGD-dependent and -independent 
BAEC-matrix interactions in BAEC adhesive events. 

We now present evidence for an integrin-dependent BAEC 
interaction with extracellular matrix. BAEC attachment to 
Ln, Fn, and Fb are all inhibited by soluble peptides contain- 
ing the RGD sequence. We have observed similar differential 
sensitivities to RGD peptides by human iliac vein endothelial 
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cell adhesion (Albelda et al., 1989) to all these molecules, 
including Ln, and others have noted RGD sensitivity of hu- 
man umbilical vein endothelial cell (HUVEC) attachment to 
Ln as well (Sasaki et al., 1988). In contrast, Herbst et al. 
(1988) did not note RGD dependence of BAEC attachment 
to Ln. However, in that study, it is possible that the relatively 
high amounts of Ln bound to the culture surface may have 
resulted in a peptide-protein stoichiometry which obscured 
this effect. We have shown here a clear dose dependency of 
RGD inhibition of BAEC attachment to Ln not only on RGD 
peptide concentration but also on amount of Ln bound to the 
dish and presented as substrate. Gehlsen et al. (1988b) have 
identified Ln-binding RGD-independent rat neuroglioblas- 
toma integrin, but neuroglioblastoma mechanisms of attach- 
ment may differ from those of bovine endothelial cells. 

Immunoblotting and immunoprecipitation analyses with 
antibodies to integrins reveal that BAECs express at least two 
different integrin heterodimers, /31 and/53 class integrins. 
Immunofluorescence studies of BAEC integrins reveal rapid 
matrix protein-specific organization within the first hour of 
initial cell attachment. In response to Fn or Ln substrates, 
the ~l integrin molecules become arrayed in linear stress 
fiber-type patterns within 1 h of cell plating. Such linear or- 
ganization is similar to the fibrillar streaks noted by Marcan- 
tonio and Hynes (1988) in Nil 8 hamster cells. In addition, 
in response to Fb substrates, and to a lesser extent Fn,/~3 
integrins organize into a punctate pattern over cytoplasmic 
processes. Of note is the ability of LM609 mAb specific for 
153 integrin (provided by Dr. D. Cheresh, Research Institute 
of Scripps Clinic, La Jolla, CA) to inhibit BAEC attachment 
to Fb but not to Ln or Fn (Basson, C. T., and J. A. Madri, 
unpublished observations). Dejana et al. (1988a), Cheresh 
(1987), and others (Albelda et al., 1989) have observed simi- 
lar matrix-driven organizational responses of HUVEC /$1 
and/$3 integrins to Fn and Fb substrates. 

We demonstrate that Ln substrates very specifically drive 
/51 integrin organization in accord with reports in other mam- 
malian and avian cell systems that cellular interaction with 
Ln may be mediated via RGD-dependent integrins (Toma- 
selli et al., 1988; Yamada and Kennedy, 1987; Chen et al., 
1986; Horwitz et al., 1985). Precise organizational mecha- 
nisms in response to specific matrices remain to be deter- 
mined and may reveal what distinguishes between/~l integrin 
binding to Fn and/51 binding to Ln. 

Certainly, not only do BAECs bind to Ln through RGD- 
dependent/51 integrins but they also express a nonintegrin 
Ln-binding protein, LB69. Immunofluorescence data pre- 
sented here demonstrate clear differences in the spatial local- 
ization of BAEC integrins and LB69. In addition, we see not 
only distinct intracellular localizations of/51 integrin and 
LB69 Ln-binding proteins but also temporal segregation of 
these proteins. For instance, BAEC/51 integrins do organize 
rapidly within 1 h of cell plating on Ln, and, with time and 
at confluence, they maintain these organizational patterns 
even though the linear pattern of/31 integrin, a molecule 
known to be associated with cytoskeletal proteins (Horwitz 
et al., 1986; Maher and Singer, 1988), does reorient in the 
cell as do actin stress fibers and other cytoskeletal elements 
(Pratt et al., 1984). In contrast, LB69 exhibits no cytoplas- 
mic organization at 1 h after plating, but organization is visi- 
ble at later time points such as at confluence. Such spatio- 
temporal segregation implies different functional roles in 

adhesion of RGD-dependent and -independent Ln-binding 
proteins. This concept finds further support in our studies 
demonstrating that when BAEC migration over an Ln sub- 
strate is inhibited by addition of soluble RGD peptide,/~1 
integrin distribution dramatically disorganizes, while LB69 
remains well localized to basolateral domains in an orga- 
nized linear pattern. 

Others have reported non-RGD cell binding sequences not 
only in Ln but also in Fn (McCarthy et al., 1986; Humphries 
et al., 1988; Mugnai et al., 1988; Obara et al., 1988) and 
Fb (Plow et al., 1984; Gartner and Bennett, 1985; Santoro 
and Lawing, 1987) as well as RGD-independent cell surface 
binding proteins for these matrix molecules (Van Mourik et 
al., 1985; Codogno et al., 1987; Rieber et al., 1988; Hum- 
phries et al., 1988). In our investigation of the BAEC system, 
the contributions of RGD-dependent integrin and RGD-inde- 
pendent nonintegrin matrix-binding proteins to various at- 
tachment events do appear to be spatiotemporally segregated. 

It is clear from the data we present here that initial BAEC 
adhesion to matrix substrates such as Ln occurs via an RGD- 
dependent integrin mechanism. Initial attachment to Ln can 
be blocked by both soluble RGD peptides and the calcium 
chelator EDTA which should disrupt the calcium-dependent 
(Ruoslahti and Pierschbacher, 1987) integrin binding hut not 
the calcium-independent (Malinoff and Wicha, 1983) LB69 
binding. On the other hand, YIGSR-NH2 peptide has no 
effect on this initial attachment. While antibody to integrin 
inhibits BAEC attachment to Ln, neither antibody to LB69 
nor YIGSR-NH2 has any effect on cell attachment. (Previ- 
ously described preliminary data indicating modest YIGSR 
potency [Yannariello-Brown et al., 1988] have proved to be 
artifactual due to peptide preparation impurities, and simul- 
taneous preliminary reports of antisera to LB69 partially in- 
hibiting BAEC attachment to Ln have been shown to be due 
to excessively vigorous washing, causing artifactual detach- 
ment of rounded but in fact adherent cells.) Therefore, al- 
though LB69 certainly participates in BAEC interaction with 
Ln since purified BAEC LB69 binds Ln in vitro, colocalizes 
with newly synthesized Ln in vivo, and reorganizes from api- 
cal cell surface patches to basolateral domain during migra- 
tion (Yannariello-Brown et al., 1988), this nonintegrin does 
not contribute to initial BAEC adhesion to Ln. 

On the other hand, our studies of BAEC-Ln interaction 
suggest that adhesion and spreading of confluent and sub- 
confluent cultures grown on Ln for at least several hours be- 
comes increasingly nonintegrin dependent. This matrix in- 
teraction is, at least in part, dependent on LB69 which, as 
mentioned above, only exhibits organization at these later 
time points. Moreover, during the 6 h after initial plating, an- 
tibody to LB69 and YIGSR-NH: are both able to inhibit 
cell spreading. Further support for nonintegrin matrix inter- 
action is found in the observation that when RGD peptide is 
added to preattached motile or static BAEC cultures, inhibi- 
tion of migration or rounding of cells is observed, respec- 
tively, but in either case without any cell detachment from 
the Ln substratum. Identical results are obtained when inte- 
grin binding is disrupted by treating these cultures with 
EDTA. The resistance to YGRGDSP is probably due to 
nonintegrin binding proteins like LB69 and not due to cell 
binding to newly synthesized matrix protein which may not 
contain active RGD sequence since these data can be ob- 
tained by intervention as early as 5 h after plating when 
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significant de novo matrix deposition has not yet occurred 
(Madri et al., 1988). Therefore, we suggest that LB69 con- 
tributes to later events in BAEC attachment such as spreading 
and to maintenance and to stabilization of BAEC-matrix 
contacts during migration. 

Such segregation of BAEC integrin- and nonintegrin- 
dependent attachment mechanisms are not exclusive to inter- 
action with Ln. Although nonintegrin binding proteins have 
not yet been conclusively identified in endothelial cells for 
Fn and Fb, and observation that YGRGDSP and EDTA, 
which can completely detach BAECs from BSA-YGRGDSP 
substrates, cannot detach BAECs from Fb or Fn suggests that 
RGD-independent binding to these matrices certainly occurs 
as well. Others have observed that with increased time and 
cell density after cell plating, RGD peptides exhibit greatly 
diminished capacity to detach BAECs and HUVECs from Fn 
(Hayman et al., 1985; Sage et al., 1989) or to detach 
HUVECs from Fb (Dejana et al., 1988b), although peptide 
potency to inhibit cell spreading and to cause cell rounding 
is maintained. In our own experiments, we believe that resis- 
tance to RGD peptide is unlikely to be a result of increased 
cell density since YGRGDSP was unable to detach BAECs 
in any zone of migrating cultures that comprise a range of 
densities from the sparse migrating front to the confluent 
central origin. Even in another cell system, Cardwell and 
Rome (1988a) have noted that although RGD peptides inhibit 
oligodendrocyte attachment to glial cell derived matrix, the 
same dose of peptides (Cardwell and Rome, 1988b) is in- 
capable of detaching oligodendrocytes from such matrix. In 
fact, Cheresh (1987) has reported that LM609 mAb, specific 
for a functional domain of the Fb/vitronectin receptor inte- 
grin complex inhibits HUVEC attachment to Fb but does not 
cause detachment of preattached HUVECs from Fb. 

Rees et al. (1977) have suggested that cell attachment to 
substrate is a multistep process of "grip and stick" that in- 
volves both strong and weak cell-matrix interactions. We 
therefore propose that integrin and nonintegrin extracellular 
matrix-binding proteins in BAECs are both temporally and 
spatially segregated during various attachment processes. 
Nonintegrin interaction with matrix, such as LB69-depen- 
dent binding, has been reported (Rao et al., 1983) to be of 
high affinity, 2 nM, and may thus provide the necessary sta- 
ble contacts for extended periods of attachment. However, 
integrins which have been shown (Horwitz et al., 1985; 
Codogno et al., 1987) to bind their ligands with relatively 
low affinity (1 #M) may be important for initial cell adhesion 
as well as for the transient contacts made by the processes 
of motile large vessel endothelial cells. Future studies will 
further elucidate the regulation of integrin and nonintegrin 
expression and clarify the relative contributions of these 
classes of extracellular matrix-binding proteins to endothe- 
lial cell adhesion. 
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