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Abstract

Discontinuous Galerkin methods (DG) have particular appeal in problems involving
high order derivatives since they provide a means of weakly enforcing the continuity
of the unknown-field derivatives. This paper proposes a new discontinuous Galerkin
method for Kirchhoff-Love shells considering only the membrane and bending re-
sponse. The proposed one-field method utilizes the weak enforcement in such a
way that the displacements are the only unknowns, while the rotation continuity
is weakly enforced. This work presents the formulation of the new discontinuous
Galerkin method for linear elastic shells, demonstrates the consistency and stability
of the proposed framework, and establishes the method’s convergence rate. After
a description of the formulation implementation into a finite-element code, these
properties are demonstrated on numerical applications.
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1 Introduction

Spatially-discontinuous Galerkin methods constitute a generalization of weak
formulations, which allow for discontinuities of the problem unknowns in its
domain interior. This is usually accomplished by integrating by parts the gov-
erning equations in sub-domains, leading naturally to boundary integral terms

∗ Corresponding author
Email addresses: L.Noels@ulg.ac.be (L. Noels), rapa@mit.edu (R.

Radovitzky).
1 Postdoctoral Scholar at the Belgian National Fund for Scientific Research (FNRS)

Preprint submitted to Elsevier 18 January 2008



on the sub-domain interfaces where jump discontinuities are involved. The
role of these terms is to weakly enforce the consistency and the continuity
of the problem unknowns, where appropriate. In the general context of finite
element formulations for elliptic problems, jump-discontinuities are allowed
across element boundaries for the solution of linear elasticity [1], non-linear
elasticity [2,3], and plasticity [4], resulting in one-field formulations where the
displacement field is the unknown.

When considering problems involving high-order derivatives, discontinuous
Galerkin methods can also be seen as a means of enforcing higher-order conti-
nuity requirements in a weak manner. Recent efforts to exploit this advantage
in solid mechanics have included applications to beams and plates [5–7] and
for theories of damage [8,9]. In the resulting one-field formulations, the jump
discontinuities can be related to the unknown fields and to their derivatives [6],
or to the derivatives alone [5, 7]. In the context of thin structures, the equa-
tions governing the bending of plates, beams and shells involve only higher
order derivatives, when shear deformations can be neglected. Moreover, the
system of equations can be formulated in terms of the displacement field only.
The key concept examined in this paper is the solution of Kirchoff-Love shell
mechanics by considering piecewise continuous polynomial approximations of
the displacements, with a weak enforcement of the higher-order continuity. In
this case, the shape functions do not have to fulfill the high-order continuity
requirements, which are hard to enforce in three-dimensional problems, with
a few exceptions such as the subdivision method based on NURBS approxi-
mation of the surface [10,11].

Another appealing property of discontinuous Galerkin formulations is the re-
duction of the locking inherent to finite-element discretizations, especially for
thin structures like beams, plates or shells. In such structures the locking re-
sults in excessive stiffness when the membrane and bending modes are mixed.
This is generally solved by considering reduced integration [12, 13], or by us-
ing a mixed formulation sometimes combined with enhanced assumed strains
methods [14–17]). When considering mixed methods, for which the displace-
ment, rotation and stress fields can be both unknown and discontinuous, it
has been shown that the discontinuous Galerkin method can reduce the lock-
ing effect for Reissner-Mindlin plates [18], for Timoshenko beams [19] and for
shells [20,21].

In this paper, a new discontinuous Galerkin formulation for Kirchhoff-Love
theory of shells is proposed. In this formulation, the membrane and bending
response is considered, while the shearing is neglected. The kinematics of the
shell is described within the framework in [16,17] where the surface normal is
assumed to remain perpendicular to the shell. This omission of the shearing
allows the formulation of the problem as a one-field displacement method [10].
While the displacement field is continuous, discontinuities in the displacement
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derivative between two elements are accounted for by considering the variation
in their normal direction. Consistency is assured by the addition of the edge
integration of the resultant moment; while stability is ensured by a (sufficiently
large) quadratic term. Symmetrization of the discontinuous method is also
considered. This formulation also exploits the reduced locking inherent to DG
methods. In the particular cases when the shells degenerate to beams or plates,
the proposed formulation is quite similar to the one proposed by Engel et
al. [5]. The difference is that in their work the quadratic term is proportional
to the scalar product of the jumps, while in the present methodology the
quadratic term also involves the Jacobian matrix, the mesh size and the normal
to the interelement boundary. The main advantages are to account for 3D
effects and to result into a stabilization parameter independent on the problem
size and on the material characteristics. Recently Wells and Dung [7] also
proposed a DG formulation for Kirchhoff-Love plates, which also leads to a
problem-independent stabilization parameter, and which is equivalent to the
plate-reduction of our formulation.

This paper is organized as follows: in section 2 the continuum model for a thin
body is described. Focus is restricted to the case where the shearing can be
neglected, which implies that the shell normal remains perpendicular to the
mid-surface during the deformation. The discontinuous Galerkin weak formu-
lation of this problem is presented in section 3. It is shown that a one-field
formulation can be used even if high-order derivatives must be considered. The
discontinuous method allows the unknown field derivatives to be discontinuous
while the consistency is enforced by an interface integral. The method is also
stable, provided that a quadratic term is considered and that the stabilization
parameter is larger than a constant which depends only on the polynomial
approximation. This is demonstrated in section 4. It is also shown that the
convergence rate of the method in the energy norm is one order lower than
the degree of the polynomial approximation used, which indicates that DG
methods are good candidates for the solution of shell problems provided that
at least quadratic shape functions are being considered. Optimal-convergence
rate in the L2-norm is also demonstrated under the assumption of at least cubic
approximation and of proper ellipticity of the problem. Section 5 describes the
implementation of the method. The inter-element boundary terms arising from
the discontinuous Galerkin formulation guaranteeing its consistency, symme-
try and stability are integrated by recourse to interface elements [3,22]. The po-
tential membrane locking behavior arising from the coupling of membrane and
bending modes is addressed either by recourse to reduced integration [12,13],
or by adopting an Enhanced Assumed Strains (EAS) approach [14–17]. How-
ever, this is not necessary if the polynomial approximation is higher than two.
At last, theoretical properties of the method are verified by means of numerical
tests and examples of application. The proposed displacement-based frame-
work enables a simple element formulation for the continuous elements. As a
specific example, an 8-node bi-quadratic quadrilateral element integrated on 4
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quadrature points and a 16-node bi-cubic quadrilateral element integrated on
16 quadrature points will be presented. The accuracy and robustness of the
method is demonstrated in numerical examples in section 6. The numerical
tests include a set of conventional patch tests, convergence rate and stabil-
ity studies verifying the theoretical results. A wide range of applications to
beam, membrane, shell, and mixed membrane-shell problems illustrates the
versatility of the method.

2 Continuum mechanics of thin bodies

In this section, the formulation of continuum mechanics for thin bodies is
summarized. In particular, an explanation on how to describe the deformation
of a thin body in terms of its mid-surface is provided. The particular case of
Kirchhoff-Love shells is formulated, showing that this problem can be reduced
to a set of equations involving displacements of the mid-surface only.

2.1 Kinematics of the shell

Fig. 1. Description of the different configurations of the shell.

A thin body can be described by considering its mid-surface section as a
Cosserat plan A and a third coordinate, representing the thickness, belong-
ing to the interval [hmin; hmax]. In the reference frame EI , this representation
is written ξ =

∑3
I=1 ξIEI : A × [hmin; hmax] → R3. Hereinafter, a sub-

script will be used to refer to values expressed in the considered basis, while
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a superscript will be used to refer to values expressed in the conjugate basis.
Of course, for the initial frame, EI = EI . Roman letters as a subscript or
superscript substitute for integers between one and three, while Greek let-
ters substitute for integers one or two. The representation of the body in
the inertial frame is illustrated in Fig. 1. A configuration of the shell is de-
scribed by using ϕ (ξ1, ξ2) : A → R3 the mapping of the mid-surface and

t : A → S2 =
{
t ∈ R3|‖t‖=1

}
the director of the mid-surface, with S2 the unit

sphere manifold. A configuration S of the shell is represented by the manifold
of position x, which is obtained by the mapping Φ : A× [hmin; hmax] → S,

x = Φ
(
ξI

)
= ϕ (ξα) + ξ3t (ξα) . (1)

By convention, S refers to the current configuration of the shell, while the
reference configuration S0 is obtained by the mapping Φ0. The two-point de-
formation mapping

χ =Φ ◦Φ−1
0 : S0 → S (2)

defines the transformation between the two configurations (see Fig. 1) and is
characterized by the two-point deformation gradient

F= ∇Φ ◦ [∇Φ0]
−1 : S0 → GL+ (3, R) , (3)

where GL+ (3, R) is the invertible Lie group of dimension 3 with a positive
Jacobian. In this last relation, the tangent map ∇Φ can be evaluated as

∇Φ= gI ⊗EI , with (4)

gα =
∂Φ

∂ξα
= ϕ,α + ξ3t,α and g3 =

∂Φ

∂ξ3
= t , (5)

the convected basis. This convected basis satisfies the relation gI = ∇ΦEI ,
and its conjugate basis satisfies gI = ∇Φ−T EI . The Jacobian related to the
deformation gradient (3) is computed by

J = det (F) =
j

j0

, with j = det (∇Φ) = g3 · (g1 ∧ g2) , (6)

and the Jacobian related to the deformation of the mid-surface is computed
by

J̄ =
j̄

j̄0

, with j̄ = ‖ϕ,1 ∧ϕ,2‖ . (7)

The particular case of Kirchhoff-Love shells involves neglecting shearing de-
formations. Therefore, the unit vector t is always perpendicular to ϕ,α with

t =
ϕ,1 ∧ϕ,2

‖ϕ,1 ∧ϕ,2‖
. (8)
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Using this assumption, since t,µ · t = 0 the unit vector t is decomposed into
its component λµ

α such that

t,α = λµ
αϕ,µ . (9)

Moreover, it is assumed that the mid-surface of the shell is subjected to the
small displacement field u, with

ϕ,α = ϕ0,α + u,α . (10)

A first order approximation of the unit vector (8) gives the following explicit
dependence on u

t (u) = t0 + ∆t (u) , with (11)

∆t (u) = eαβ3

[
ϕ0,α ∧ uβ

j̄0

+ t0 u,α ·
t0 ∧ϕ0,β

j̄0

]
, (12)

where the normality relation t0 · ∆t = 0 also results from t · t = 1. In the
previous relations eijk is the permutation tensor. Similarly, the gradient of the
unit vector (8) is decomposed into

t,γ = t0,γ + ∆t,γ , (13)

with

t0,γ =
eαβ3

j̄0

[ϕ0,αγ ∧ϕ0,β − t0 t0 · (ϕ0,αγ ∧ϕ0,β)] , and (14)

∆t,γ =
eαβ3t0,γ

j̄0

u,α · (t0 ∧ϕ0,β)− eαβ3t0

j̄0

u,αγ · (t0 ∧ϕ0,β) +

eαβ3t0

j̄0

u,α · [t0 ∧ϕ0,βγ + t0,γ ∧ϕ0,β]−

eαβ3t0

j̄0

u,α · (t0 ∧ϕ0,β)
eηµ3

j̄0

t0 · (ϕ0,ηγ ∧ϕ0,µ) +

eαβ3

j̄0

[ϕ0,αγ ∧ u,β + ϕ0,α ∧ u,βγ]−

eαβ3

j̄0

[
ϕ0,α ∧ u,β

eηµ3

j̄0

t0 · (ϕ0,ηγ ∧ϕ0,µ)

]
. (15)

Again using the property t·t = 1 leads to other useful relations like t0 ·t0,γ = 0,
t · t,γ = 0, or again t0 ·∆t,γ + t0,γ ·∆t = 0.
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2.2 Governing equations of the shell

The governing equations of a thin body are obtained by integrating on the
thickness the equations of force and moment equilibrium, respectively

∇ · σ = B in S and (16)

Φ ∧∇ · σ =Φ ∧B in S , (17)

where σ is the Cauchy stress tensor and B are the external applied forces by
unit volume. Following [16,17], the integration on the thickness of the Cauchy
stress tensor σ leads to the definition of

nα =
1

j̄

∫ hmax

hmin

σgαdet (∇Φ) dξ3 , (18)

mα =
1

j̄
t ∧

∫ hmax

hmin

ξ3σgαdet (∇Φ) dξ3 = t ∧ m̃α , and (19)

l =
1

j̄

∫ hmax

hmin

σg3det (∇Φ) dξ3 , (20)

respectively the resultant stress vector, the resultant torque vector and the
resultant across-the-thickness stress vector. The balance equations (16) and
(17) can be rewritten in term of these resultant quantities, as

1

j̄
(j̄nα),α + nA = 0 on A and (21)

1

j̄
(j̄m̃α),α − l + λt + m̃A = 0 on A , (22)

where λ is an undefined pressure, where nA is the resultant external surface
traction and where m̃A is the resultant external torque by unit surface. The
latter two terms depend both on the body force B and on the true physical
surface tractions applied to the thin body surfaces

nA =
1

j̄

[(
σg3det (∇Φ)

)hmax

hmin

+
∫ hmax

hmin

B det (∇Φ) dξ3

]
, and (23)

m̃A =
1

j̄

[(
ξ3σg3det (∇Φ)

)hmax

hmin

+
∫ hmax

hmin

ξ3ρB det (∇Φ) dξ3

]
. (24)

At this point, the equations can be expressed in the convected basis related to
the mid-surface, i.e. (ϕ,1, ϕ,2, t). In order to define the stress components, the
resultant stress vectors are decomposed in this mid-surface convected basis,
as

nα = nαβϕ,β , and (25)

m̃α = m̃αβϕ,β + m̃3αt , (26)
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where it has been taken into account that the absence of shearing removes
the component of nα along t. In these expressions, m̃αβ is the stress couple
resultant and m̃α3 is the out of plane stress couple. At this stage, nαβ is still
coupled with the bending of the shell [16]. However, since σ is symmetric, the
effective membrane stress resultant ñαβ can be obtained by [16]

ñαβ = nαβ − λβ
µm̃αµ = ñβα . (27)

(28)

Using these definitions, the across-the-thickness stress can be rewritten [16]

l = λt + λα
µm̃3µϕ,α . (29)

This set of governing equations is accompanied by boundary conditions applied
on the boundary ∂A of the mid-surface A. This boundary ∂A is decomposed
into a part ∂TA where the variation of t (corresponding to a variation of angle)
is constrained to ∆̄t and into a part ∂MA where the applied torque is ¯̃m, such
that

t = t0 + ∆̄t ∀
(
ξ1, ξ2

)
∈ ∂TA , (30)

m̃ανα = ¯̃m ∀
(
ξ1, ξ2

)
∈ ∂MA , (31)

where ν = ναϕ,α
0 is the external normal of the mid-surface boundary (in this

last expression ϕ,α
0 denotes, with an abuse of notation, the conjugate basis

to ϕ0,α). This boundary ∂A is also decomposed into a part ∂UA where the
displacement ū is known and into a part ∂NA where the traction is constrained
to n̄, with

ϕ = ϕ0 + ū ∀
(
ξ1, ξ2

)
∈ ∂UA , (32)

nανα = n̄ ∀
(
ξ1, ξ2

)
∈ ∂NA . (33)

The decomposition of the boundary satisfies

∂TA ∩ ∂MA = 0 and ∂TA ∪ ∂MA = ∂A , (34)

∂UA ∩ ∂NA = 0 and ∂UA ∪ ∂NA = ∂A . (35)

2.3 Constitutive behavior

The set of governing Eqs. (21-22, 25-29, 30-33) is completed by a constitutive
law relating the deformation to the stresses. In this paper a linear elastic
response is assumed.
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Just as the integrated stresses have been decomposed into membrane, shear-
ing and bending stresses acting on the mid-surface convected basis, the de-
formations are separated into membrane ε, and torque strain components ρ,
respectively defined by the expressions

εαβ =
1

2
ϕ,α ·ϕ,β −

1

2
ϕ0,α ·ϕ0,β =

1

2
ϕ0,α · u,β +

1

2
u,α ·ϕ0,β , and (36)

ραβ = ϕ,α · t,β −ϕ0,α · t0,β

= ϕ0,αβ · t0
eµη3

j̄0

u,µ · (ϕ0,η ∧ t0) +
eµη3

j̄0

u,µ · (ϕ0,αβ ∧ϕ0,η)− u,αβ · t0 .

(37)

Note that these strain definitions result from a first order approximation on
the displacement u.

Following [16], the elastic constitutive relations between the effective stresses
and strains are

ñαβ =
E (hmax − hmin)

1− ν2
Hαβγδεγδ = Hαβγδ

n εγδ , and (38)

m̃αβ =
E (hmax − hmin)

3

12 (1− ν2)
Hαβγδργδ = Hαβγδ

m ργδ , (39)

where E is the Young modulus, ν the Poisson’s ration, G is the shear modulus
and where

Hαβγδ = νϕ,α
0 ·ϕ,β

0 ϕ,γ
0 ·ϕ,δ

0 +
1

2
(1− ν) ϕ,α

0 ·ϕ,γ
0 ϕ,δ

0 ·ϕ
,β
0 +

1

2
(1− ν) ϕ,α

0 ·ϕ,δ
0 ϕ,γ

0 ·ϕ,β
0 . (40)

Once again, in this last expression ϕ,α
0 denotes, with an abuse of notation, the

conjugate basis to ϕ0,α. In relation (39), it has been assumed that the effective
torque m̃αβ is symmetric. This is a good approximation in the case of small
deformations only.

3 Discontinuous Galerkin formulation

In this section, a framework for numerical approximation of the shell equations
described above based on a C0 polynomial approximation of the unknown field
u is proposed. In this formulation, the resulting discontinuity in the surface
director ∆t is accounted for using a new discontinuous Galerkin formulation.

The strong form of the problem is defined by the set of Eqs. (21-22, 30-33,
36-39). The corresponding weak form constitutes the stationary point of the
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functional I
(
u, εαβ, ραβ, ñαβ, m̃Iβ, λ

)
: H4 (A)×H1 (A)×H1 (A)×H1 (A)×

H1 (A)× H1 (A) → R defined by

I
(
u, εαβ, ραβ, ñαβ, m̃Iβ, λ

)
=

∫
A

(
1

2
εαβHαβγδ

n εγδ +
1

2
ραβHαβγδ

m ργδ

)
j̄0dA

+
∫
A

ñαβ
(

1

2
ϕ0,α · u,β +

1

2
u,α ·ϕ0,β − εαβ

)
j̄0dA+∫

A
m̃αβ

(
ϕ0,α ·∆t (u),β + u,α · t0,β − ραβ

)
j̄0dA−∫

∂UA
(u− ū) ·

(
ñβαϕ0,β + λβ

0µm̃
αµϕ0,β + λt0

)
ναj̄0d∂A−∫

∂TA

(
∆t (u)− ∆̄t

)
·
(
m̃βαϕ0,β + m̃3αt0

)
ναj̄0d∂A−

∫
∂NA

n̄ · uj̄0d∂A

−
∫

∂MA
¯̃m ·∆t (u) j̄0d∂A−

∫
A

(
nA · u + m̃A ·∆t (u)

)
j̄0dA , (41)

where Hp is the Sobolev space of degree p in R and Hp is the Sobolev space of
degree p in R3. Indeed, the stationary points of (41) with respect to εαβ and
to ραβ verify respectively the constitutive relations (38-39), The stationary
points with respect to ñαβ and to λ correspond to the weak enforcement of
the compatibility equation (36) and the boundary condition (32). Similarly,
the stationary point of (41) with respect to m̃αβ corresponds to verifying
the compatibility equation (37) and the boundary condition (30). Eventually,
the balance equations (21-22) are obtained from the stationary point with
respect to u. This last result is obtained by applying Gauss theorem and by
considering

0 =
∫

∂A
m̃3αt0 · δ∆t j̄0 ναd∂A

=
∫
A

(
m̃3αt0 j̄0

)
,α
· δ∆tdA+

∫
A

(λt0 − l) · δ∆tj̄0dA , (42)

where ∆t · t = 0 has been used, where normality relations, Eqs. (9) and (29)
have been used and where λ is the undefined pressure. Demonstration of these
points closely follows what is done for the DG discretization and is omitted in
this work for conciseness.

At the stationary point of this functional, the pressure λ and the torque com-
ponent m̃3α remain undefined. However, these values are not necessary since(
∆t (u)− ∆̄t

)
· t0 is always equal to zero owing to the normality relation,

and since the boundary condition u = ū will be strongly enforced.

At this point, the mid-surface A is approximated by a discretization Ah into
finite-elementsAe, withA ' Ah =

⋃
e Āe. In this last equation, Āe is the union

of the open domain Ae with its boundary ∂Ae. An example of discretization
is illustrated in Fig. 2. The boundary ∂Ae of an element Ae can be common
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Fig. 2. Description of discretization of the shell.

Fig. 3. Details of two elements Ae and A′
e of the discretization Ah. Boundaries of

the elements, internal boundary ∂IAh, and the outward normal between the two
elements are represented.
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with the boundary of Ah, with

∂UAe = ∂Ae ∩ ∂UAh , ∂TAe = ∂Ae ∩ ∂TAh ,

∂MAe = ∂Ae ∩ ∂MAh , and ∂NAe = ∂Ae ∩ ∂NAh . (43)

The remaining part of the boundary ∂Ae is shared with another finite element
(see Fig. 3) and is part of the interior boundary ∂IAh, with

∂IAe = ∂Ae\∂Ah
= ∂Ae ∩ ∂IAh , with ∂IAh =

⋃
e

∂Ae \∂Ah
. (44)

Instead of seeking the exact solution u, a polynomial approximation uh ∈
Uk

h constitutes the solution to the finite element problem. In this work, a
continuous polynomial approximation is considered, but the derivatives of the
displacement field are allowed to be discontinuous on the element boundaries,
leading to the definition of the displacement manifold and of its constrained
counterpart

Uk
h =

{
uh ∈ H1 (Ah) |uh|Ae∈Pk ∀Ae∈Ah

}
⊂ Uf (Ah) , (45)

Uk
hc =

{
δu ∈ Uk

h|δu|∂UA=0

}
⊂ Uf

c (Ah) , (46)

with Uf (Ah) = C0 (Ah)
⋂ ∏

e H2 (Ae) for polynomial approximations k > 1

and with Uf
c (Ah) =

{
δu ∈ Uf (Ah)|δu|∂UA=0

}
. Similarly, the membrane stress

field is approximated by ñαβ
h ∈ Nk

h with this manifold and its constrained
counterpart defined by

Nk
h =

{
ñαβ

h ∈ L2 (Ah) |ñαβ
h
|Ae∈Pk ∀Ae∈Ae

}
⊂ Nf (Ah) , (47)

Nk
hc =

{
δñαβ ∈ Nk

h|δñαβ |∂NA=0

}
⊂ Nf

c (Ah) , (48)

where Nf (Ah) =
∏

e H1 (Ae), and Nf
c (Ah) =

{
δñαβ ∈ Nf (Ah)|δñαβ |∂NA=0

}
. The

moment field is approximated by m̃αI
h ∈ Mk

h, where this manifold and its
constrained counterpart are

Mk
h =

{
m̃αI

h ∈ L2 (Ah) |m̃αI
h
|Ae∈Pk ∀Ae∈Ah

}
⊂ Mf (Ah) , (49)

Mk
hc =

{
δm̃αI ∈ Mk

h|δm̃αI |∂MA=0

}
⊂ Mf

c (Ah) , (50)

with Mf (Ah) =
∏

e H1 (Ae), Mf
c (Ah) =

{
δm̃αI ∈ Mf (Ah)|δm̃αI |∂MA=0

}
. The

strain fields also belong to the manifold of their corresponding stresses, i.e.
εhαβ ∈ Nk

h and ρhαβ ∈ Mk
h.

Since only the C0 continuity is ensured across ∂IAh, jump J•K and mean 〈•〉
operators are defined on the space of the trace TR (∂IAh) =

∏
e L2 (∂IAe) of
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vectors that can take multiple values on this boundary, with

J•K = •+ − •− : TR (∂IAh) → L2 (∂IAh) , and (51)

〈•〉= 1

2

(
•+ + •−

)
: TR (∂IAh) → L2 (∂IAh) . (52)

In these relations the bullets represent generic vector fields with

•+ = lim
ε→0+

•
(
ξ1 + εζ1, ξ2 + εζ2

)
and (53)

•− = lim
ε→0+

•
(
ξ1 − εζ1, ξ2 − εζ2

)
, (54)

where ζα are the components of the outer unit normal ζ of Ae in the basis
Eα. It is worth noticing that if definition (51) of the jump operator is not
independent on the choice of the + and − sides of an element edge, when this
jump is used in combination with the outward unit normal of the − element
ν−, the formulation becomes consistent and independent on this choice.

Although jump and mean operators are meaningful on the interior boundary
∂IA, jump definition can be extended to ∂TA with

J∆tK = ∆̄t−∆t, Jδ∆tK = −δ∆t and 〈m̃α〉 = m̃α on ∂TA . (55)

Based on these definitions, the functional (41) can be redefined on Ah for a
discontinuous Galerkin method by introducing energy contributions resulting
from the inter-element jumps. The form of these new terms is similar to the
energy contributions resulting from the boundary conditions, leading to the
new functional Ih (uh ,εhαβ,ρhαβ,ñαβ

h ,m̃Iβ
h , λ) : Uk

h×Nk
h×Mk

h×Nk
h×Mk

h×Nk
h →

R defined by

Ih

(
uh, εhαβ, ρhαβ, ñαβ

h , m̃Iβ
h , λ

)
=∫

Ah

(
1

2
εhαβHαβγδ

n εhγδ +
1

2
ρhαβHαβγδ

m ρhγδ

)
j̄0dA+∫

Ah

ñαβ
h

(
1

2
ϕ0,α · uh,β +

1

2
uh,α ·ϕ0,β − εhαβ

)
j̄0dA+∫

Ah

m̃αβ
h

(
ϕ0,α ·∆t (uh),β + uh,α · t0,β − ρhαβ

)
j̄0dA−∫

Ah

(
nA · uh + m̃A ·∆t (uh)

)
j̄0dA−∫

∂UAh

(uh − ū) ·
(
ñβα

h ϕ0,β + λβ
0µm̃

αµ
h ϕ0,β + λt0

)
ναj̄0d∂A+∫

∂TAh∪∂IAh

J∆t (uh)K ·
〈
j̄0m̃

βα
h ϕ0,β + j̄0m̃

3α
h t0

〉
ν−α d∂A−∫

∂NAh

n̄ · uhj̄0d∂A−
∫

∂MA
¯̃m ·∆t (uh) j̄0d∂A . (56)

For simplicity, in this work, t0 is assumed to be continuous across element
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boundaries 2 . Under these circumstances, the product J∆t (uh)K · 〈j̄0m̃
3α
h t0〉 =

0 and m̃3α
h need no longer to be determined. Moreover, the boundary condition

uh = ū on ∂UA is enforced strongly, thus removing the dependency on λ.

Reduction to a one-field formulation is achieved by deriving the stationary
point of functional (56) and by substituting unknowns with explicit expres-
sions of the displacement field uh. The stationary points with respect to the
resultant strains εhαβ ∈ Nk

h and ραβ ∈ Mk
h are respectively

0 =
∂Ih

∂εh
αβ

δεαβ =
∫
Ah

(
Hαβγδ

n εhγδ − ñαβ
h

)
δεαβ j̄0 dA ∀δεαβ ∈ Nk

hc , (57)

0 =
∂Ih

∂ρh
αβ

δραβ =
∫
Ah

(
Hαβγδ

m ρhγδ − m̃αβ
h

)
δραβ j̄0 dA ∀δραβ ∈ Mk

hc , (58)

which enables rewriting the constitutive laws as

ñαβ
h = Hαβγδ

n εhγδ , and m̃αβ
h = Hαβγδ

m ρhγδ , in Ae . (59)

Since uh = ū is assumed to be strongly enforced on ∂UAh, and since uh ∈
C0 (Ah), the membrane strain field is directly derived from the stationary point
of Ih with respect to ñαβ

h , which is

0 =
∂Ih

∂ñαβ
h

δñαβ =
∫
Ah

δñαβ
(

1

2
ϕ0,α · uh,β +

1

2
uh,α ·ϕ0,β − εhαβ

)
j̄0 dA ,

∀δñαβ ∈ Nk
hc , (60)

leading to

εhαβ =
1

2
ϕ0,α · uh,β +

1

2
uh,α ·ϕ0,β , in Ae . (61)

When considering the stationary point of Ih with respect to m̃αβ
h integrals on

the boundary are also involved, since

0 =
∂Ih

∂m̃αβ
h

δm̃αβ =
∫
Ah

(
ϕ0,α ·∆t (uh),β + uh,α · t0,β − ρhαβ

)
δm̃αβ j̄0dA+∫

∂TAh∪∂IAh

J∆t (uh)K ·
〈
δm̃αβ j̄0ϕ0,β

〉
ν−α d∂A ∀δm̃βα ∈ Mk

hc , (62)

where the relation J∆t (uh)K · 〈j̄0m̃
3α
h t0〉 = 0 has been used. In order to reduce

this last expression to a volume boundary, the side lifting operator rs
αβ (J•K) :

2 Indeed the interface term should consider the jump in the normal (JtK) between
two elements, which would lead to a non-vanishing contribution for ∆t = 0 if t0 is
not continuous across the elements interface. Under these circumstances t0 has to
be continuous across this interface and JtK can be reduced to J∆tK.
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L2 (s) → Mk
h is defined for all sides s ∈ ∂IAh ∪ ∂Ah such that

∫
Ah

rs
αβ (J∆tK) δm̃αβ j̄0dA =

∫
s J∆tK ·

〈
ϕ0,βδm̃αβ j̄0

〉
ν−α d∂A ∀δm̃αβ ∈ Mk

h if s ∈ ∂IA∫
s J∆tK ·

〈
ϕ0,βδm̃αβ j̄0

〉
ν−α d∂A ∀δm̃αβ ∈ Mk

h if s ∈ ∂TA
0 if s ∈ ∂MA

. (63)

Although relation (62) would formally define ρhαβ as

ρhαβ = ϕ0,α ·∆t (uh),β + uh,α · t0,β +
∑

s∈∂IA∪∂TA
rs
αβ (J∆tK) in Ah , (64)

a common approximation [1,3,23] that reduces the dependency of ρhαβ inside
an element Ae to its direct neighbors is

ρhαβ = ϕ0,α ·∆t (uh),β + uh,α · t0,β +
∑

s∈∂Ae

rs
αβ (J∆tK) in Ae , (65)

where Ae is the open domain. Moreover, as previously proposed for elliptic
equations [3], the stabilization can be ensured by introducing a stabilization
parameter β when the resultant torque strain is evaluated on an element side
s, i.e.

ρh
s
αβ = ϕ0,α ·∆t (uh),β + uh,α · t0,β + βrs

αβ (J∆tK) on s ∈ ∂Ae . (66)

Combining relations (59), (65) and (66) gives expressions for the stress tensors
in terms of u only, as follows

ñαβ
h = Hαβγδ

n

(
1

2
ϕ0,γ · uh,δ +

1

2
uh,γ ·ϕ0,δ

)
in Ah , (67)

m̃αβ
h =Hαβγδ

m

(
ϕ0,γ ·∆t (uh),δ + uh,γ · t0,δ

)
+∑

s∈∂Ae

Hαβγδ
m rs

γδ (J∆tK) in Āe , and (68)

m̃s
h

αβ =Hαβγδ
m

(
ϕ0,γ ·∆t (uh),δ + uh,γ · t0,δ

)
+

βHαβγδ
m rs

γδ (J∆tK) on s ∈ ∂Ae . (69)

The variational statement of the problem then follows from the stationary
point of the DG functional (56) with respect to uh. This leads to the moment
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equilibrium equations

0 =
∂Ih

∂uh

δu =
∫
Ah

ñαβ
h

(
1

2
ϕ0,α · δu,β +

1

2
ϕ0,β · δu,α

)
j̄0dA+∫

Ah

m̃αβ
h

(
ϕ0,α · δ∆t (u),β + δu,α · t0,β

)
j̄0dA−∫

Ah

(
nA · δu + m̃A · δ∆t (u)

)
j̄0dA+∫

∂IAh∪∂TAh

Jδ∆t (u)K ·
〈
j̄0 m̃s

h
βαϕ0,β

〉
ν−α d∂A−∫

∂NAh

n̄ · δuj̄0d∂A−
∫

∂MA
¯̃m · δ∆t (u) j̄0d∂A ∀δu ∈ Uk

hc , (70)

where δ∆t (u) = ∆t (δu). Instead of implementing lifting operators, it is a
convenient choice to reduce the expressions involving this operator to edge
integrals. Indeed, we seek the use of interface elements, which were proved to
suit well with DG formulations [3,4]. In particular this leads to high scalability
for parallel implementation [4]. The same method can also be applied for non-
linear material laws as it has been shown in [3]. In this linear range, the
definitions of the ”lifting operators” reduces expression (70) in terms of jump
on the boundary, since∫

Ah

∑
s∈∂Ae

Hαβγδ
m rs

γδ (J∆tK)
(
ϕ0,α · δ∆t (u),β + δu,α · t0,β

)
j̄0dA =∫

∂IAh∪∂Ah

J∆tK ·
〈
ϕ0,γHαβγδ

m

(
ϕ0,α · δ∆t (u),β + δu,α · t0,β

)
j̄0

〉
ν−δ d∂A ,

(71)

and since∫
∂IAh∪∂TAh

Jδ∆t (u)K ·
〈
j̄0 m̃s

h
βαϕ0,β

〉
ν−α d∂A =

∫
∂IAh∪∂Ah

Jδ∆tK ·
〈
ϕ0,γHαβγδ

m

(
ϕ0,α ·∆t (uh),β + uh,α · t0,β

)
j̄0

〉
ν−δ d∂A

+
∫

s∈∂IAh∪∂Ah

β

hs
Jδ∆tK ·ϕ0,γν

−
δ

〈
Hαβγδ

m j̄0

〉
J∆t (uh)K ·ϕ0,αν−β d∂A , (72)

where hs is a characteristic size of the side s, i.e. maxe adjacent to s
|Ae|
|∂Ae| , see [3]

for details.

Therefore, using Eqs. (71-72) the weak formulation defined by the set of Eqs.
(67-70) can be stated in the bilinear form, as finding uh ∈ Uk

h such that

a (uh, δu) = b (δu) ∀δu ∈ Uk
hc , (73)

16



where

a (uh, δu) =
∑
e

ae
n (uh, δu) +

∑
e

ae
m (uh, δu) +

∑
s

as
I (uh, δu) , (74)

with, using the original definition of the strain functions Eqs. (36) and (37),

ae
n (uh, δu) =

∫
Ae

εγδ (uh)Hαβγδ
n δεαβ (u) j̄0dA , (75)

ae
m (uh, δu) =

∫
Ae

ργδ (uh)Hαβγδ
m δραβ (u) j̄0dA , and (76)

as
I (uh, δu) =

∫
s
J∆t (uh)K ·

〈
ϕ0,γHαβγδ

m δραβ (u) j̄0

〉
ν−δ d∂A︸ ︷︷ ︸

as
I1(uh, δu)

+

∫
s
Jδ∆t (u)K ·

〈
ϕ0,γHαβγδ

m ραβ (uh) j̄0

〉
ν−δ d∂A︸ ︷︷ ︸

as
I2(uh, δu)

+

∫
s
Jδ∆t (u)K ·ϕ0,γν

−
δ

〈
βHαβγδ

m j̄0

hs

〉
J∆t (uh)K ·ϕ0,αν−β d∂A︸ ︷︷ ︸

as
I3(uh, δu)

. (77)

and where

b (δu) =
∫
Ah

(
nA · δu + m̃A · δ∆t (u)

)
j̄0dA+∫

∂NAh

n̄ · δuj̄0d∂A+
∫

∂MA
¯̃m · δ∆t (u) j̄0d∂A . (78)

In the bilinear form (74), the classical terms of shell theory appear clearly in
the first two terms, while the third term is a collection of boundary integrals
resulting from the inter-element discontinuities. They enforce respectively (i)
the symmetric nature of the Jacobian for as

I1 (uh, δu), (ii) the consistency of
the formulation for as

I2 (uh, δu) and (iii) the stability for as
I3 (uh, δu). Those

properties are demonstrated in the next section.

4 Numerical properties

This section demonstrates that the weak formulation of the problem defined by
Eq. (73) describing the deformation of shells satisfies two essential properties
of a numerical method: consistency and stability. The stability is demonstrated
if the stability parameter β is sufficiently large. The convergence rate of the
method in the energy norm with respect to the mesh-size, in function of the
polynomial approximation degree k, is also established as being equal to k−1.
Eventually, optimal-convergence rate in the L2-norm is demonstrated for at
least cubic elements, under the assumption of proper ellipticity of the problem.
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4.1 Consistency

Consider u ∈ H4 (Ah) the exact solution of the physical problem. This solution
belongs to C2 (Ah), which implies that J∆tK = ∆̄t − ∆t = 0 on ∂IA, as
opposed to Jδ∆tK, and so for ∆t,α. On the external boundary ∂TA, J∆tK =
∆̄t−∆t = 0 and Jδ∆tK = −δ∆t. Therefore, Eq. (74) becomes

a (u, δu) =
∫
Ah

(
1

2
ϕ0,γ · u,δ +

1

2
u,γ ·ϕ0,δ

)
Hαβγδ

n

×
(

1

2
ϕ0,α · δu,β +

1

2
ϕ0,β · δu,α

)
j̄0dA+∫

Ah

(
ϕ0,γ ·∆t (u),δ + u,γ · t0,δ

)
Hαβγδ

m

×
(
ϕ0,α · δ∆t (u),β + δu,α · t0,β

)
j̄0dA−∫

∂TAh

δ∆t (u) ·ϕ0,γHαβγδ
m(

ϕ0,α ·∆t (uh),β + uh,α · t0,β

)
j̄0νδd∂A−∑

e

∫
∂Ae∩∂IAh

δ∆t− (u) ·ϕ0,γHαβγδ
m

×
(
ϕ0,α ·∆t (uh),β + uh,α · t0,β

)
j̄0νδd∂A ∀δu ∈ Uk

hc , (79)

where the discontinuous nature of δ∆t across the elements has been taken into
account. First, the membrane term is considered. Using Eqs. (36) and (38) in
combination with the symmetric nature of ñαβ and Gauss theorem leads to∫

Ah

(
1

2
ϕ0,γ · u,δ +

1

2
u,γ ·ϕ0,δ

)
Hαβγδ

n

(
1

2
ϕ0,α · δu,β +

1

2
ϕ0,β · δu,α

)
j̄0dA

=
∫
Ah

ñαβϕ0,β · δu,αj̄0dA =
∫

∂NAh

ñαβϕ0,β · δuj̄0ναd∂A−∫
Ah

(
ñαβϕ0,β j̄0

)
,α
· δudA ∀δu ∈ Uk

hc . (80)

Using Eqs. (37) and (39), the torque term becomes∫
Ah

(
ϕ0,γ ·∆t (u),δ + u,γ · t0,δ

)
Hαβγδ

m

(
ϕ0,α · δ∆t (u),β + δu,α · t0,β

)
j̄0dA

=
∫
Ah

m̃αβ
(
ϕ0,α · δ∆t (u),β + δu,α · t0,β

)
j̄0dA =∑

e

∫
∂Ae

m̃αβϕ0,α · δ∆t− (u) j̄0νβdA−∫
Ah

(
m̃βαϕ0,β j̄0

)
,α
· δ∆t (u) dA+

∫
∂NA

λµ
0,βm̃αβδu ·ϕ0,µj̄0ναdA−∫

Ah

(
λµ

0,βm̃βαϕ0,µj̄0

)
,α
· δudA ∀δu ∈ Uk

hc , (81)
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where Eq. (9) has been used in combination with Gauss theorem applied on
each elements Ae. Moreover, still using Eqs. (37) and (39), the boundary terms
are reduced to

∫
∂TAh

δ∆t (u) ·ϕ0,γHαβγδ
m

(
ϕ0,α ·∆t (u),β + u,α · t0,β

)
j̄0νδd∂A =∫

∂TAh

m̃αβϕ0,α · δ∆t (u) j̄0νβdA ∀δu ∈ Uk
hc , (82)

and

∑
e

∫
∂Ae∩∂IAh

δ∆t− (u) ·ϕ0,γHαβγδ
m

(
ϕ0,α ·∆t (u),β + u,α · t0,β

)
j̄0νδd∂A

=
∑
e

∫
∂Ae∩∂IAh

m̃αβϕ0,α · δ∆t− (u) j̄0νβdA ∀δu ∈ Uk
hc . (83)

The undefined pressure λ is introduced by using Gauss theorem, relations
∆t · t = 0 and t · t,γ = 0, and Eqs. (9) and (29), which lead to

0 =
∫

∂Ah

m̃3αt0 · δ∆t j̄0 ναd∂A =
∫
Ah

(
m̃3αt0 j̄0

)
,α
· δ∆tdA+∫

Ah

(λt0 − l) · δ∆tj̄0dA ∀δu ∈ Uk
hc . (84)

The introduction of Eqs. (80-84) into (79) gives the expression

a (u, δu) =
∫

∂NAh

(
ñαβ + λβ

0,µm̃
αµ

)
ϕ0,β · δuj̄0ναd∂A+∫

∂MAh

(
m̃βαϕ0,β + m̃3αt0

)
· δ∆t (u) j̄0ναdA−∫

Ah

((
m̃βαϕ0,β j̄0 + m̃3αt0j̄0

)
,α

+ λt0j̄0 − lj̄0

)
· δ∆t (u) dA−∫

Ah

((
ñαβ + λβ

0,µm̃
µα

)
ϕ0,β j̄0

)
,α
· δudA ∀δu ∈ Uk

hc . (85)

Using Eqs. (25-29), this last relation inserted in the governing equation (73)
leads to

∫
∂NAh

(nα − n̄) · δuj̄0ναd∂A+
∫

∂MAh

(
m̃α − ¯̃m

)
· δ∆t (u) j̄0ναdA =∫

Ah

(
(m̃αj̄0),α + λt0j̄0 − lj̄0 + m̃Aj̄0

)
· δ∆t (u) dA+∫

Ah

[
(nαj̄0),α + nAj̄0

]
· δudA ∀δu ∈ Uk

hc . (86)
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The arbitrary character of δu in Eq. (86) implies that

1

j̄0

(nαj̄0),α + nA = 0 in Ah , (87)

1

j̄0

(m̃αj̄0),α + λt0 − l + m̃A = λut0 in Ah , (88)

nανα = n̄ on ∂NAh , (89)

m̃ανα − ¯̃m = λbt0 on ∂MAh , (90)

Thus the consistency of the method is demonstrated. In these expressions, λu

and λb are undefined and arise because δ∆t is perpendicular to t0. Relation
(87) and (88) demonstrate respectively the weak enforcement of the equations
of normal force and moment equilibrium(21-22) up to an unknown pressure
λ. Equations (89) and (90) correspond to the boundary conditions (31) and
(33) up to an undefined value λb.

An interesting result provided by the consistency is the orthogonality relation.
Since the formulation is consistent, u the exact solution also verifies (73),
which implies the orthogonality relation

a (uh − u, δu) = a (uh, δu)− a (u, δu) = a (uh, δu)− b (δu) = 0 . (91)

4.2 Energy norm

Both stability and convergence rate studies require the definition of an energy
norm |‖•‖| : Uf

c (Ah) → R+. As shown by the use of the manifold Uf
c (Ah),

the constrained displacement ū on ∂UA is assumed equal to zero. ∆̄t = 0 on
∂TA is also assumed. Therefore, for the discontinuous Galerkin discretization
of shells, the following energy norm is proposed:

|‖u‖|2 =
∑
e

∥∥∥∥∥
√
Hnj̄0

αβ 1

2
(ϕ0,α · u,β + u,α ·ϕ0,β)

∥∥∥∥∥
2

L2(Ae)

+

∑
e

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
2

L2(Ae)

+

∑
s∈∂IAh

∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

ϕ0,α · J∆tK ν−β

∥∥∥∥∥∥
2

L2(s)

+

∑
s∈∂TAh

1

2

∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

ϕ0,α · J∆tK ν−β

∥∥∥∥∥∥
2

L2(s)

, (92)
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with the abuses of notation

∥∥∥∥√Hαβ
aαβ

∥∥∥∥2

L2(Ae)
=

∫
Ae

aαβHαβγδaγδdA , and (93)

∑
s∈∂IAh

∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

ϕ0,α · J∆tK ν−β

∥∥∥∥∥∥
2

L2(s)

+

1

2

∑
s∈∂TAh

∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

ϕ0,α · J∆tK ν−β

∥∥∥∥∥∥
2

L2(s)

=

∑
e

1

2

∥∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

ϕ0,α · J∆tK ν−β

∥∥∥∥∥∥∥
2

L2(∂Ae)

=

∑
e

1

2

∫
∂Ae

ϕ0,γ · J∆tK ν−δ
βHαβγδ

m j̄0

hs
ϕ0,α · J∆tK ν−β d∂A , (94)

and where the positive semi-definite nature of Hm has been used. In Eq. (94),
integration on all sides s is equivalent to one half of the integration on all the
element boundaries. Indeed, the sum on all the element boundaries accounts
twice for a side s, except on the domain boundary ∂TAh. The parameter β
was introduced in the interface energy in order to obtain a more meaningful
expression of the interface energy, since the work of these interface forces
depends on it.

Expression (92) is a norm, i.e. its value is equal to zero only for u = 0 on Ah.
Indeed, if |‖u‖| is equal to zero, then all the contributions are also equal to
zero but, if this is the case, the only solution is u = 0 on Ah, as it is shown in
the following lines. If the membrane energy (first term of Eq. (92)) is equal to
zero, then the solution of the problem is u,α parallel to t0 on every Ae. If the
bending term (second term of Eq. (92)) is equal to zero, it means that ραβ = 0
on Ae. Using Eq. (37), and since u,α is parallel to t0, the solution ραβ = 0
implies C = u,α ·t0 is constant on each Ae. Since the jump in the variation ∆t
is equal to zero between two elements (third term of Eq. (92) equal to zero),
this product is constant on the whole domain, by recourse to Eq. (12) - ∆t
cannot be perpendicular to ϕ0,α by definition. So the solution of the problem
would be u,α · t0 = 0 on the whole domain since the fourth term of Eq. (92)
is equal to zero. Owing u ∈ C0 (Ah) and the constrained displacement ū = 0,
the only remaining solution is u = 0 on Ah.

Before demonstrating the stability and studying the convergence rate, some
intermediate results are established.
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4.2.1 Upper bound of the bilinear form

In order to establish the upper bound of |a (u, δu)|2, the membrane part of
the bilinear form is first considered. Using the Cauchy-Schwartz inequality
(
∣∣∣aαβbαβ

∣∣∣ ≤ √
aαβaαβ

√
bαβbαβ), gives

∣∣∣∣∣∑
e

ae
n (u, δu)

∣∣∣∣∣≤∑
e

∥∥∥∥∥
√
Hnj̄0

αβ 1

2
(ϕ0,α · u,β + u,α ·ϕ0,β)

∥∥∥∥∥
L2(Ae)

×
∥∥∥∥∥
√
Hnj̄0

γδ 1

2
(ϕ0,γ · δu,δ + δu,γ ·ϕ0,δ)

∥∥∥∥∥
L2(Ae)

. (95)

Similarly, the bending term is bounded by∣∣∣∣∣∑
e

ae
m (u, δu)

∣∣∣∣∣≤∑
e

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
L2(Ae)

×
∥∥∥∥∥
√
Hmj̄0

γδ

(ϕ0,γ · δ∆t,δ + δu,γ · t0,δ)

∥∥∥∥∥
L2(Ae)

. (96)

The bound of the first interface term may be found by using the property
‖〈•〉‖2

L2(s) ≤ ‖•+‖2
L2(s) + ‖•−‖2

L2(s) which gives

∣∣∣∣∣∑
s

as
I1 (u, δu)

∣∣∣∣∣≤∑
e

∣∣∣∣∣∣∣
∫

∂Ae

as
I1 (u, δu)

∣∣∣∣∣∣∣
≤ 2

∑
e

∥∥∥∥∥
√

hsHmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
L2(∂Ae)

×

∥∥∥∥∥∥∥
√
Hmj̄0

hs

γδ

J∆t (δu)K ·ϕ0,δν
−
γ

∥∥∥∥∥∥∥
L2(∂Ae)

, (97)

or again, with the use of the scaling property 3 ,∣∣∣∣∣∑
s

as
I1 (u, δu)

∣∣∣∣∣≤ Ck

√
β

∑
e

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
L2(Ae)

×

∥∥∥∥∥∥∥
√

βHmj̄0

hs

γδ

J∆t (δu)K ·ϕ0,δν
−
γ

∥∥∥∥∥∥∥
L2(∂Ae)

, (98)

3 Hansbo et al have demonstrated [24] that for an element e one has the property
hs ‖a‖2

L2(∂Ae)
≤ Ck ‖a‖2

L2(Ae)
with Ck > 0 independent of the element geometry and

with hs = |Ae|
|∂Ae| . Constant Ck = supaαβ∈Pk(Ae)

|Ae|
∫

s
{aαβ :aαβ}d∂A

|s|
∫
Ae
{aαβ :aαβ}dA

depends only on

the polynomial degree k.
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where Ck depends only on the degree of u. Note that for u ∈ Uf
c (Ah) this

polynomial degree is a priori unknown, but once the bounds are applied to
the discretization uh ∈ Uk

hc it will correspond to the degree of the polynomial
approximation. Similarly, the second interface term is bounded such that∣∣∣∣∣∑

s

as
I2 (u, δu)

∣∣∣∣∣≤ Ck

√
β

∑
e

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α · δ∆t,β + δu,α · t0,β)

∥∥∥∥∥
L2(Ae)

×

∥∥∥∥∥∥∥
√

βHmj̄0

hs

γδ

J∆tK ·ϕ0,δν
−
γ

∥∥∥∥∥∥∥
L2(∂Ae)

, (99)

while the quadratic term can straightforwardly be bounded by

∣∣∣∣∣∑
s

as
I3 (u, δu)

∣∣∣∣∣≤∑
e

∥∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

Jδ∆tK ·ϕ0,βν−α

∥∥∥∥∥∥∥
L2(∂Ae)

×

∥∥∥∥∥∥∥
√

βHmj̄0

hs

γδ

J∆tK ·ϕ0,δν
−
γ

∥∥∥∥∥∥∥
L2(∂Ae)

(100)

The combination of Eqs. (95-100) completed to obtain the complete binomial
terms leads to

|a (u, δu)|
Ck

1 (β)
≤

∑
e

∥∥∥∥∥
√
Hnj̄0

αβ 1

2
(ϕ0,α · u,β + u,α ·ϕ0,β)

∥∥∥∥∥
L2(Ae)

+∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
L2(Ae)

+

∥∥∥∥∥∥∥
√

βHmj̄0

2hs

αβ

J∆tK ·ϕ0,βν−α

∥∥∥∥∥∥∥
L2(∂Ae)

×
∥∥∥∥∥

√
Hnj̄0

γδ 1

2
(ϕ0,γ · δu,δ + δu,γ ·ϕ0,δ)

∥∥∥∥∥
L2(Ae)

+∥∥∥∥∥
√
Hmj̄0

γδ

(ϕ0,γ · δ∆t,δ + δu,γ · t0,δ)

∥∥∥∥∥
L2(Ae)

+

∥∥∥∥∥∥∥
√

βHmj̄0

2hs

γδ

Jδ∆tK ·ϕ0,δν
−
γ

∥∥∥∥∥∥∥
L2(∂Ae)

 , (101)

with Ck
1 (β) = max

(
2, Ck

√
2/β

)
. The Cauchy-Schwartz inequality (

∣∣∣∣∑
i

aibi

∣∣∣∣ ≤√∑
i

a2
i

∑
j

b2
j) is now applied to Eq. (101), which becomes after using the prop-

23



erty 2ab ≤ a2 + b2,

|a (u, δu)|2

9Ck
2 (β)

≤
∑
e

∥∥∥∥∥
√
Hnj̄0

αβ 1

2
(ϕ0,α · u,β + u,α ·ϕ0,β)

∥∥∥∥∥
2

L2(Ae)

+

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
2

L2(Ae)

+

1

2

∥∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

J∆tK ·ϕ0,βν−α

∥∥∥∥∥∥∥
2

L2(∂Ae)

×
∑
e′

∥∥∥∥∥
√
Hnj̄0

γδ 1

2
(ϕ0,γ · δu,δ + δu,γ ·ϕ0,δ)

∥∥∥∥∥
2

L2(∂Ae′ )

+

∥∥∥∥∥
√
Hmj̄0

γδ

(ϕ0,γ · δ∆t,δ + δu,γ · t0,δ)

∥∥∥∥∥
2

L2(∂Ae′ )

+

1

2

∥∥∥∥∥∥∥
√

βHmj̄0

hs

γδ

Jδ∆tK ·ϕ0,δν
−
γ

∥∥∥∥∥∥∥
2

L2(∂Ae′ )

 . (102)

This last relation can be rewritten in the more elegant form

|a (u, δu)|2 ≤ Ck (β) |‖u‖|2 |‖δu‖|2 ∀u, δu ∈ Uf
c (Ah) , (103)

where Ck depends only on the degree of u. Note that for u ∈ Uf
c (Ah) this

polynomial degree is a priori unknown, but once the bounds are applied to
the discretization uh ∈ Uk

hc it will correspond to the degree of the polynomial
approximation.

4.2.2 Lower bound of the energy norm

The lower bound of the bilinear form is obtained from the relation

a (u, u) =
∑
e

∥∥∥∥∥
√
Hnj̄0

αβ 1

2
(ϕ0,α · u,β + u,α ·ϕ0,β)

∥∥∥∥∥
2

L2(Ae)

+

∑
e

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
2

L2(Ae)

+

2
∑
s

∫
s
J∆tK ·ϕ0,γ

〈(
ϕ0,α ·∆t (u),β + u,α · t0,β

)
Hαβγδ

m j̄0

〉
ν−δ d∂A

+
∑
s

∥∥∥∥∥∥∥
√

βHmj̄0

hs

γδ

ϕ0,γ · J∆t (u)K ν−δ

∥∥∥∥∥∥∥
2

L2(s)

. (104)
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The remaining interface integral can be bounded by the product of L2-norms
with a constant Ck depending on the degree of u, see Eq. (99), leading to

a (u, u) ≥
∑
e

∥∥∥∥∥
√
Hnj̄0

αβ 1

2
(ϕ0,α · u,β + u,α ·ϕ0,β)

∥∥∥∥∥
2

L2(Ae)

+

∑
e

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
2

L2(Ae)

−

2
√

2Ck

√
β

∑
e

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
L2(Ae)

×

∥∥∥∥∥∥∥
√

βHmj̄0

2hs

γδ

J∆tK ·ϕ0,δν
−
γ

∥∥∥∥∥∥∥
L2(∂Ae)

+

∑
e

∥∥∥∥∥∥∥
√

βHmj̄0

2hs

γδ

ϕ0,γ · J∆t (u)K ν−δ

∥∥∥∥∥∥∥
2

L2(∂Ae)

. (105)

The final expression of the lower bound of the bilinear form is obtained by the
ε-inequality 4 applied to Eq. (105), leading to

a (u, u)≥
∑
e

∥∥∥∥∥
√
Hnj̄0

αβ 1

2
(ϕ0,α · u,β + u,α ·ϕ0,β)

∥∥∥∥∥
2

L2(Ae)

+

(1− ε)
∑
e

∥∥∥∥∥
√
Hmj̄0

αβ

(ϕ0,α ·∆t,β + u,α · t0,β)

∥∥∥∥∥
2

L2(Ae)

+

1− 2
Ck2

εβ

 ∑
e

∥∥∥∥∥∥∥
√

βHmj̄0

2hs

γδ

ϕ0,γ · J∆t (u)K ν−δ

∥∥∥∥∥∥∥
2

L2(∂Ae)

∀u ∈ Uf
c (Ah) . (106)

4.3 Stability

The stability of the proposed discontinuous Galerkin formulation for shells
is demonstrated in a straightforward manner from the lower bound (106) of
the bilinear form (73). Indeed, for a given 1 > ε > 0, there always exists

β > 2Ck2
/ε > 0 such that

a (uh, uh)≥C2 (β) |‖uh‖|2 ∀uh ∈ Uk
hc ⊂ Uf

c (Ah) , (107)

with C2 (β) > 0.

4 ∀ε > 0 : |ab| ≤ ε
2a2 + 1

2εb
2 or ∀ε > 0 : |ab| ≤ εa2 + 1

4εb
2.
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Therefore, if the stabilization parameter β is larger than a constant which
is solely dependent on the degree of the polynomial approximation, then the
stability is demonstrated. This follows from the fact that the square of the
energy norm |‖uh‖|2 is bounded by a (uh, uh) = b (uh), which corresponds to
the work of the external forces.

4.4 Convergence rate in the energy norm

Next, the error between the finite element solution and the interpolant of the
exact solution in the same space of functions of polynomial degree k is cal-
culated. This establishes the convergence rate of the problem. If u ∈ Uf

c (Ah)
is the exact solution of the problem, its interpolant uk in the manifold Uk

hc is
defined by

∫
Ah

(
u− uk

)
· δuj̄0dA = 0 ∀δu ∈ Uk

hc . (108)

The error is defined as

e = uh − u ∈ Uf
c (Ah) , (109)

where the imposed displacement on ∂UA is strictly enforced and equal to zero,
whereas the error on the exact solution interpolant is defined as

ek = uh − uk ∈ Uk
hc ⊂ Uf

c (Ah) . (110)

Since the terms (74, 78) involved in the bilinear equations (73) are by definition
linear, the use of Eqs. (103) and (107) yields

C2

∣∣∣∥∥∥ek
∥∥∥∣∣∣2≤ a

(
uh − uk, uh − uk

)
≤ a

(
uh − u, uh − uk

)
+ a

(
u− uk, uh − uk

)
≤C1

∣∣∣∥∥∥u− uk
∥∥∥∣∣∣ ∣∣∣∥∥∥uh − uk

∥∥∥∣∣∣ = C1

∣∣∣∥∥∥u− uk
∥∥∥∣∣∣ ∣∣∣∥∥∥ek

∥∥∥∣∣∣ , (111)

where the orthogonality relation (91) has been used.

The terms appearing in the norm
∣∣∣∥∥∥u− uk

∥∥∥∣∣∣ can all be bounded to enable the
computation of the error resulting from the discontinuous Galerkin method.
Defining Iαβγδ the unit forth order tensor, the membrane energy term can be
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bounded by

∥∥∥∥∥
√
Hnj̄0

αβ 1

2

(
ϕ0,α ·

(
u,β − uk

,β

)
+

(
u,α − uk

,α

)
·ϕ0,β

)∥∥∥∥∥
2

L2(Ae)

≤

Cn1

∥∥∥∥√Iαβ
ϕ0,α ·

(
u,β − uk

,β

)∥∥∥∥2

L2(Ae)
≤

2Cn1

[∥∥∥√Iαβ
(ϕ0,α·(u−uk))

,β

∥∥∥2

L2(Ae)

+

∥∥∥√Iαβ
ϕ0,αβ ·(u−uk)

∥∥∥2

L2(Ae)

]
≤ 2Cn2‖

√
I
α
ϕ0,α·(u−uk)‖2

H1(Ae)
+ 2Cn1

∥∥∥√Iαβ
ϕ0,αβ ·(u−uk)

∥∥∥2

L2(Ae)

≤ Cn3

(∥∥∥u− uk
∥∥∥2

H1(Ae)
+

∥∥∥u− uk
∥∥∥2

L2(Ae)

)
≤

Cn4h
s2k |u|2Hk+1(Ae)

+ Cn5h
s2k+2 |u|2Hk+1(Ae)

≤ Cnh
s2k |u|2Hk+1(Ae)

(112)

using the positive and symmetric nature of Hn, the derivation by part, the
property (a + b)2 < 2a2 + 2b2, the definition of the Sobolev space (‖a,α‖H0(Ae)

≤ ‖a‖H1(Ae)
), the property ‖a · b‖ ≤ ‖a‖ ‖b‖, the basic error estimates of

interpolation theory 5 and the assumption hs < 1. Thus it is assumed that the
description of the surface is continuous and regular (no singular point).

By using the definition (15) of ∆t,γ, and doing the same analysis here as above
for all the terms involved in the products ∆t,β ·ϕ0,α and u,α · t0,β. It is clear
that terms up to the second derivative will appear, leading to

∥∥∥∥∥
√
Hmj̄0

αβ (
ϕ0,α ·∆t,β

(
u− uk

)
+

(
u,α − uk

,α

)
· t0,β

)∥∥∥∥∥
2

L2(Ae)

≤

Cm1

∥∥∥u− uk
∥∥∥2

H2(Ae)
+ Cm2

∥∥∥u− uk
∥∥∥2

H1(Ae)
+ Cm3

∥∥∥u− uk
∥∥∥2

L2(Ae)
(113)

Using the error estimates from interpolation theory and the fact that hs < 1,
this relation becomes

∥∥∥∥∥
√
Hmj̄0

αβ (
ϕ0,α ·∆t,β

(
u− uk

)
+

(
u,α − uk

,α

)
· t0,β

)∥∥∥∥∥
2

L2(Ae)

≤

Cmhs2k−2 |u|2Hk+1(Ae)
. (114)

Now the interface terms are considered. Using Eqs. (7) and (12), leads to the

5 Given a mapping u ∈ Hk+1 (Ae), then ∀uk ∈ Pk interpolating u in Ae:∥∥u− uk
∥∥
Hq(Ae)

≤ Cih
sk+1−q |u|Hk+1(Ae)

∀0 ≤ q ≤ k + 1, with Ci independent
of hs, the size of Ae [1].
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property J∆tK ·ϕ0,α = − Ju,αK · t0, which enables writing

1

2

∑
e

∥∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

ϕ0,α ·
r
∆t

(
u− uk

)z
ν−β

∥∥∥∥∥∥∥
2

L2(∂Ae)

≤

∑
e

∥∥∥∥∥∥∥
√

βHmj̄0

hs

αβ

t0 ·
(
u,α − uk

,α

)
ν−β

∥∥∥∥∥∥∥
2

L2(∂Ae)

≤

∑
e

CI1β

hs

∥∥∥√I
α (

u,α − uk
,α

)∥∥∥2

L2(∂Ae)
≤

∑
e

CI2β

hs2 ‖√I
α
(u,α−uk

,α)‖2

L2(Ae)
+

∑
e

CI3β
∥∥∥√Iαβ

(u,αβ−uk
,αβ)

∥∥∥2

L2(Ae)

≤

∑
e

CI2β

hs2

∥∥∥u− uk
∥∥∥2

H1(Ae)
+

∑
e

CI3β
∥∥∥u− uk

∥∥∥2

H2(Ae)
≤

∑
e

CI4β

hs4

∥∥∥u− uk
∥∥∥2

L2(Ae)
≤∑

e

CIβhs2k−2 |u|2Hk+1(Ae)
, (115)

using the positive and symmetric natures ofHm, the property ‖a·b‖ ≤ ‖a‖‖b‖,
the trace inequality 6 , the definition of Sobolev spaces (i.e. ‖∇x‖H0(Ae)

≤
‖x‖H1(Ae)

), the inverse inequality 7 and the the interpolation theory. In this
development, hs is assumed to be constant.

Combining these last three results, Eq. (111) may be rewritten as∣∣∣∥∥∥ek
∥∥∥∣∣∣≤∑

e

Chsk−1 |u|Hk+1(Ae)
. (116)

As expected, the presence of high-order derivatives in the governing equation
implies an order of convergence lower than the degree of the polynomial ap-
proximation. For this reason, the use of at least quadratic interpolation is
required. In fact, for linear shell elements only the stabilization terms remain
non-zero in the interface terms of Eq. (74). In that case, the method corre-
sponds to a penalty method and the converged solution depends on the value
of the stabilization parameter with no possibility of ascertaining the conver-
gence toward the exact solution.

Note that in membrane problems, only term (112) is different from zero and
the error becomes∣∣∣∥∥∥ek

∥∥∥∣∣∣
membrane

≤
∑
e

Chsk |u|Hk+1(Ae)
, (117)

6 ∀v ∈ H1 (Ae) ∃CT > 0 : ‖v‖2
L2(∂Ae)

≤ CT
hs ‖v‖2

L2(Ae)
+ CT hs ‖v,α‖2

L2(Ae)
.

7 ∀m ≥ l ∃CI > 0 : ‖v‖Hm(Ae)
≤ CIh

sl−m ‖v‖Hl(Ae)
.

28



which is consistent with the C0 properties of the shape functions, implying
that no DG method is applied to the membrane mode.

4.5 Convergence in the L2 norm

Optimal-convergence rate in the L2-norm is also demonstrated under the as-
sumption of cubic approximation and of proper elliptic regularity of the prob-
lem.

In order to simplify the notation, the linear dependence of vector ∆t with u,α

can be exposed from Eq. (12), leading to

∆t = ∆̃tαu,α with (118)

∆̃tα =
eβα3

j̄0

[ϕ̃0,β − t0 ⊗ (t0 ∧ϕ0,β)] , (119)

where ∆̃tα is a second order tensor and ϕ̃0,β is the skew rotation matrix asso-
ciated to ϕ0,β. For simplicity, pure Dirichlet boundary conditions are assumed,
with

∂UAh = ∂TAh = ∂Ah and ∂NAh = ∂MAh = ∅ , (120)

u = ∆t = 0 on ∂Ah . (121)

As the consistency of the method has been established, the exact deformation
fields u ∈ Uf

c (Ah) satisfy the bilinear form (73), with a (u, δu) defined by
Eq. (74) and b (δu) defined by Eq. (78), ∀ δu ∈ Uf

c (Ah). For pure Dirich-
let boundary conditions, using Eqs. (118) and (121), this last term can be
rewritten as

bnA,m̃A
(δu) =

∫
Ah

[
j̄0n

A −
(
j̄0∆̃t

T

µm̃A
)

,µ

]
· δudA . (122)

Let ud ∈ Uf
c (Ah) be the exact solution of a problem governed by the system

(73) for a given pair
(
nA

d , m̃Ad
)
. Therefore, considering the error e ∈ Uf

c (Ah)

(109) as the virtual displacements yields

bnA,m̃A
(e) = a (ud, e) = a

(
ud − uk

d, e
)

+ a
(
uk

d, e
)

= a
(
ud − uk

d, e
)

+ a
(
e, uk

d

)
= a

(
ud − uk

d, e
)

+ a
(
uh − u, uk

d

)
= a

(
ud − uk

d, e
)

= a
(
ud − uk

d, uh − uk
)

+ a
(
ud − uk

d, uk − u
)

(123)

where the uk
d is the interpolation of ud in the manifold Uk

hc (108), and where
the symmetric nature of a (, ) as well as the orthogonality relation (91) have
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been used. Since all the terms involved belong to the manifold Uf
c (Ah), Eq.

(103) can be used, and the particular choice of the adjoint problem

j̄0n
A −

(
j̄0∆̃t

T

µm̃A
)

,µ
= e , (124)

enables rewriting (123) as

‖e‖2
L2(Ah)≤Ck (β)

∣∣∣∥∥∥ud − uk
d

∥∥∥∣∣∣ [ ∣∣∣∥∥∥ek
∥∥∥∣∣∣ +

∣∣∣∥∥∥uk − u
∥∥∥∣∣∣ ]

. (125)

The key to establishing the convergence rate is to bound the term
∣∣∣∥∥∥ud − uk

d

∥∥∥∣∣∣
using theorems 5.1 and 5.4 in [25] adapted to the Dirichlet problem under
consideration. These theorems are summarized by the following:

Theorem 1 Consider the problem

A · u = f ∈ A , (126)

Bi · u = gi on ∂A for i = 0, 1 , ..., m− 1 , (127)

with the proper elliptic operator A : C∞ (A) → Hs−2m (A) and the operator
Bi : C∞ (∂A) → Hs−i−1/2 (∂A) which respectively take the expression

A · u =
∑

0≤p,q≤m

(−1)p Dp (apq (ξα) Dqu) , (128)

Bi · u =
∂i

∂ζi
u , (129)

with ζ the outer normal of ∂A, and with

Dp =
∂p1+p2

∂ξ1p1∂ξ2p2
, p1 + p2 = p . (130)

Therefore, if u ∈ H2m (A) and if A · u ∈ Hp−2m (A), Bi · u ∈ Hp−i−1/2 (∂A),
one has ∀p ≥ 2m

‖u‖Hp(A) ≤ Cp

{
‖A · u‖Hp−2m(A) +

∑
i

‖Bi · u‖Hp−i−1/2(∂A)

}
. (131)

The use of this theorem requires the proper elliptic regularity of the problem.
This proper elliptic regularity can easily be demonstrated for particular cases
like pure bending, but is not obvious for complex problems. Nevertheless we
will assume it in the following.
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Eq. (116) allows to write

∣∣∣∥∥∥ud − uk
d

∥∥∥∣∣∣ ≤
 Chs2 |ud|H4(Ah) if k > 2

Chs |ud|H4(Ah) if k = 2
, (132)

this last result for k = 2 being obtained following the argumentation of Wells
and Dung [7]. Therefore, theorem 1 can be applied to Eq. (132) with m = 2,
p = 4 ≥ 2m, f = e and gi = 0, which leads to

∣∣∣∥∥∥ud − uk
d

∥∥∥∣∣∣ ≤
 Crhs2 ‖e‖L2(Ah) if k > 2

Crhs ‖e‖L2(Ah) if k = 2
. (133)

This last results in combination with (116) enables rewriting (125) as

‖e‖L2(Ah) ≤


∑
e

Chsk+1 |u|Hk+1(Ae)
if k > 2∑

e
Chs2 |u|H3(Ae)

if k = 2
(134)

The DG shell formulation exhibits an optimal-convergence in the L2 norm
when provided that at least cubic elements are used. In fact, it will be shown
in the numerical examples that the optimal convergence rate can be observed
even for quadratic elements.

For pure membrane problem, Eq. (117) allows to write

∣∣∣∥∥∥ud − uk
d

∥∥∥∣∣∣ ≤ Chs |ud|H2(Ah) . (135)

Theorem 1 can be applied to Eq. (135) with m = 1, p = 2 ≥ 2m, f = e and
g0 = 0, which leads to∣∣∣∥∥∥ud − uk

d

∥∥∥∣∣∣ ≤ Chsp−1 |ud|Hp(Ah) ≤ Crhs ‖e‖L2(Ah) . (136)

Combining this last result with (112) and (117), Eq. (125) can be expressed
as

‖e‖L2(Ah)≤
∑
e

Chsk+1 |u|Hk+1(Ae)
, (137)

if k ≥ 1. This demonstrates that the membrane formulation exhibits an
optimal-convergence in the L2 norm when only the membrane modes are
present. This behavior is consistent with the fact that the presented mem-
brane formulation is a continuous Galerkin method.
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Fig. 4. Definition of the iso-parametric elements.

5 Implementation

The preceding discontinuous Galerkin formulation is taken as a basis for com-
putational finite-element implementation.

5.1 Integration of the membrane contributions

Conventional iso-parametric elements defined in the reference frame Eα by
(ξ1, ξ2) ∈ [−1, 1] × [−1, 1], with associated shape functions Na, Fig. 4, are
used for discretizing (75). The corresponding displacement field uh follows in
terms of the element nodal displacements ua as

uh = Naua , (138)

and similarly for the virtual displacement field δu.

From the nodal coordinates in the reference configuration Xa, the convected
basis and its derivative are computed as

ϕ0,α =
∂Na

∂ξα
Xa , and ϕ0,αβ =

∂2Na

∂ξα∂ξβ
Xa . (139)

From these, the director unit vector t0 and the Jacobian j̄0 follow directly from
Eqs. (7) and (8), while ϕ,α

0 follows directly from the usual duality relations.

Based on this convected basis, the resultant membrane strain tensor (36), as
well as its virtual variation, can be determined respectively as

εαβ (uh) = Bn
a
αβ · ua , and by δεαβ (u) = Bn

a
αβ · δua , (140)
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where Bn
a
αβ =

(
1
2
ϕ0,α

∂Na

∂β
+ 1

2
ϕ0,β

∂Na

∂α

)
is the linearized first order tensor of

the membrane strains.

The corresponding bilinear term (75) can therefore be computed by

ae
n (uh, δu) = F e

n
a · δua , (141)

where

F e
n

a =
∫
Ae

Bn
a
γδ ⊗Bn

b
αβHαβγδ

n j̄0dA ub , (142)

is the element internal membrane force. The element membrane Jacobian ma-
trix can be deduced directly from the previous equation, yielding

Ke
n

a b =
∫
Ae

Bn
a
γδ ⊗Bn

b
αβHαβγδ

n j̄0dA . (143)

The computation of the integrals (142) and (143) is done by Gauss quadrature,
see sections 5.5 and 5.6.

5.2 Integration of the bending contributions

For the purpose of integrating the bending term (76), the same finite element
approximation (138-139) is used.

The resultant bending strain tensor (37), as well as its virtual variation, can
be determined respectively by the expressions

ραβ (uh) = Bm
a
αβ · ua , and by δραβ (u) = Bm

a
αβ · δua , (144)

where

Bm
a
αβ =

eµη3

j̄0

[ϕ0,αβ · t0 (ϕ0,η ∧ t0) + (ϕ0,αβ ∧ϕ0,η)]
∂Na

∂ξµ
− t0

∂2Na

∂ξα∂ξβ
.

(145)

Proceeding as with the membrane equations, the bending bilinear term (76)
becomes

ae
m (uh, δu) = F e

m
a · δua , (146)

where

F e
m

a =
∫
Ae

Bm
a
γδ ⊗Bm

b
αβHαβγδ

m j̄0dA ub , (147)
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Fig. 5. Integration of the interface term on the side s common to element Ae− and
to Ae+ .

is the element internal bending force, while

Ke
m

a b =
∫
Ae

Bm
a
γδ ⊗Bm

b
αβHαβγδ

m j̄0dA , (148)

is the element bending Jacobian matrix.

In addition to these contributions, in order to compute the interface terms
(77) (see section 5.3), the shell element must also provide the variation of the
unit vector (12) in terms of nodal displacements:

∆t (uh) = ∆̃t
a
ua , and δ∆t (u) = ∆̃t

a
δua , (149)

where

∆̃t=
eαβ3

j̄0

[ϕ̃0,α − t0 ⊗ (t0 ∧ϕ0,α)]
∂N

∂ξβ
, (150)

is the linearized unit vector variation tensor, and where ϕ̃0,α is the equivalent
skew rotation matrix associated with ϕ0,α.

5.3 Integration of the interface contributions

The interface term (77) is integrated on a curve defined in the reference frame
E1 by ξ1 ∈[−1, 1] see Fig. 5. For the purpose of computing the integrals, the
curve is parametrized using a finite element interpolation defined with shape
functions Na

s and supported on the edge nodes. The integration is accom-
plished via Gauss quadrature. The various quantities involving neighboring
elements information, the basis vectors ϕ±

0,α, the resultant bending strains
ρ±αβ (uh), the virtual bending strains δρ±αβ (u), the unit vector variations ∆t±,
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the virtual unit vector variations δ∆t±, and the Hooke tensors H±
m, are eval-

uated at the quadrature points on the edge element. This evaluation is per-
formed as described in sections 5.1-5.2. A superscript +(−) refers to values
coming from the neighboring element Ae+(Ae−).

It should be noted that the basis vectors of the neighboring elements ϕ+
0,α and

ϕ+
0,α differ in general. We define the basis vectors on the edge s as

t0 =
t+
0 + t−0∥∥∥t+
0 + t−0

∥∥∥ , (151)

ϕ0,1 =
∑

a=1,2,7

∂Na
s

∂ξ1
Xa , and ϕ0,2 =

t0 ∧ϕ0,1

‖t0 ∧ϕ0,1‖
. (152)

With this definition, the Jacobian j̄0 associated with the curve length is still
equal to ‖ϕ0,1 ∧ϕ0,2‖, and the outer unit normal ν− is equal to ϕ0,2. The
push-forward tensors T± corresponding to the change of metric, are defined
by

Tα
β+ = ϕ,α

0 ·ϕ+
0,β , and Tα

β− = ϕ,α
0 ·ϕ−

0,β , (153)

while the corresponding inverse transformation tensors t± are defined by

tα
+

β = ϕ+
0

,α ·ϕ0,β , and tα
−

β = ϕ−
0

,α ·ϕ0,β . (154)

From these definitions, the push-forward mapping ϕ∗ () of the resultant bend-
ing strains ρ coming from the neighbors leads to the expression of the bending
strains in the new metric:

ρ̂±αβ (uh) = ϕ∗
(
ρ±

)
αβ

= tγ
±

α ρ±γδ tδ
±

β . (155)

This last relation is easily obtained by considering the frame invariance of the

resultant bending strain tensor ρ± =ρ̂±αβϕ,α
0 ⊗ ϕ,β

0 = ρ±αβϕ±
0

,α ⊗ ϕ±
0

,β
. Using

Eq. (144), (155) can be rewritten as

ρ̂±αβ (uh) = B̂±
m

a

αβ ua , (156)

where

B̂±
m

a

αβ = ϕ∗
(
B±

m
a
)

αβ
= tγ

±

α B±
m

a

γδ tδ
±

β , (157)

corresponds to the nodal value of the linearized resultant bending strains ten-
sor. In addition to the nodes defining the curve, the nodes of the adjacent
elements Ae− and Ae+ also contribute to these terms. But vector B+

m
a

result-
ing from neighbor Ae+ is different from zero only for nodes common with ele-
ment Ae+ , and similarly for vector B−

m
a
. Similarly, the virtual bending strain
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variations are obtained by

δ̂ρ
±
αβ (u) = B̂±

m

a

αβ δua . (158)

Although the bending Hooke tensors Ĥ±
m can be computed directly from the

local basis vectors, by virtue of Eq. (40), the same technique can also be used,
yielding

Ĥ±
m

αβγδ
= ϕ∗

(
H±

m

)αβγδ
= Tα

µ± T β
ν± H

±
m

µνξo
T γ

ξ± T δ
o± . (159)

The remaining terms that must be evaluated from the neighboring elements
are the variations of the unit vector ∆t± and of the virtual unit vector δ∆t±.
Since these are vectors, no push-forward operations are needed, and the direct
result from Eqs. (149) is

∆t± (uh) = ∆̃t
± a

ua , and δ∆t± (u) = ∆̃t
± a

δua . (160)

Using Eqs. (156, 158 - 160), the interface bilinear term (77) becomes

as
I (uh, δu) =

∫
s

〈
Ĥαβγδ

m B̂a
m γδ

〉
⊗

(r
∆̃t

b
zT

ϕ0,α

)
ubj̄0ν

−
β d∂A · δua +∫

s

(r
∆̃t

a
zT

ϕ0,α

)
⊗

〈
Ĥαβγδ

m B̂b
m γδ

〉
ubj̄0ν

−
β d∂A · δua +∫

s

(r
∆̃t

a
zT

ϕ0,γ

)
⊗

(r
∆̃t

b
zT

ϕ0,α

)
ub

〈
βĤαβγδ

m

hs

〉
ν−δ ν−β j̄0d∂A · δua .

(161)

This last expression can be rewritten as

as
I (uh, δu) = F e

I
a · δua , (162)

where

F e
I

a =
∫

s

〈
Ĥαβγδ

m B̂a
m γδ

〉
⊗

(r
∆̃t

b
zT

ϕ0,α

)
ubj̄0ν

−
β d∂A+∫

s

(r
∆̃t

a
zT

ϕ0,α

)
⊗

〈
Ĥαβγδ

m B̂b
m γδ

〉
ubj̄0ν

−
β d∂A+∫

s

(r
∆̃t

a
zT

ϕ0,γ

)
⊗

(r
∆̃t

b
zT

ϕ0,α

)
ub

〈
βĤαβγδ

m

hs

〉
ν−δ ν−β j̄0d∂A ,

(163)

is the element internal interface force. The corresponding Jacobian matrix is
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easily obtained as

Ke
I
a b =

∫
s

〈
Ĥαβγδ

m B̂a
m γδ

〉
⊗

(r
∆̃t

b
zT

ϕ0,α

)
j̄0ν

−
β d∂A+∫

s

(r
∆̃t

a
zT

ϕ0,α

)
⊗

〈
Ĥαβγδ

m B̂b
m γδ

〉
j̄0ν

−
β d∂A+∫

s

(r
∆̃t

a
zT

ϕ0,γ

)
⊗

(r
∆̃t

b
zT

ϕ0,α

) 〈
βĤαβγδ

m

hs

〉
ν−δ ν−β j̄0d∂A .(164)

5.4 Assembly

Combining Eqs. (141, 146, and 162) leads to the formulation of the problem
(73) in the assembled form

∑
e

(F e
n

a + F e
m

a + F e
I

a) = Fext
a , (165)

where the internal forces are given by Eqs. (142, 147, and 163), while the
external forces result from (78). Upon application of appropriate boundary
conditions, this linear system can be solved directly for the nodal displace-
ments from the alternative expression

∑
e

(Ke
n + Ke

m + Ke
I)

a b ub = Fext
a . (166)

5.5 Particular case of 8-node bi-quadratic quadrangular elements

For a 8-node bi-quadratic element, the membrane terms (142) and (143) lead
to locking if a full Gauss integration using 3×3 Gauss points is used. In order
to address this well-known issue, two commonly adopted approaches are used.
The first approach preserves the full integration and is based on an Enhanced
Assumed (membrane) Strains (EAS) method, see appendix A. The second ap-
proach is based simply on a reduced integration of the membrane strain terms
using 2×2 Gauss points. In this paper the two methods are compared, but
since no advantage to using the EAS method was discerned, most of the nu-
merical examples are performed with a reduced integration for the membrane
equations.

Locking due to the bending terms (147) and (148) is taken care of by the DG
formulation, and full integration of these terms can be performed. However,
substantial computational savings can be achieved if the same quadrature as
for the membrane terms is used, without affecting the results ostensibly.
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The interface term is integrated on the quadratic edge element defined in the
referential frame E1 by ξ1 ∈[−1, 1]. In addition to the 3 nodes defining the
curve, the nodes of the adjacent elements Ae− and Ae+ also contribute to the
forces related to the bilinear term (77), which leads to an interface element
defined on 13 nodes. Both internal forces (163) and Jacobian matrix (164) are
obtained by using 3 Gauss. Once again, the DG formulation prevents locking
that would otherwise arise for curved surfaces. When reduced integration of
the membrane is performed, only 2 Gauss points are used for the interface
element.

5.6 Particular case of 16-node bi-cubic quadrangular elements

For this high order of polynomial interpolation, full 4×4 Gauss quadrature is
used both for the membrane terms (142, 143), and the bending terms (147,
148), without appearance of locking.

The interface term is integrated on a cubic edge element defined in the refer-
ential frame E1 by ξ1 ∈[−1, 1]. In addition to the 4 nodes defining the curve,
the nodes of the adjacent elements Ae− and Ae+ also contribute to the forces
related to the bilinear term (77), which leads to an interface element defined on
28 nodes. Both internal forces (163) and Jacobian matrix (164) are obtained
by using 4 Gauss points. Once again, the DG formulation prevents locking
that would otherwise arise for curved surfaces.

6 Numerical examples

In this section, the DG formulation for Kirchhoff-Love shells developed in the
foregoing is subjected to a series of standard numerical tests and examples
of application for the purpose of verifying its numerical properties, including
convergence rate and influence of the stabilization parameter. The results are
compared with other shell formulations from the literature. Three different
implementations of the DG formulation are considered: 8-node bi-quadratic
quadrangular elements with EAS method (Q8EAS), 8-node bi-quadratic quad-
rangular elements with reduced integration (Q8RI) and 16-node bi-cubic quad-
rangular elements with full integration (Q16).

6.1 Beam bending examples exercising membrane and shell response

The first test considers the bending of a beam of length L and uniform square
cross-section of thickness t. The beam is subject to a uniformly distributed
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(a) Geometry of membrane test (b) Deformation of membrane test

(c) Geometry of shell test (d) Deformation of shell test

Fig. 6. Application to beam bending. Problem dimensions: length L and square
cross-section of thickness t, loading P uniformly distributed. a) Geometry of the
membrane test. b) Deformation of the membrane test for a regular mesh of 4
quadratic quadrangular elements on each side. c) Geometry of the shell test. d)
Deformation of the shell test for a regular mesh of 4 quadratic quadrangular ele-
ments on each side.

Table 1
Material and geometrical properties for the beam bending tests.

Property Value

Length L = 2 m

Thickness t = 0.2 m

Young modulus E = 105 N·m−2

Poisson’s ratio ν = 0.3

Applied force P/L = 1 N·m−1

line load P/L. This problem has a closed-form analytical solution, which gives
the deflection of the beam axis δ (x) as

δ (x) =
P

24EIL

(
x4 − 4x3L + 6x2L2

)
and , (167)
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(a) Membrane (b) Shell, β = 102

(c) Membrane (d) Shell, β = 102

Fig. 7. Influence of mesh-size on the solution evolution for the beam bending test a)
δ (x) for the membrane test with reduced integration. b) δ (x) for the shell test with
β = 102. c) σxx

max (x) for the membrane test with reduced integration. b) σxx
max (x)

for the shell test with β = 102.

from which the maximum stress at each section along the axis of the beam
σxx

max (x) is obtained as

σxx
max (x) =

Pt

48IL

(
12x2 − 24xL + 12L2

)
. (168)

In these relations, I = t4/12 is the moment of inertia of the cross section. In
particular, the tip deflection of the beam is δ (L) = PL3

8EI
. The values of the

geometric, material and bending parameters used in simulations are given in
Table 1.

This example is used to evaluate both the bending and the membrane behavior
of the formulation. Toward this end, the simulations are conducted for two
loading conditions in which the line load is applied:

• in the plane of the shell, which subjects the shell mesh to membrane defor-
mations, Fig. 6a-b;

• in the plane perpendicular to the shell, which subjects the shell mesh to
bending deformations, Fig. 6c-d.
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(a) Q8RI (b) Q8EAS

(c) Q8RI (d) Q8EAS

Fig. 8. Influence of mesh-size and stabilization parameter on the deflection for the
beam bending test. Curves for a given β are related to the shell tests, and curves
denoted “Membrane” are related to the membrane test. a) Maximal deflection with
reduced integration of the membrane equations. b) Maximal deflection with EAS
method for the membrane equations. c) Error on the maximal deflection with re-
duced integration of the membrane equations. d) Error on the Maximal deflection
with EAS method for the membrane equations.

(a) Q8RI (b) Q8EAS

Fig. 9. Influence of mesh-size and stabilization parameter on the error in the energy
deflection for the beam bending test. a) Q8RI elements. b) Q8EAS elements.
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In this example, the behavior of the 8-node bi-quadratic quadrangular ele-
ments with two approaches (EAS and RI) for avoiding membrane locking is
studied. In order to assess the convergence of the method with the mesh size,
simulations are conducted with a series of meshes of decreasing mesh size, con-
sisting of 1×1, 2×2, ..., 32×32 elements, which corresponds to elements sizes
hs = 1, 1

2
, ..., 1

32
of the beam width t. For the shell bending tests, the influence

of the stabilization parameter β is studied by repeating the simulations with
varying values of β =10, 102, ..., 106.

Figure 7 shows plots of the normalized deflection 8EIδ/PL and of the normal-
ized maximum stress 4Iσxx/PtL2 of the beam versus the normalized location
x/L along the axis of the beam. The simulations results shown in this figure
correspond to the reduced integration in the case of membrane loading and
β = 102, in the case of shell loading. It may be observed in these plots that
the numerical solutions converge to the exact solution when the mesh size is
reduced. A more detailed convergence rate study is presented in Fig. 8, in
which the tip displacement is compared to the exact value and the error is
computed for different mesh sizes, stabilization parameters, membrane or shell
behavior and membrane locking control methods. The membrane formulation
is found to converge for both locking control methods with the theoretical
rate in the case of reduced integration and a lower rate for the EAS method.
When the problem is solved using shell bending, a low stability parameter β
leads to instability, while β > 10 ensures convergences toward the analytical
solution. However, if β increases, a stiffer behavior is observed, as the method
evolves toward the locking behavior of the continuous Galerkin method. The
convergence rate in the L2-norm is equal to 3 (Fig. 8c-d), although theory
predicts only 2 for quadratic elements, providing that the stability parameter
is not too high, which leads to locking, or too low (β ≤ 10), in which case
the method is unstable. Figure 9 shows the corresponding convergence plots
for the energy norm. It is found that the results exhibit the expected the-
oretical convergence rates, with similar observations on the influence of the
stabilization parameters as in the L2-norm.

The absence of a clear advantage of the EAS method justifies the use of reduced
integration in the following applications.

6.2 Plate bending examples

The bending behavior resulting from the proposed shell formulation of the
element is now studied with plate ending examples. A square plate of length
L and thickness t is subject to a concentrated load P applied at its center (Fig.
10). Only one quarter of the plate is considered by exploiting the symmetry
of the problem. The zero-slope boundary condition on clamped edges and at
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(a) Geometry (b) Clamped/Clamped BC

(c) Supported/Clamped BC (d) Supported/Supported BC

Fig. 10. Study of square plate. Problem dimensions: length L and thickness t, con-
centrated loading P . a) Geometry of the plate. One fourth of the plate is considered.
The boundary conditions considered are b) all edges clamped, c) edges simply sup-
ported and clamped, d) edges simply supported. Magnified deflections computed are
shown for each case, for a regular mesh of 8 × 8 quadratic quadrangular elements.

Table 2
Material and geometrical properties for the plate bending tests.

Property Value

Length L = 10 m

Thickness t = 0.1 m

Young modulus E = 106 N·m−2

Poisson’s ratio ν = 0.3

Applied force P = 200 N

the symmetry edges is weakly enforced with DG interface elements. Three
types of boundary conditions, for which analytical solution of the plate center
deflection δz exists [26], are considered:

• All edges clamped, see Fig. 10b (δz = 0.00561P L2

D
);

• Two opposing edges clamped, two simply supported, see Fig. 10c (δz =
0.007071P L2

D
);

• All edges simply supported, see Fig. 10d (δz = 0.01160P L2

D
).
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(a) Deflection (b) Error on deflection

Fig. 11. Influence of mesh-size and stabilization parameter on the deflection for the
bending of the plate (all edges clamped case) with Q8RI elements. a) Normalized
deflection, b) Error on the deflection.

Fig. 12. Influence of mesh-size and stabilization parameter on the error in the energy
norm for the bending of the plate with Q8RI elements.

In these results, D = E t3

12(1−ν2)
is the rigidity of the plate. The values of the

geometric, material and bending parameters used in simulations is given in
Table 2.

In this series of tests, the 8-node bi-quadratic elements with reduced inte-
gration are used. In order to study the stability and convergence, the set of
stabilization parameters β =10, 102, ..., 108 is used, whereas, the meshes for
the quarter-plate are uniform with 2×2, 4×4, ..., and 64×64 elements. First,
the discontinuous Galerkin formalism is studied in the all edges-clamped case.
Figure 11a shows plots of the normalized center-plate deflection δz versus the
normalized mesh-size hs/L for different values of β. Figure 11b shows the cor-
responding absolute values of the error. It is observed that for a small value
of β = 10, the method is not stable, as expected, and the computed deflection
is overestimated, Fig. 11a. For increasing values of β > 10, the error is larger
as the behavior is stiffer. However, the convergence rate is not affected if the
method is stable and the mesh size is sufficiently small. The method is also
shown to converge in the energy norm with the expected rate, see Fig. 12.
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(a) Along XX axis (b) Along YY axis

Fig. 13. Influence of mesh-size on the moment of evolution at y = 0 for the bending
of a plate with β = 104 with Q8RI elements. a) Evolution along the XX axis. b)
Evolution along YY axis.

(a) Supported/clamped case (b) Supported/supported case

Fig. 14. Influence of mesh-size and stabilization parameter on the deflection for the
bending of the plate with Q8RI elements. a) clamped/simply supported case b) all
edges simply supported case.

Figure 13 shows the point-wise convergence of the bending moments along
the symmetry planes, illustrating how the method attempts to capture the
singularity at the center of the plate due to the concentrated load, when the
mesh is refined. Figure 14 shows the convergence analysis corresponding to
the other two types of boundary conditions considered.

6.3 Arch bending example

This series of tests is intended to show the model’s ability to describe com-
bined bending and membrane situations for curved surfaces. An arch of radius
R, width L and thickness t, is subject to a line load P/L applied at its middle
section in the radial direction, see Fig. 15. Only one half of the arch is studied,
by taking advantage of the symmetry of the problem. The bending moment
distribution along the arch M zz (θ) and the traction force N (θ), can be ob-

45



(a) Geometry (b) Deformation

Fig. 15. Study of the arch. Problem dimensions: radius R, width L, thickness t, and
line loading P/L. a) Geometry of the arch. One half of the arch is considered, b)
Magnified deformation for a regular mesh of 8 quadratic quadrangular elements on
the radius and 4 on the width.

Table 3
Material and geometrical properties for the arch test.

Property Value

Radius R = 10 m

Width L = 1 m

Thickness t = 1 m

Young modulus E = 3 ×107 N·m−2

Poisson’s ratio ν = 0.3

Applied line force P/L = 105 N·m−1

tained exactly using Castigliano’s theorem, which leads to the expressions

M zz (θ) =
P L R

2

[
sin θ − 2

π

]
, and (169)

N (θ) =
P L

2
sin θ , (170)

where I = L t3/12 is the moment of inertia of the cross-section. From Eq.
(169), it is clear that the maximum momentum, maximum vertical deflection
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(a) β = 10 (b) β = 106

Fig. 16. Influence of mesh-size on the momentum for the arch test, with Q8RI
elements. a) For β = 10 the method is unstable. b) For β = 106 the method is
stable.

(a) Deflection (b) Error on deflection

Fig. 17. Influence of mesh-size and stabilization parameter on the deflection for the
arch test, with Q8RI elements. a) Normalized deflection. b) Error on the normalized
deflection.

δy and maximum stress are obtained for θ = 0, and their respective values are

M zz =−P L R

π
, (171)

δy =
P L R3

2EI

(
π

4
− 2

π

)
+

P L R π

8EA
, and (172)

σmax =
P L R t

2 π I
. (173)

These exact values are taken as a basis for verification of the numerical method.
The numerical simulations conducted toward this end use the property values
shown in Table 3 and consist of uniform computational meshes with 1 × 2,
2 × 4, ..., 16 × 32 8-node bi-quadratic elements with reduced integration. As
before the influence of the stabilization parameter β is studied by repeating
the simulations for different values of β =10, 102, ..., 108.

Figures 16-18 respectively show comparison of the moment distribution along
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Fig. 18. Influence of mesh-size and stabilization parameter on the energy norm for
the arch test, with Q8RI elements.

(a) Geometry (b) Deformation

Fig. 19. Study of the pinched cylinder. Problem dimensions: radius R, thickness
t, length L, concentrated loading P . a) Geometry of the cylinder. One eighth is
considered. b) Magnified deformation of the completed cylinder regular mesh of 16
quadratic quadrangular elements on each side.

the arch, normalized tip displacement and its error, and error in the energy
norm, as the mesh is refined for different values of β. Similar conclusions are
obtained with regard to the convergence and stability properties of the method
with the exception that the convergence rate for the tip displacement is two,
see Fig 17b, which is consistent to the theory for k = 2, in which case optimal
convergence rate is not ensured.

6.4 Pinched cylinder example

This example is intended to further test the proposed method under a more
complex membrane state of deformation. Toward this end, a cylinder with
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Table 4
Material and geometrical properties for the pinched cylinder test.

Property Value

Radius R = 0.3 m

Length L = 0.6 m

Thickness t = 3 mm

Young modulus E = 3 N·m−2

Poisson’s ratio ν = 0.3

Applied force P = 2× 106 N

radius R, length L, thickness t, closed at its extremities by rigid diaphragms
and subjected to compressive normal loads P applied on one diameter, is
considered, see Fig. 19a. One eight of the structure is modeled exploiting
the symmetries of the problem. Analytical deflection under the loads can be
computed analytically for the geometry reported in Table 5, [17], leading to

|δy| = 0.0182488 [m · N−1] P . (174)

This exact value is taken as a basis for verification of the numerical method.
The numerical simulations conducted consist of uniform computational meshes
with 2 × 2, 4 × 4, ..., 32 × 32 elements. Results obtained with 8-node bi-
quadratic elements with reduced integration and 16-node bi-cubic elements are
compared. As before the influence of the stabilization parameter β is studied
by repeating the simulations for different values of β =10, 102, ..., 106.

Figures 20 and 21 show the convergence of the maximum displacement, its
error and the error of the energy norm for the different polynomial approx-
imations, mesh sizes and stabilization parameters. In this example, the con-
vergence in the L2-norm is only of the order of 2 for quadratic elements and
of 4 for cubic ones, accordingly to the theory when proper elliptic regularity
is assumed.

6.5 Pinched open hemisphere example

This example is intended to further test the proposed method under more
complex shell bending conditions involving curvature in two directions. To
this end, the problem of an open hemisphere, proposed in [27], with radius R,
thickness t, and an opening of a spherical sector angle θ, subjected to radial
loads P applied on two diametral directions, is considered, Fig. 22a. The load
is compressive in the y-direction and tensile in x-direction. One quarter of
the structure is modeled exploiting the symmetries of the problem. Analytical
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(a) Q8RI (b) Q16

(c) Q8RI (d) Q16

Fig. 20. Influence of mesh-size and stabilization parameter on the deflection for the
pinched cylinder. a) Normalized deflection for Q8RI. b) Normalized deflection for
Q16. c) Error on the deflection for Q8RI. d) Error on the deflection for Q16.

(a) Q8RI (b) Q16

Fig. 21. Influence of mesh-size and stabilization parameter on the error in the energy
norm for the pinched cylinder. a) For Q8RI elements. b) For Q16 elements.

deflection under the loads can be computed analytically for the geometry
reported in Table 5, [17], leading to

|δx| = |δy| = 0.093 [m · N−1]
P

2
. (175)
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(a) Geometry (b) Deformation

Fig. 22. Study of the pinched open hemisphere. Problem dimensions: radius R,
thickness t, opening θ, concentrated loading P . a) Geometry of the open hemisphere.
One fourth is considered. b) Magnified deformation of the completed hemisphere
for a regular mesh of 4 quadratic quadrangular elements on each side.

Table 5
Material and geometrical properties for the pinched open hemisphere test.

Property Value

Radius R = 10 m

Thickness t = 0.04 m

Opening θ = 18o

Young modulus E = 6.825×107 N·m−2

Poisson’s ratio ν = 0.3

Applied force P = 40 N

This exact value is taken as a basis for verification of the numerical method.
The numerical simulations conducted toward this end consist of uniform com-
putational meshes with 2×2, 4×4, ..., 32×32 elements. Results obtained with
two different degrees of polynomial approximations are compared by using
8-node bi-quadratic elements with reduced integration and 16-node bi-cubic
elements. As before the influence of the stabilization parameter β is studied
by repeating the simulations for different values of β =10, 102, ..., 108.

Figures 23, 24 show the convergence of the maximum displacement, its error
and the error of the energy norm for the different polynomial approximations,
mesh sizes and stabilization parameters. As for previous tests, a small value
β = 10 leads to instability while higher valuesr lead to the expected conver-
gence rate, i.e. k + 1 for the L2-norm and k − 1 for the energy norm. It can
also be observed that the stiffness of the structure is less important for cubic
than for quadratic interpolations when the stabilization parameter is high.

In this example, we compare the results of our presented formulation, which
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(a) Q8RI (b) Q16

(c) Q8RI (d) Q16

Fig. 23. Influence of mesh-size and stabilization parameter on the deflection for
the pinched open hemisphere. a) Normalized deflection for Q8RI. b) Normalized
deflection for Q16. c) Error on the deflection for Q8RI. d) Error on the deflection
for Q16.

(a) Q8RI (b) Q16

Fig. 24. Influence of mesh-size and stabilization parameter on the error in the energy
norm for the pinched open hemisphere. a) For Q8RI elements. b) For Q16 elements.

uses only 3 displacement degrees of freedom per node to:

• The bi-quadratic 8-node quadrangular element formulation proposed by
MacNeal and Harder [27], which requires 6 degrees of freedom per node
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(a) In terms of elements (b) In terms of dofs

Fig. 25. Comparison of the convergence with other elements for the pinched open
hemisphere. a) In terms of number of elements. b) In terms of degrees of freedom.

(3 displacements u and 3 rotations) and uses a Selective Reduced Integra-
tion;

• The mixed Enhanced Assumed Strains formulation proposed by Simo et
al. [17] using bilinear quadrangular elements and requiring 5 global degrees
of freedom per node (3 displacements u, 2 rotations). This model has in
addition internal degrees of freedom resulting from the Enhanced Assumed
Strains (EAS) formulation;

• The Mixed Interpolation of Tensorial Components (MITC) shell element
with either 9 or 16 nodes [28], which require 5 global degrees of freedom per
node (3 displacements u and 2 rotations) and internal degrees of freedom;

• The mixed EAS formulation applied to tri-linear hexahedra, proposed by
Kasper and Taylor, requiring 3 degrees of freedom on the global level, and
internal degrees of freedom resulting from the EAS formulation.

Figures 25a and Fig. 25b compare, respectively, the convergence in terms of
the number of elements per edge and the total number of degrees of freedom.
It can be observed in these figures that the proposed method is comparable to
those references in terms of number of degrees of freedom required to capture
the deformation state.

7 Conclusions

In this paper, the numerical approximation of the theory of shells neglecting
shear deformations is considered. In such case, the section of the shell remains
perpendicular to its mid-surface, even after deformation, thus enabling the
discrete finite-elements formulation to be written as a one-field method. Usu-
ally this formulation requires the shape functions to be C1 continuous on the
whole domain, which in 3D simulations is not easily achieved. The discon-
tinuous Galerkin formulation proposed in this paper addresses this issue by
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enforcing the higher-order continuity at the inter-element boundaries in a weak
manner. The proposed method is shown to be consistent and stable, and to
have a convergence rate in the energy norm one order lower than the degree of
the polynomial approximation used. Assuming proper elliptic regularity, the
convergence rate in the L2-norm is optimal for at least cubic elements and
equal to 2 for quadratic elements.

The formulation is numerically tested for the case of bi-quadratic and bi-
cubic interpolations on quadrilateral meshes. Since the high-order continuity
requirement is built-in naturally into the formulation, the integration of the
bending and membrane terms in the weak form can be performed on the
reduced coordinate basis inside each element in a straightforward manner.
In the case of 8-node bi-quadratic elements, membrane locking is avoided by
reduced 2×2 Gauss integration. Cubic elements do not suffer from locking,
thus allowing for a full integration.

Interface elements are introduced at the interelement boundaries, in order to
integrate the DG interface terms. This integration is performed by extracting
required information from the adjacent shell elements on Gauss points located
on the shared edge.

Various tests involving beams, plates and double-curved surfaces are used
to demonstrate the theoretical properties of the method, including extensive
convergence analysis. In particular, it is found that a stabilization parameter
between 10 and 100 is large enough to guarantee stability of the method and
is low enough to annihilate the locking of the bending modes.

Appendix

A Enhanced Assumed Strains (EAS) method

The Enhanced Assumed Strains (EAS) method consists of the addition of
nEAS linearly independent internal modes φ̃i

αβ ⊂ Pk (Ae), i=1, ... , nEAS inside
each element Ae. These modes are multiplied by a coefficient αi, which are
the new internal variables of the element.

While the element membrane energy Ie
m part of the functional Ih (56) had the

expression Ie
m (uh ,εhαβ, ñαβ

h

)
: Pk (Ae)× Pk (Ae)× Pk (Ae) → R:

Ie
m

(
uh, εhαβ, ñαβ

h

)
=

∫
Ae

1

2
εhαβHαβγδ

n εhγδ j̄0dA+∫
Ae

ñαβ
h

(
1

2
ϕ0,α · uh,β +

1

2
uh,α ·ϕ0,β − εhαβ

)
j̄0dA , (A.1)
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the modified functional obtained by inserting the new internal modes, is
Ĩe
m (uh ,εhαβ,ñαβ

h , φ̃i
)

: Pk (Ae)× Pk (Ae)× Pk (Ae)× RnEAS → R:

Ĩe
m

(
uh, εhαβ, ñαβ

h , α1, ..., αN
)

=
∫
Ae

1

2
εhαβHαβγδ

n εhγδ j̄0dA+∫
Ae

ñαβ
h

(
1

2
ϕ0,α · uh,β +

1

2
uh,α ·ϕ0,β + αiφ̃i

αβ − εhαβ

)
j̄0dA . (A.2)

Minimizing this relation with respect to the resultant stress tensors leads to a
new definition of the membrane strains,

εαβ =
1

2
ϕ0,α · u,β +

1

2
u,α ·ϕ0,β + αiφ̃i

αβ , (A.3)

which should be compared to the standard strains (36). Minimization with
respect to the new strain tensor gives back relation (38), showing that the
internal modes modify explicitly the strain tensor only, while the constitutive
relation is still applied.

Using the finite element discretization (138) and (140) in combination with
these two minimization equations, the element functional can be rewritten
Ĩe
m (ua , φ̃i

)
: R3nnodes × RnEAS → R:

Ĩe
m

(
ua, αi

)
=∫

Ae

1

2

(
Bn

a
αβ · ua + αiφ̃i

αβ

)
Hαβγδ

n

(
Bn

b
γδ · ub + αjφ̃j

γδ

)
j̄0dA , (A.4)

where nnodes is the element number of nodes. Minimization with respect to αi

leads to the orthogonality condition of the internal modes

0 =
∫
Ae

φ̃i
αβHαβγδ

n

(
Bn

b
γδ · ub + αjφ̃j

γδ

)
j̄0dAδαi = Riδαi , (A.5)

while minimization with respect to the nodal displacements leads to a new
expression of the internal membrane forces(

F̃ e
n

)a
· δua =

∫
Ae

Bn
a
αβHαβγδ

n

(
Bn

b
γδ · ub + αjφ̃j

γδ

)
j̄0dA · δua . (A.6)

Linearization Eqs. of (A.5) and (A.6) leads to the definition of element Jaco-
bians

Ke
φn

i a =
∂Ri

∂ub
=

∫
Ae

φ̃i
αβHαβγδ

n Bn
b
γδ j̄0dA , (A.7)

Ke
φφ

i j =
∂Ri

∂φ̃j
=

∫
Ae

φ̃i
αβHαβγδ

n φ̃j
γδ j̄0dA , and (A.8)

Ke
nφ

a i =
∂

(
F̃ e

n

)a

∂αi
=

∫
Ae

Bn
a
αβHαβγδ

n φ̃i
γδ j̄0dA . (A.9)
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Owing to these Jacobians, Eq. (A.5) is solved with Newton-Raphson iterations
until Ri = 0 is satisfied, by computing

∆αi =−
(
Ke

φφ
−1

)i j
Rj (u∗, α∗) , (A.10)

where ∗ values are guessed values. The element Jacobian matrix (143) has to
be corrected in order to take into account the internal modes, leading to

(
K̃e

n

)a b
=

∂
(
F̃ e

n

)a

∂ub
+

∂
(
F̃ e

n

)a

∂αi

∂αi

∂ub

=Ke
n

a b −Ke
nφ

a i
(
Ke

φφ
−1

)i j
Ke

φn
j b . (A.11)

As it is shown, the resolution of the system is on the element level, and no
new degrees of freedom are added to the global system.

What remains to be defined are the EAS linearly independent modes. For 9-
node bi-quadratic quadrangular elements, Bischoff and Ramm [29] proposed
expressions for the modes, which are orthogonal to the stress tensor. In the
present work, these modes are completed by the 2 additional stretch modes
not present for 8-node bi-quadratic quadrangular elements. The stretch modes
are

φ̃1 =

 1− 3 (ξ1)
2

0

0 0

 , φ̃2 =

 ξ2 − 3ξ2 (ξ1)
2

0

0 0

 ,

φ̃3 =

 ξ1 − 3ξ1 (ξ2)
2

0

0 0

 , φ̃4 =

 (ξ2)
2 − 3 (ξ1ξ2)

2
0

0 0

 ,

φ̃5 =

 0 0

0 1− 3 (ξ2)
2

 , φ̃6 =

 0 0

0 ξ2 − 3ξ2 (ξ1)
2

 ,

φ̃7 =

 0 0

0 ξ1 − 3ξ1 (ξ2)
2

 , φ̃8 =

 0 0

0 (ξ1)
2 − 3 (ξ1ξ2)

2

 , (A.12)
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while the shearing modes are

φ̃7 =

 0 1− 3 (ξ1)
2

SYM. 0

 , φ̃8 =

 0 1− 3 (ξ2)
2

SYM. 0

 ,

φ̃9 =

 0 ξ2 − 3ξ2 (ξ1)
2

SYM. 0

 , φ̃10 =

 0 ξ1 − 3ξ1 (ξ2)
2

SYM. 0

 ,

φ̃11 =

 0 1− 3
[
(ξ1)

2
+ (ξ2)

2
]
+ 9 (ξ1ξ2)

2

SYM. 0

 . (A.13)

In their paper [17], Simo et al. had to transform the EAS modes into the
Cartesian coordinates, since their formulation is stated in the reference frame.
In order to verify the patch tests, they had to apply the frame-transformation
by taking the Jacobian matrix at the center of the element (ξα = 0) for all of
the Gauss points. In the current situation, we are working with the reduced
coordinates, so this step is not necessary.
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