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Synthesis and characterization data of compounds MonoNP and BisA-NH2 

 

General Remarks 

All commercially available chemicals were reagent grade and used without further purification. Solvents 

were purified and dried according to standard procedures. The melting points were measured with an 

Electrothermal IA 9100 digital melting point instrument (Barnstead International) and are uncorrected. 

ESI mass spectra (positive-ion mode) were recorded with a Waters ZQ instrument (source voltage 50–75 

kV). NMR spectra were measured on a Brucker Avance 300 (1H: 300 MHz, 13C: 75 MHz) spectrometer 

at 25 °C; chemical shifts are given in ppm (δ) values (internal standards methanol, δH = 3.34, 

δC = 49.5 ppm for D2O,1 and TMS for the other solvents). Elemental microanalyses of the new 

compounds were performed by the Service de Microanalyse, CNRS–ICSN, Gif-sur-Yvette, France. 
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Scheme S1. Synthesis of the model compound MonoNP. Reagents and conditions: (i) DIBAL-H, 

hexanes, room temp., 36 h, 97%; (ii) PCC, CH2Cl2, reflux, 1 h, 68%; (iii) BocOPh, EtOH, reflux, 24 h, 

53%; (iv) benzene, reflux, 18 h; (v) NaBH4, MeOH–CH2Cl2, room temp., 3 h; (vi) HCl, MeOH, reflux, 

2 h, 87% over three steps. 
                                                 
1 Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512–7515. 
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2,6-Bis(hydroxymethyl)naphthalene (1): To a solution of DIBAL-H (0.7–1.3 M in hexanes, 300 mL, 

~ 0.3 mol), stirred under argon at room temperature, solid dimethyl 2,6-naphthalenedicarboxylate 

(12.2 g, 50.0 mmol) was added in several portions over 1 h. The reaction mixture was vigorously stirred 

at room temperature for 36 h. The reaction flask was cooled in an ice bath and a mixture of MeOH 

(50 mL) and H2O (20 mL) was carefully added, followed by 6 M aqueous HCl (180 mL). The mixture 

was filtered and the solid was thoroughly washed with water and dried, to give 1 (9.10 g, 97%) as a 

white solid, m.p. 172–173 °C (lit.2 170–171 °C); 1H-NMR (DMSO-d6): δ = 4.66 (d, 3J = 5 Hz, 4 H, 

CH2), 5.30 (t, 3J = 5 Hz, 2 H, OH), 7.45 (d, 3J = 8 Hz, 2 H, 3-H, 7-H), 7.79 (s, 2 H, 1-H, 5-H), 7.84  (d, 
3J = 8 Hz, 2 H, 4-H, 8-H); 13C-NMR (DMSO-d6): δ = 63.0 (CH2), 124.2 (CH), 125.3 (CH), 127.4 (CH), 

132.0 (Cq), 139.7 (Cq). 

 

Naphthalene-2,6-dicarbaldehyde (2): To a suspension of pyridinium chlorochromate (19.4 g, 

90.0 mmol) in anhydrous CH2Cl2 (120 mL), stirred at reflux temperature under argon, a suspension of 1 

(5.65 g, 30.0 mmol) in anhydrous CH2Cl2 (80 mL) was added in one portion. The reaction mixture was 

rigorously stirred for 1 h at reflux temperature, cooled and poured into diethyl ether (500 mL). The 

mixture was triturated until the tar solidified and then filtered through a large pad of silica, eluting with 

an additional portion of ether (1 L). The solvents were removed in vacuo, to give 2 (3.74 g, 68%) as fine 

colorless needles, m.p. 167–170 °C (lit.3 173.4–174.0 °C); 1H-NMR (CDCl3): δ = 8.06 (dd, 3J = 8.5 Hz, 
4J = 1 Hz, 2 H, 3-H, 7-H), 8.13 (d, 3J = 8.5 Hz, 2 H, 4-H, 8-H), 8.41 (d, 4J = 1 Hz, 2 H, 1-H, 5-H), 10.22 

(s, 2 H, CHO); 13C-NMR (CDCl3): δ = 124.1 (CH), 130.6 (CH), 133.7 (CH), 135.7 (Cq), 136.2 (Cq), 

191.8 (CH). 

 

tert-Butyl-2-(2-aminoethoxy)ethylcarbamate (3): A solution of 2,2'-oxydiethylamine (2.05 g, 

19.7 mmol) and tert-butyl phenyl carbonate (3.63 g, 18.7 mmol) in abs. EtOH (100 mL) was heated 

under reflux for 24 h, cooled, and the volatiles were removed in vacuo. Water (60 mL) was added, and 

the pH was adjusted to ~3 by addition of 0.5 M HCl. The mixture was extracted with CH2Cl2 

(3 × 50 mL). The organic fractions contained phenol and the diprotected diamine and were discarded. 

The aqueous phase was made strongly alkaline with NaOH and extracted with CH2Cl2 (4 × 50 mL). The 

                                                 
2 (a) Storms, P. W. ; Taussig, P. R.; J. Chem. Eng. Data 1966, 11, 272–273. (b) Vanderwerff, W. D. (Sun Oil Co., 

Philadelphia, PA), U.S. Pat. 3,288,823, 1966. 
3 Hagiya, K.; Mitsui, S.; Taguchi, H. Synthesis 2003, 823–828. 
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organic fractions were pooled, dried over anhydrous K2CO3, evaporated in vacuo, and the residue was 

purified by flash chromatography (SiO2; eluent: CHCl3–MeOH–NH4OH, 80:17.5:2.5), to give the amine 

3 (2.01 g, 53%) as colorless mobile oil; 1H-NMR (CDCl3): δ = 1.45 (s, 9 H, CH3), 1.49 (br s, 2 H, NH2), 

2.86 (t, 3J = 5 Hz, 2 H, CH2NH2), 3.30–3.35 (m, 2 H, BocNHCH2), 3.46–3.54 (m, 4 H, CH2OCH2), 5.02 

(br s, 1 H, NHBoc); 13C-NMR (CDCl3): δ = 28.4 (CH3), 40.4 (CH2), 41.8 (CH2), 70.0 (CH2), 73.2 (CH2), 

79.3 (Cq), 156.0 (Cq); MS (ESI+): m/z (%) = 205 (100) [M + H]+, 227 (13) [M + Na]+. 

 

2,6-Bis{[2-(2-aminoethoxy)ethylamino]methyl}naphthalene tetrahydrochloride (MonoNP 

× 4 HCl): A solution of the dialdehyde 2 (0.90 g, 4.90 mmol) and amine 3  (2.00 g, 9.80 mmol) in 

benzene (20 mL) was heated under reflux for 18 h and then evaporated to dryness, to give the diimine in 

quantitative yield; 1H-NMR (CDCl3): δ = 1.39 (s, 18 H, CH3), 3.29–3.33 (m, 4 H, CH2NHBoc), 3.57 (t, 
3J = 5 Hz, 4 H, CH=NCH2), 3.80–3.87 (m, 8 H, CH2OCH2), 4.97 (br s, 2 H, NHBoc), 7.91 (d, 
3J = 8.5 Hz, 2 H, 3-H, 7-H), 8.02 (d, 3J = 8.5 Hz, 2 H, 4-H, 8-H), 8.06 (s, 2 H, 1-H, 5-H), 8.47 (s, 2 H, 

CH=N); 13C-NMR (CDCl3): δ = 28.4 (CH3), 40.3 (CH2), 61.2 (CH2), 70.1 (CH2), 70.4 (CH2), 79.1 (Cq), 

124.5 (CH), 129.1 (CH), 129.7 (CH), 134.4 (Cq), 134.8 (Cq), 155.9 (Cq), 162.6 (CH); MS (ESI+): 

m/z (%) = 557 (100) [M + H]+, 579 (46) [M + Na]+. The diimine was dissolved in a mixture of MeOH 

(20 mL) and CH2Cl2 (10 mL), cooled in an ice bath, and NaBH4 (0.57 g, 15 mmol) was added. The 

mixture was stirred at room temperature for 3 h and then evaporated to dryness. Aqueous NaOH (1 M, 

20 mL) was added to the residue, and the mixture was extracted with CHCl3 (5 × 40 mL). The organic 

fractions were pooled, washed with 5% aqueous Na2CO3 solution, dried over anhydrous K2CO3, and the 

solvent was removed in vacuo, to give the Boc-protected intermediate (2.75 g) as viscous pale-yellow 

oil; 1H-NMR (CDCl3): δ = 1.43 (s, 18 H, CH3), 2.83 (t, 3J = 5 Hz, 4 H, ArCH2NHCH2) 3.29–3.33 (m, 4 

H, CH2NHBoc), 3.50 (t, 3J = 5 Hz, 4 H, OCH2), 3.58 (t, 3J = 5 Hz, 4 H, OCH2), 3.97 (s, 4 H, 

ArCH2NH), 5.02 (br s, 2 H, NHBoc), 7.46 (d, 3J = 8 Hz, 2 H, 3-H, 7-H), 7.74 (s, 2 H, 1-H, 5-H), 7.78 (d, 
3J = 8 Hz, 2 H, 4-H, 8-H); 13C-NMR (CDCl3): δ = 28.4 (CH3), 40.4 (CH2), 48.6 (CH2), 54.0 (CH2), 70.0 

(CH2), 70.4 (CH2), 79.2 (Cq), 126.3 (CH), 126.8 (CH), 127.9 (CH), 132.6 (Cq), 137.4 (Cq), 155.9 (Cq); 

MS (ESI+): m/z (%) = 461 (12) [M − tBuOCO]·+, 561 (100) [M + H]+, 583 (12) [M + Na]+. This 

compound was dissolved in MeOH (30 mL), brought to reflux, and HCl (~7.5 M in EtOH, 30 mL) was 

added. The mixture was heated under reflux for 2 h, while white precipitate has formed, and then 

evaporated to dryness in vacuo. The residue was recrystallized from MeOH–H2O, to give 

MonoNP × 4 HCl (2.16 g, 87%) as white microcrystalline solid; m.p. (dec.) 307–307 °C; 1H-NMR 
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(D2O): δ = 3.23 (t, 3J = 5 Hz, 4 H, CH2CH2NH2), 3.38 (t, 3J = 5 Hz, 4 H, ArCH2NHCH2), 3.78 (t, 3J = 5 

Hz, 4 H, CH2CH2NH2), 3.85 (t, 3J = 5 Hz, 4 H, NHCH2CH2O), 4.49 (s, 4 H, ArCH2), 7.66 (d, 3J = 8 Hz, 

2 H, 3-H, 7-H), 8.07 (d, 3J = 8 Hz, 2 H, 4-H, 8-H), 8.09 (s, 2 H, 1-H, 5-H); 13C-NMR (D2O): δ = 39.7 

(CH2), 47.1 (CH2), 51.6 (CH2), 66.0 (CH2), 67.1 (CH2), 128.2 (CH), 129.9 (CH), 130.0 (Cq), 130.4 

(CH), 133.6 (Cq); MS (ESI+): m/z (%) = 383 (11) [M + Na]+, 361 (100) [M + H]+,  257 (39) [M − 

H2N(CH2)2O(CH2)2]
+·; anal. calcd for C20H32N4O2 × 4 HCl (506.3): C, 47.44; H, 7.17; N, 11.07; Cl, 

28.01; found: C, 47.28; H, 6.96; N, 10.97; Cl, 27.98. 

 

 

N

OHC CHO

N

H2N

H2N NHBoc

N
N

N

N

N

N
N

NBocHN

NHBoc
N

NH

H
N

N

NH

N
NH

NH2N

NH2

x 8 HCl

BisA-NH2

i ii, iii

 

Scheme S2. Synthesis of the macrocycle BisA-NH2. Reagents and conditions: (i) CH2Cl2–MeOH, room 

temp., 24 h, 38%; (ii) NaBH4, MeOH–CH2Cl2, 0 °C, 3 h; (iii) HCl, MeOH, room temp., 60% over two 

steps. 

 

5,24-Bis(2-Aminoethyl)-2,5,8,21,24,27-hexaaza[9,9](2,7)acridinophane octahydrochloride 

(BisA-NH2 × 8 HCl). A solution of acridine-2,7-dicarboxaldehyde4 (50.0 mg, 0.212 mmol) in a mixture 

of CH2Cl2 and MeOH (1:1, 28 mL) was added dropwise within 3 h at room temperature under argon to a 

well-stirred solution of bis(2-aminoethyl)-2-(tert-butoxycarbonylamino)ethylamine5 (52.0 mg, 0.212 

mmol) in the same solvent mixture (4 mL). The resulting solution was stirred for 24 h after the end of 

the addition. The solvents were evaporated to give a brown powder. The residue was triturated with 

diethyl ether, and the solid was collected by filtration, dissolved in a mixture of CH2Cl2 and MeOH (1:2, 

150 mL), filtered and concentrated in vacuo to give the tetraimine (36 mg, 38%) as yellow powder. 

NaBH4 (26.0 mg, 0.673 mmol) was added to a solution of the tetraimine (100 mg, 0.112 mmol) 

                                                 
4 Teulade-Fichou, M.-P.; Vigneron, J. P.; Lehn, J. M. Supramol. Chem. 1995, 5, 139–147. 
5 Benito, J. M.; Gómez-García, M.; Mellet, C. O.; Baussanne, I.; Defaye, J.; García Fernández, J. M. J. Am. Chem. Soc. 2004, 

126, 10355–10363. 
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dissolved in CH2Cl2–MeOH (1:2, 40 mL), cooled at 0 °C. After stirring for 3 h the solvents were 

evaporated, the residue dissolved in water (2 mL) and extracted with CH2Cl2–MeOH (9:1). The organic 

phase was dried and concentrated by evaporation. The brown residue was dissolved in a mixture of 

MeOH and HCl (1 M), precipitated by adding diethyl ether and collected by filtration. The precipitate 

was recrystallized from a mixture of EtOH and HCl (1 M), to give BisA-NH2 × 8 HCl (66 mg, 60%) as 

yellow powder; 1H-NMR (D2O): δ = 2.88 (m, 12 H), 3.14 (t, J = 6.6 Hz, 4 H), 3.28 (t, J = 6 Hz, 8 H), 

4.28 (s, 8 H), 8.04 (d, J = 9 Hz, 4 H), 8.20 (d, J = 9 Hz, 4 H), 8.35 (s, 4 H), 9.56 (s, 2 H); 13C-NMR 

(D2O): δ = 36.8 (CH2), 45.6 (CH2), 49.7 (CH2), 50.7 (CH2), 51.2 (CH2), 121.5 (CH), 126.7 (Cq), 131.3 

(Cq), 132.9 (CH), 139.3 (CH), 140.9 (Cq), 150.8 (CH); MS (ESI+): m/z (%) = 699 (100) [M + H]+. 
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Fitting of titration curves 

 

Curve fitting of the competitive fluorescence titrations was performed by minimizing the sum of squared 

errors between the observed fluorescence intensities and the fluorescence intensities calculated from the 

model (see below) at all given enzyme concentrations (data points) using the Solver module of 

Microsoft Excel 2000.6 For FID titrations, the equilibrium between DNA and ethidium bromide has 

been neglected because the binding affinity of ethidium bromide to DNA is much lower than that of the 

investigated ligands. Thus, these titrations have been fitted according to the one binding equilibrium 

model described below. 

 

Titrations with one binding equilibrium 

Since the total (indexed by “0”) concentrations (indicated by brackets) are known at each data point of 

the titration, a total of three equations can be formulated for titrations with one binding equilibrium: 

 

KD1 = 
c(A) c(B)
 c(A·B)                  (1) 

c(A)0 = c(A·B) + c(A)                 (2) 

c(B)0 = c(A·B) + c(B)                 (3) 

 

In these three equations, the three variables c(A), c(B) and c(A·B) are unknown and, thus, can be 

expressed by the known parameters c(A)0 and c(B)0, as well as the parameter KD1 which is supposed to 

be determined later by curve fitting. Combination of the three equations (1) to (3) leads to a quadratic 

equation of the general form 

 

ax2 + bx + c = 0                 (4) 

 

with the variable x as one of the unknown concentrations c(A), c(B) and c(A·B). Based on equation (4) 

an expression for the calculated fluorescence intensity Fcalc can be derived. Minimizing the sum of 

squared errors between the observed fluorescence intensities and Fcalc by adjusting (among others) the 

                                                 
6 Pingoud, A.; Urbanke, C.; Hogget, J.; Jeltsch, A. Biochemical Methods, Wiley-VCH, 2002. 
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fitting parameter KD1 then leads to the set of parameters that most accurately describes the experimental 

data points. This approach will be exemplified in more detail for the more complex case of a system 

with competitive binding and thus having two binding equilibria that need to be considered. 

 

Titrations with two binding equilibria 

In analogy to equations (1) to (3), a total of five equations can be formed for a model with two ligands B 

and C competing for one binding site A: 

 

KD1 = 
c(A) c(B)
 c(A·B)                  (5) 

KD2 = 
c(A) c(C)
 c(A·C)                  (6) 

c(A)0 = c(A) + c(A·B) + c(A·C)               (7) 

c(B)0 = c(A·B) + c(B)                 (8) 

c(C)0 = c(A·C) + c(C)                 (9) 

 

Combination of the five equations leads to a cubic equation of the general form 

 

ax3 + bx2 + cx + d = 0               (10) 

 

The variable x, which this cubic equation will be solved for, was chosen to be c(C) by cancellation of the 

other unknown variables c(B), c(A), c(A·B) and c(A·C). Then a, b, c, and d only consist of known 

[c(B)0, c(C)0, and c(A)0] or fitting parameters (KD1 and KD2): 

 

a = KD2 − KD1                (11) 

b = [c(B)0 + c(C)0 − c(A)0 − KD2](KD1 − KD2) − c(B)0KD1 − c(C)0KD2        (12) 

c = c(C)0KD2(c(B)0 + c(C)0 – c(A)0 + KD1 − 2KD2)           (13) 

d = [c(C)0KD2]
2               (14) 

 

The solution of cubic equations of this general type is known and described in mathematical textbooks. 

The discriminant D is then defined as 
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D = (q / 2)2 + (p / 3)3,               (15) 

where 

p = (3ac – b2) / 3a2 and              (16) 

q = (2b3 / 27a3) – (bc / 3a2) + (d / a).             (17) 

 

The sign of the discriminant decides the following cases:  

• If D < 0, then there exist three distinct real solutions.  

• If D = 0, then there exist either one double real and one single real solution or alternatively one 

triple real solution.  

• If D > 0, then there exist one real solution and a pair of complex conjugate solutions. 

Only the case D < 0 (casus irreducibilis) was found in the present study with only one of the three 

distinct real solutions being physically meaningful: 

 

x1/2/3 = 2 (−p / 3)½ cos(ϕ / 3 + k2/3 π) − (b / 3a),           (18) 

where  

ϕ = arcos{−0.5 q [−(p / 3)3]-½} and k = 0, 1, 2.           (19) 

 

Explicitly, in the present study, only solution x1 (k = 0) was physically meaningful for KD1 > KD2 and 

only solution x3 (k = 2) was physically meaningful for KD1 < KD2. The other solutions gave either 

negative or too high concentrations [x = c(C) > c(C)0]. The value c(A·C) was then calculated from 

equation (9) after insertion of c(C) = x, c(A) from equation (6) after insertion of c(C) and c(A·C), c(A·B) 

from equation (7) after insertion of c(A) and c(A·C), and c(B) from equation (8) after insertion of 

c(A·B). 

The calculated value of the fluorescence intensity Fcalc was comprised of fluorescence intensity factors 

(fi) for each fluorescent species, i.e. 16-2T (B), 16-2T·M.TaqI (A·B), 17-TT·M.TaqI (A·C) and M.TaqI 

(A) in the case of 2Ap-titrations (the Trp fluorescence of the enzyme is also partly detected at the 

wavelength pair chosen for 2Ap detection), and the concentration of the corresponding species plus a 

constant for the fluorescence background fbg of the apparatus and buffer: 
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Fcalc = f1c(B) + f2c(A·B) + f3c(A·C)+f4c(A) + fbg           (20) 

The sum of the squared errors SSE between the observed fluorescence intensities Fobs and the calculated 

fluorescence intensities Fcalc was then calculated according to the equation 

SSE = ∑ (Fobs − Fcalc)
2,              (21) 

where the sum was taken over all enzyme concentrations for which the fluorescence intensity was 

recorded. The SSE was minimized during the fit upon varying the parameters fi, fbg, and, importantly, the 

dissociation constants to be determined KD1 and KD2. 

 

Binding model for numerical simulation of titration  (III) in Figure 6 

Three binding equilibria have to be considered for titration (III ) in Figure 6: 

 

KD1 = 
c(16-2T) c(M.TaqI)
 c(16-2T·M.TaqI)               (22) 

KD2 = 
c(17-TT) c(M.TaqI)
 c(17-TT·M.TaqI)               (23) 

KD3 = 
c(17-TT) c(BisNP)
 c(17-TT·BisNP) .              (24) 

 

Four other equations can be formed to get a total of seven equations: 

 

c(16-2T)0 = c(16-2T) + c(16-2T·M.TaqI)            (25) 

c(17-TT)0 = c(17-TT) + c(17-TT·M.TaqI) + c(17-TT·BisNP)         (26) 

c(BisNP)0 = c(BisNP) + c(17-TT·BisNP)            (27) 

c(M.TaqI)0 = c(M.TaqI) + c(16-2T·M.TaqI) + c(17-TT·M.TaqI)         (28) 

 

The concentrations c(16-2T), c(17-TT), c(M.TaqI), c(BisNP), c(17-TT·M.TaqI), c(16-2T·M.TaqI) and 

c(17-TT·BisNP) have then been numerically adjusted with Maple in a way that equations (22) to (28) 

are fulfilled (with an accuracy of about 1 × 10−10) for a given set of KD parameters. 
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 Table S1. Ligand-induced changes of melting temperature (∆Tm) of mismatch-containing duplexes 

12-TX (5′-GTTCGTAGTAAC / 5′-GTTACTXCGAAC) and of the fully matched control (12-TA).a 

Ligand Ligand-induced ∆Tm / °C of the duplex, at a ligand-to-duplex ratio q 

 X = T  X = C  X = G  X = A 

 q = 1 q = 2  q = 1 q = 2  q = 1 q = 2  q = 1 q = 2 q = 3 

BisA  4.7  8.7   6.6 10.6   1.7  4.4  −0.1  0  0.2 

BisA-NH2  7.2 11.8  15.1 15.3   4.9  8.7  −0.2 −0.6 −0.5 

BisNP 15.8 16.8  14.1 14.4   7.6  8.1   1.0  1.3  0.8 

DMA1  8.6 11.1  13.2 14.9   5.5  7.8   1.1  3.5  2.9 

MonoNP 12.9 15.0   7.2  9.3   7.6  9.8   3.2  4.9  6.0 

 Melting temperatures of duplexes in the absence of ligands, Tm / °C 

 20.8  17.9  27.3  36.0 

a Experimental conditions: Sodium cacodylate buffer (10 mM NaAsO2Me2, 50 mM NaCl, pH 6.0); [duplex] = 3 µM; 

estimated error of ± 1.0 °C. 
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Table S2. Ligand-induced changes of melting temperature (∆Tm) of mismatch-containing duplexes 

17-TX (5′-CCAGTTCGTAGTAACCC / 5′-GGGTTACTXCGAACTGG) and of the fully matched 

control (17-TA).a 

Ligand  Ligand-induced ∆Tm / °C of the duplex, at a ligand-to-duplex ratio q 

  X = T   X = C   X = G   X = A 

  q = 1  q = 2   q = 1  q = 2   q = 1  q = 2   q = 1  q = 2 

BisAb  5.8  6.8   5.8  7.1   2.6  3.1   0  0 

BisNP  8.8  9.9   7.1  7.8   4.9  6.4   1.6  2.3 

DMA1  5.3  8.1   5.8  8.4   4.4  6.8   3.5  5.1 

MonoNP   8.3 14.1   5.2 10.2   6.2 12.4   4.9 10.6 

  Melting temperatures of duplexes in the absence of ligands, Tm / °C 

  38.3   36.7   41.9   46.5 

a Experimental conditions: Sodium cacodylate buffer (10 mM NaAsO2Me2, 10 mM NaCl, pH 6.0); [duplex] = 6 µM; 

estimated error of ± 0.5 °C. b Taken from: David, A., Bleimling, N., Beuck, C., Lehn, J.M., Weinhold, E., and Teulade-

Fichou, M. P. (2003) DNA mismatch-specific base flipping by a bisacridine macrocycle, ChemBioChem 4, 1326–1331. 

 

 

Figure S1. Correlation between the ligand-induced changes of melting temperature (∆Tm) of duplexes 

17-TX and 12-TX for the ligands BisA (black), BisNP (red), DMA1  (green) and MonoNP (blue) at 

q = 1. 
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Table S3. Background-corrected relative decrease (%) of fluorescence intensity upon addition of BisNP 

(1.2 equivalents) to the 17-YX duplexes in the presence of ethidium bromide.a 

Fluorescence intensity decrease / % 
17-YX 

Y = T Y = C Y = G Y = A 

X = T 15.1 17.1 6.7 5.3 

X = C 12.1 12.5 2.5 4.6 

X = G 4.6 3.5 4.5 2.9 

X = A 3.1 7.2 4.5 4.1 

 
a Experimental conditions: M.TaqI binding buffer (20 mM Tris acetate, 10 mM Mg(OAc)2, 50 mM KOAc, 1 mM DTT, 

0.01% Triton X-100, pH 7.9); [BisNP] = 120 nM; [duplex] = 100 nM; [ethidium bromide] = 1 µM; excitation wavelength 

λex = 520 nm; detection wavelength λem = 615 nm; estimated error of ± 0.5%. 
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Figure S2. ESI-MS spectra of duplexes 14-TX in the presence of control compounds DMA1  and 

MonoNP. [14-TX] = 5 µM and [ligand] = 5 µM. The signals of free duplexes are labeled as [TX ]6– and 

the ones of 1:1 complexes as [TX + ligand]6–. The diamonds indicate peaks corresponding to the triply 

charged single strands. 



 S15 

 

 

Figure S3. Binding of M.TaqI to 16-2T (100 nM) (triangles) or 16-2T (100 nM) in the presence of 

BisNP (2 µM) (squares) (excitation at 320 nm and emission at 384 nm). Solid lines represent analytical 

curve fittings for a single-binding equilibrium model. Binding affinities of M.TaqI and 16-2T were 

60 × 106 M–1 in the absence and 80 × 106 M–1 in the presence of BisNP. 
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Figure S4. Numerical simulations of binding competition between BisNP and M.TaqI for a TT-

mismatch in DNA. Curves  (I ) and (II ) represent the analytical curve fittings for titrations of 16-2T 

(100 nM) (I ) and 16-2T as well as 17-TT (100 nM each) (II ) with M.TaqI taken from Figure 6. In 

between are four numerical fits (performed with Maple according to the binding model with three 

binding equilibria described above) in the additional presence of BisNP (2 µM). Simulations were 

performed using Ka values for BisNP-17-TT of 20 × 106 M-1 (for the curve that is closest to curve (I ), 

6.7 × 106 M−1, 2.2 × 106 M−1 and 1.1 × 106 M−1 (approaching curve (II ) in this order). As further 

parameters, Ka(M.TaqI×17-TT) = 280 × 106 M-1 and Ka(M.TaqI·16-2T) = 100 × 106 M−1 were used for 

all simulations. 
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Figure S5. Fluorescence titrations (excitation at 320 nm and emission at 384 nm) of 16-2T (100 nM) 

(squares), 16-2T and 17-TA (100 nM each) (triangles) or 16-2T and 17-TA (100 nM each) in the 

presence of BisNP (2 µM) (diamonds) with M.TaqI. Solid lines represent analytical curve fittings. The 

binding affinity of M.TaqI to 17-TA was determined to be 460 × 106 M−1 and the apparent binding 

affinity to 17-TA in the presence of BisNP was found to be 750 × 106 M−1. 
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Figure S6. Correlation between background-corrected relative decrease (%) of fluorescence intensity 

upon addition of BisNP (1.2 equivalents) to the 17-YX duplexes (100 nM) in the presence of ethidium 

bromide (1 µM) and the thermodynamic stability of the duplexes, represented by their estimated melting 

temperature (Tm) under conditions of the FID experiments, which was calculated with HyTher software 

(http://ozone2.chem.wayne.edu/). 


