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The actual possibilities of numerical simulation allow a deterministic and physically based
approach of natural phenomena. Hydrology is not getting away from it and develops models based on
hydraulic equations to compute the flood generation and routing on watersheds. The flow behavior
observed on surface runoff differs from the one growing in a river or a channel. Therefore the classical
head loss formulations, empirically developed for turbulent and rough uniform flows in rivers, are not
applicable to surface runoff. In order to find a more suitable friction law, laboratory experiments were
conducted to define the relation between the mean velocity and the surface parameters.

A numerical model, named Faitou, was developed to simulate the generation and to propagate
floods on steep river basins. It solves the 2D kinematic wave equation over the catchment topography
with the finite volume method and is coupled with a hydrodynamic modeling of the river network. This
software, along with the new head loss equation, demonstrates its potential and qualities when applied
to some alpine watersheds.

1. INTRODUCTION

Regardless of all research efforts completed since long ago, floods are
responsible for 37% of all dam breaks observed around the world. A diminution of the
uncertainties of their prevision will contribute to a better risk analysis, and so forth to
propose adequate preventive and constructive measures.

In the past, many engineers (Lauterburg 1887; Hofbauer 1916; Kirsteiner 1917;
Melli 1924; Muller 1943; Heusser 1947) have suggested simple empirical equations
to estimate the design discharge flowing through the reservoir and its associated
spillway. These equations require principally the area of the watershed and some
other local parameters. In the same time, statistical methods were developed to
extrapolate an historical discharge record of some years to the 100 or 1000 years
return period discharge. This approach is extensively used but requires some data,
sometimes difficult to obtain in small alpine watersheds, precisely where large dams
are projected or build.

The next decisive step was the development of global hydrologic models, like
the unit hydrograph [1]. It became possible to predict the full hydrograph resulting
from a rain. The major question concerning these models lies in the validity of their
parameters for a wide range of flood amplitude. It is always possible to calibrate such
a model for some observed floods. But how believe in the constancy of the calibrated
parameters when computing the probable maximum flood of the watershed?

More recently, with the computer technology development, the trend is to
compute the rainfall — runoff relation by means of hydraulic equations describing the
water flow over the watershed surface and in the river network [2], [3]. These models
are so called physically based because their parameters have all a physical meaning.
The major is the roughness coefficient of the Manning or Chezy equation. It is the
only adjustable parameter in a optimization process. For the Manning coefficient n,
the experience shows that for some alpine watershed, an approximate value of




n = 10 is required to fit with the observed hydrograph. This value is of course
completely out of the validity domain for which the Manning equation was developed.
One more time, the question of the constancy of this parameter is of prime
importance when computing extreme floods.

This contribution will propose a new head loss equation particularly adapted for
the overland flow. For its practical application, a numerical model was developed,
which solves the 2-D kinematic wave equation over the watershed topography
described by a digital elevation model. This hydrological code is coupled with a
hydrodynamic 1-D scheme which performs the flood routing in the river network.

2. HEAD LOSS COMPUTATION

2.1 Experimental investigation

In order to propose a new equation for head loss estimation, an experimental
investigation was performed. The main objective was the determination of the relation
between the mean velocity and the water depth over a surface. The real surface
micro-topography of a soil is very complex. For simplicity reasons, the investigated
surface was created with spheres geometrically arranged on a plane. This micro-
topography model of a natural soil is particularly simple and fully described by two
parameters, that is the sphere diameter D and the cover density of spheres p. The
cover density is defined by the ratio between the total projected surface area of the
spheres and the surface area of the plane. Geometrical considerations show a
maximum cover density of pmax = 0.9069. The tested cover densities are shown on
figure 1.
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Figure 1 Geometrical layout of the spheres corresponding to cover density of a) 2.53%,
b) 10.1%, c) 20.3%, d) 30.4%, €) 50.2%, f) 70.0% and g) 90.7% (maximum cover density ppna).




In this sphere model, the different hydraulic parameters can be computed
analytically. In order to work with adimensional parameters, let's define the cross-
section porosity as :

n=— (1)
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with A, the wetted surface area. Ay, the total surface area, is the product of the
width B of the plane and the water depth y. It can be shown that :
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In the same way, a non-dimensional wetted perimeter Q is defined as the ratio
between the wetted perimeter P and the width B of the plane. For the sphere model
and after some geometric calculation, one can obtain :
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In equations (2) and (3), the angle 6 is only defined for y< D by :
COS(£)= __2__})_ (4)
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With the above definitions of the cross section porosity n and the non-

dimensional wetted perimeter Q, the hydraulic radius Ry can be expressed as :
n
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By considering the presence of macro-roughness elements over the surface,
the hydraulic radius differs from the water depth usually adopted in all past studies of
flow over a plane.

This sphere model is at the root of the elaboration of the head loss relation. For
this purpose, the experimental facility showed on figure 2 was built in the Laboratory
of Hydraulic Constructions of the Swiss Federal Institute of Technology in Lausanne.
Different steady flow conditions can be imposed over a 2 m long and 1 m width plane
covered with spheres. This plane can be installed with any slope between the
horizontal and 45°.

A direct measure of the water depth or the mean velocity is not workable due to
the thickness of the flowing water layer as well as due to the spatial variation of the
discrete values. As a matter of fact, only the mean values of the flow depth and the
velocity are of interest and for this reason, an indirect measurement of water depths
was elaborated. When steady state flow conditions are installed, the flowing water
layer is suddenly cut upstream and downstream and all the imprisoned water is
diverted into an electronic weighting system. With the knowledge of the discharge
and this measure of the water volume, a geometrical computation gives the mean
water depth and the mean velocity.
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Figure 2 Experimental setup for the study of the relation between the mean velocity and the water
depth for a sheet flow in a macro-rougness.

By varying the discharge, the bottom slope of the plane and the cover density of
spheres, 273 tests has been carried out, giving the same number of points in the
relation water depth — mean velocity.

2.2 New head loss equation
The detailed setting up of the new head loss equation is given in [4]. Only the
major result is presented here. For simplicity, let’s define :
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where g = gravitational acceleration; v = kinematic viscosity and S = bottom slope of
the plane. For y < D, the mean velocity V writes :
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For y > D, the equation becomes :

V=V02+ /igﬁ(y—D+Ay)’/2(l~2] (8)
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with Vp = reference velocity computed with equation (7) for y = D. The friction
coefficient fis calculated by :
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In the above expressions, Ay is the distance between the origin of the new
water depth reference system and the top of the spheres. This distance can be found
from the implicit relation :

Jg5, [5.6210g(%3]+ 3.13p708 ]Ayl/z =V, (10)

This new head loss relation (equation 7 and 8) well suited for overland flow
includes many advantages. It guaranties a smooth and continuous transition between
laminar and turbulent flow. The term noted B in equation (6) is the laminar term. For a
smooth plane without any roughness element, the cross section porosity 77 and the
non-dimensional wetted perimeter Q tend both towards 1 and B reduces exactly to
the analytical solution of a laminar flow over a plane. The parameter A in equation (6)
is the turbulent term, proved to be identical to the Chezy formulation. When the flow
overtops the roughness elements, the mean velocity grows very quickly. Equation
(10) provides a smooth transition between equation (7) and (8). The friction equation
(9) is very similar to those of Bathurst [5] for large-scale roughness flows.

3. NUMERICAL MODELING

In order to apply the above new head loss equation, a numerical model named
Faitou has been developed. A second objective of the model is to refine as much as
possible the geometry definition of the watershed and the river network. For this
purpose, it works on a digital elevation model of the topography and provides the
needed tools for an automatic basin delineation coupled with the generation of the
entire river network.
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Figure 3 Schematic view of some different flows handled by the numerical model.




3.1 Mathematical formulation
The kinematic wave assumption was demonstrated to be valid for the overland

flow in [3]. For a 2-D surface with a steep slope covered with macro roughness
elements, the kinematic wave equation writes :

o), %, %, icos(S,)
ox dy

with ¢ = volume porosity of the macro-roughness elements; t = time; gx = flux in the x
direction; g, = flux in the y direction and / = rain intensity. The fluxes are calculated
with the new head loss equation presented in chapter 2.2.

The finite volume method [4] solves the integral form of the equation (11), called

weak formulation because its solution is only exact in mean over the control volume
Qi .
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By denoting :
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and :
S =icos(S,) (14)
Equation (12) can be expressed for the finite volume i as :
4@, F 0o, =5, (15)
dt Q

The second and third terms of equation (12) have been converted in contour
integral thanks to the divergence theorem of Green. Other parameters are presented
in figure 4.
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Figure 4 Definition of the parameters used in the finite volume method for the computation of
fluxes across the boundary.

3.2 Model generation

A digital elevation model of an alpine watershed can include many hundred of
thousand points. So, tools are needed to automatically generate the computation
model. This can be achived in three steps beginning with the computation of a




convergence matrix. The local convergence value is computed by counting all the
upstream cells. On this basis, and after some slight altitude modifications to remove
local depressions, the river network is generated. Finally, the 2-D network of
triangular finite elements is created over the points belonging to the watershed and

according to the existing rivers. A result example of this preprocessing is showed in
figure 5.

Figure 5 2-D and 1-D model of an alpine watershed generated automatically by Faitou.

4. APPLICATION EXAMPLE

For illustration purpose, the simulation of a historical flood is presented here to
demonstrate the capabilities of the new approach in modeling floods in steep river
basins. The chosen watershed lies upstream of the artificial reservoir of the Mattmark
dam in Switzerland. During September 1993, a major flood occured in this alpine
area, inducing severe damages in the downstream valley. This 37 km? watershed is
situated between the altitudes of 2200 and 3900 ma.m. with a mean slope of about
21%. It is essentially composed with non-productive soils and rocks.

The model has been generated from a digital elevation model with a resolution
of 50 m. It consists of 28’229 finite volumes, 46’472 boundary where fluxes are
calculated at each time step, 4723 cross sections and 385 junctions of rivers. The
gauging hydrograph resulted from water level records and management data’s. With
the two calculation methods used, the peak discharge entering the reservoir has
been estimated between 134 and 152 m¥s.

The figure 6 highlights the very good agreement between the simulated and
measured hydrographs. This example illustrates the potential of a spatially distributed
and unsteady numerical simulation for the rainfall — runoff computation. Other
applications confirm the reliability of this type of modeling [4], [6].
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Figure 6 Observed and simulated hydrographs for the 1993 flood into the Mattmark reservoir.

5. CONCLUSIONS

This contribution proposes a new head loss equation particularly valuable for a
physically based and deterministic hydrologic model. This mathematical formulation
is valid for laminar as well as for turbulent flows. It converges also towards classical
expressions when the water depth becomes large compared with the roughness
elements. This behavior is particularly useful when extrapolating a calibrated model
for the computation of extreme floods.

Based upon the kinematic wave equation, a numerical simulation program has
been developed. It solves the overland flow with a finite volume method and then
routes the flood in the river network. This powerful hydrological package opens up
large prospects as a flood and landuse management tool.
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