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The autocorrelation function C(r) associated with the vibrational motion in the A2II, state of N5 is calculated by three
different methods. The classical method is based on classical trajectory calculations and provides good results except for
secondary maxima appearing in the experimental autocorrelation function and resulting from interference effects. In the
semiclassical method, the wavefunction is expanded in a basis of frozen gaussian functions. The secondary maxima are
reproduced and the result is quite satisfactory.‘ The superposition procedure consists in an expansion of the wavefunction in the
eigenfunctions of the A state of N and leads to a very simple formula for the autocorrelation function C(¢). The secondary
maxima are accounted for and the calculated function agrees very well with experimental results.

1. Introduction

In the case of an electronic spectrum, Heller has shown [1,2] that the intensity J( E) of a band profile is
equal to the Fourier transform of an overlap integral between two wave packets [¢(0)) and |¢(¢)):

I(E)/Ea [~ drexp(iEt/h)((0)[6(1)), &)

where |¢(0)) is the initial wave packet created at time ¢ =0 on the potential-energy hypersurface of the
upper electronic state by the spectroscopic transition, and |¢(#)) is the wave packet at time ¢ as it
propagates on that surface. As a consequence, a relationship can be established between the shape of an
electronic band profile and the dynamic behaviour of the wave packet on the potential-energy hypersurface
of the upper state. Therefore, from the knowledge of the intensity of an electronic band, one can obtain
dynamic information [3.,4]:

@Ol = ([ arl1(8)/E) expl—ie/m))( [~ aEL1(E)/E]) 2

The autocorrelation function C(z) associated with the electronic band profile I(E) is defined as the
absolute value of the overlap integral (2):

C(1)=Ke(0)9(2))I- (3)
This function provides an interesting piece of information on the nuclear motion in the electronic state
under consideration and has already proven its usefulness [3—6].

The aim of the paper is to derive a method to calculate C(z) as simply and rapidly as possible. For this
reason, a numerical integration of the time-dependent Schrodinger equation in order to propagate the wave
packet on the potential-energy surface of the upper state (by the laws of quantum mechanics) will not be
attempted. Such calculations have been done by different authors [7]. We consider here three alternative
methods:

(i) A classical trajectory calculation of C(¢), which is dealt with in section 2.
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(i) A semiclassical treatment based on an expansion of |¢(0)) in a basis of frozen gaussian functions
whose centers follow classical trajectories, as suggested by Heller [8] (section 3).
(iii) An expansion of the initial wave packet |¢(0)) in the set of vibrational eigenfunctions of the upper
electronic state (section 4).
As an example, we have applied these three methods to the AZI1, state of N5 whose autocorrelation
function has been experimentally determined and studied elsewhere [3].

2. The classical method

This method is based on a classical trajectory calculation. Such a study consists of five steps:

(A) Determination of the initial conditions of the trajectories.

(B) Choice of the statistical weights associated with the trajectories, i.e. choice of a distribution function.

(C) Representation of the potential-energy surface by an analytical expression or by a numerical
interpolation procedure.

(D) Derivation and integration of the equations of motion.

(E) Calculation of the autocorrelation function.

(A) Initial conditions

If the number of variables of the system is large, the most efficient way of obtaining fast convergence of
the result is to choose the initial conditions randomly via a Monte Carlo type method [9], or to generate
quasi-random sequences like Halton sequences [10] of numbers in the range (0, 1). In the case of the N5
ion, if rotation is disregarded, only two variables are to be initialized: the internuclear distance R and its
conjugate momentum P,. The initial values RI™ are obtained by scanning an interval representing the
Franck—Condon zone associated with the vibrational level v =0 of the X 12;“ state of the molecule. This
interval is 0.95 < R < 1.25 A. The initial values Py"; are selected quasi-randomly by means of two Halton
sequences, one (f,,) determining the magnitude of P, the other (¢,,) its sign:

PP =|PF¥t (1), i=12,...N, (4)

where N is the number of trajectories, |PF**| is equal to 16.62 au, corresponding to a total energy
Ey=(PP™)2/2u=0.0107 h, i.e. to a vibrational frequency for N, (X'Z;) equal to 2358 cm™!, p is the
reduced mass of the nuclei and is equal to 7 a Mu = 12853.05 aum,

u;=0, ift,,>05;
=1, ifr,,<0.5.

(B) The distribution function

It has clearly been established [1,11,12] that the Wigner distribution function [13] satisfactorily simulates
a distribution function of the coordinates and momenta. In the case of the v =0 vibrational level of the
X'Z} state of N, this function can be written:

W,(R", P} = (zh)™ exp[ —27rvp.(Ri“ — Reqx)2 —(P,;“_,-)Z/2'rwp] , (%)

where » is the vibrational frequency of the molecule in its electronic ground state X > . (¥=12358 cm 1),

R,,, is the internuclear equilibrium distance of N, in the X‘EE+ state (R, = 1.098 /0\) [14].
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(C) The potential energy
The potential-energy curve is represented by the Morse function [15]

V(R)=D{1—exp| -B(R - 1{6%)]}2 (6)

where the values of D and B have been fitted to the RKR numerical values given by Lofthus and Krupenie
[14): D=17.75¢eV, B=2.462 A~ ' and R, =114 A

(D) The equations of motion
We are only interested in the autocorrelation function related to the vibrational motion of the ion. In the
case of a diatomic molecule (or ion), the classical vibrational hamiltonian is:

H=P2/2p+ V(R)=1pR*+ V(R). (7)
The canonical equations [16]
R=03H/3Py = Py/u, Pr=—0H/dR= —03V/3R (8)

are numerically integrated by the Adams—Moulton—Bashforth algorithm [17].

(E) Calculation of the autocorrelation function

Every initial value Ri" is considered as the center R, (# = 0) of a gaussian function exp{ —a[R — R, (D1
which evolves without distortion, i.e. with @ = constant. Then, the autocorrelation function is the weighted
sum of the overlap integrals between initial and time-displaced gaussian functions:

clo)= /ey | £ [ ares] ~atr—r)]os(~al R~ R (V]| £W)

i=1 = %0 J

-1

:(éW,.exp{—%a[R;"—R,.(t)]Z})(gw,) . (9)

The result depends on the value of a. This autocorrelation function C(t) is compared with the
experimental autocorrelation function obtained by Fourier transforming the intensity profile corresponding
to the AT, state of N, after correcting for finite experimental resolution, for rotation and for spin-orbit
effects [3]. The best function C(z) is obtained when a is equal to the value which appears in the
harmonic-oscillator wavefunction associated with the electronic ground state:

|‘I'N’( Xz )L o= (a/m)" exp[—a R- Reqx)]

with a = (2kyp)"/?/h=139.34 bohr~2, ky is the force constant appearing in the expansion of V(R) for
the X'Z; state of Ny:

Vy(R) = ky (R—Reqx) +kyx (R - Reqx),

k and kyy, are obtained from a least-squares fit to the potential energy of the X '3 state given by Loftus
and Krupenie [14] (ky = 0.75529 h bohr =2, kyy = —0.79885 h bohr~?).

The graph of C(¢) and that of the experimental autocorrelation function are presented in fig. 1. C(¢) is
obtained for N = 201 classical trajectories. One sees that the agreement is rather good as far as the motion
of the center of the wave packet is concerned. As a matter of fact, the shape of the recurrences and their
positions are well reproduced. One observes, however, in the experimental autocorrelation function the
presence of small additional peaks between the main recurrences. Their intensity increases with time. These
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Clt)

< Fig. 1. Full line: autocorrelation function C(¢) calculated from
relation (9), where N =201 classical trajectories and a = 140
bohr 2. Dashed line: experimental autocorrelation function
obtained by Fourier transformation of the intensity profile
corresponding to the A2IT, state of N3 corrected for experi-
mental finite resolution and for rotation and spin—orbit effects

[3].

secondary maxima do not appear in the autocorrelation function calculated by the present method. In ref.
[3], they have been interpreted as evidence for wave-packet splitting resulting from motion in an
anharmonic potential. However, this interpretation seems erroneous since the present calculation is unable
to account for them, in spite of the fact that the nuclear trajectories and thus the classical probability
distribution have every possibility to split. As will be seen in section 4, the additional peaks are due to
interference effects and cannot appear in a function calculated by a classical method.

3. The semiclassical method

The method used in this work has been proposed by Heller [8] and consists in the expansion of the
wavefunction ¢(R,?) in a basis of frozen gaussian functions G;(R,?):

N
o(R,t)= ; ¢;G;(R,1), (10)
G,(R,t)=(a/n)"" exp{—%a(R ~R,,) +ih"'[P, (R-R,,) +yj_,]}. (11)

They are called frozen because a is kept constant during the evolution of G,(R,?); « is chosen equal to
the ay of eq. (26) below, i.e. « = 139.34 bohr 2 (see section 4).

R, and P, are the position and conjugate momentum of the center of the jth gaussian function at time
1; they obey the classical equations of motion (8). y;, is a phase term and has the expression

V= [ (Bl /n= (B, ) ar, (12)
where

(Eyo=[" dRGHR.IVH()G,(R.r)
and

H(t")=(h*/2p) d®/dR*+ V(R,) +(3V/3R)r,(R— R,) +1(3*V/9R*) r (R—R,.)’.

The initial values R;, are obtained by scanning the interval (1.053 < R <1.143 A) corresponding to the
classical values of R for the v = 0 vibrational level of the X 12;’ state of N, for which E, = 0.00547 h

R,,=1.053+(j/N)0.09, (13)
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where N is the number of gaussian functions used in the expansion of ¢(R,?) (cf. (10)). The initial values

P, are chosen in such a way that all the energies corresponding to the classical trajectories (R .o Py,) are
equal to E:
1/2 21\ 1/2
Po== {2#[Eo - V(Rj.O)]} = i‘{zﬂ[Eo_ kX(Rj.O = Reqx) ]} . (14)

The sign of P, is chosen randomly by a Halton sequence [10] 0 <#;<1: P,;>0if #,> 0.5 and P, <O if
t,<0.5.
7

For the determination of the values of the ¢; coefficients in relation (10), one has to remember that the
gaussian functions as given by eq. (11) are not orthogonal. Diagonalization of the overlap matrix [18]

S,J=f°° G*(R,0)G,(R.,0) dR (15)

—

leads to a new basis set which is composed of orthogonal functions F(R,0):

N
F,(R0)= X f,G,(R0), (16)
j=1
with
s,= " E*(RO)E(R0)dR=5,3,. (17)
The wavefunction ¢(R,¢) is expanded in this new basis set:
P P N N [P
¢(R,1)= Z giE(R’t)= Z 8i Z fijGi(R’t): Z ( Z gifij)Gj(R’t)- (18)
i=1 i=1 j=1 Jj=1\i=1

If one compares relations (10) and (18), one sees that:
P
6= Zgifij- (19)
i=1
The g, can be obtained by projecting ¢(R,0) onto F,(R,0):
g5,= [ E*(R0)4(R0)dR, (20)
which becomes
2 o -
8= (Z s exp| — Jax (R0 — R, )’ = Pho/dhlay + i ‘%,O(R,.O—Reqx)])u,,-) g (21)
;
The autocorrelation function takes the form:

N N
C(r)= Z ZC?Cjexp[_%aX(Rj.t_Ri.O)z_(1)].1_1)1,0)2/4h2ax
i=1j=1

LRT(B, + Po) (R, ~ Rog) +ih 7, ] l (22)

With a basis set of 15 functions, it turns out that the overlap matrix s, has three diagonal elements equal
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< Fig. 2. Full line: autocorrelation function calculated by the
) ) semiclassical method (relation (22)). Dashed line: experimental
0 2000 4000 t(a.u.) autocorrelation function.

to 10719 or less. This obviously indicates that the set contains only 12 linearly independent functions. The
result is presented in fig. 2. It is much better than the classical calculation as far as the secondary maxima
are concerned. This is not surprising since the interference processes (see section 4) are taken into account
by means of the phase factors exp{ih“l[Pj.,(R —R; ) +v,.1}

4. The superposition method
Let us expand the time-dependent wavefunction in the eigenstates of the A*II, state of N, [19]:
¢(R’t)=zan,A exp(—iE, at/h)$, A(R), (23)

where a, , are the coefficients of the expansion, E, , are the vibrational energies of state A of N, , and
¢, A(R) are the orthonormal eigenfunctions of state A. Thus, C(7) can be written as follows:

M
Y. la, Al* exp(—iE, st/h)|, (24)
n=0

C(1)=Ke(0)|o(2))]=

where M is the vibrational quantum number of the last basis function in the expansion (23) and can range
from 14 to 24 without practically any change in C(?). @, A is given by

ana=[" dREEA(R)$(RD). (25)

The Franck—Condon factors |a, ,|* and the energies E, 5 can be either obtained from the intensity profile
corresponding to state A or calculated, as done in this work.

(1) Expression of $(R,0)

#(R, 0) is the vibrational wavefunction of the system just after photon absorption, i.e. the vibrational
wavefunction of the v =0 level corresponding to the X 12; state of the molecule. It is derived from a
fourth-order perturbation expansion in the harmonic—oscillator wavefunctions

Xj.x(R)=Nj,xHj(Zx)exP(_%Zi), (26)
where
ox=(ax)(R=Ry,), ax=(2kxn)’/h=13934bohr ?, N, x= (ax/m) 4 (221)

H,(zy) is the Hermite polynomial of degree ;.
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The perturbation used is
3
Wx=kxx(R—R., ), (27)

for which the expressions of the matrix elements are known [17]. The expansion of ¢(R,0) is made in a
basis set of ten functions:

8(RO)= T Cx, x(R). (28)

(2) Calculation of §,, 4(R)

The {, o(R) functions are the eigenfunctions of the vibrational hamiltonian H, corresponding to state A
of N,. The potential energy can be represented well by the Morse function (6). The §, A(R) functions are
expanded in a basis of harmonic-oscillator wavefunctions x ; ,(R) corresponding to state A, similar to that
defined in eq. (26), but with

J
aA=,B(2pD)1/2/h, §n,A(R)= Z bn.ij,A(R)' (29)
j=0

J can range from 29 to 49 without significant changes in C(¢). The b, ; coefficients and energies E, 5 are
obtained from the diagonalization of the matrix corresponding to the H, operator.

The graph of C(¢), compared with that of the experimental autocorrelation function, is presented in fig.
3. One sees that the result is very good and accounts for the secondary maxima. Since the latter do not
appear in the classical calculation, they cannot be thought of as measuring the overlap between two
classical probability distributions. They are present only in treatments which involve consideration of a
wavefunction, i.e. of an amplitude (see also section 3). This indicates that the appearance of subsidiary
maxima is basically an interference process which, in the case of state A of N is due to anharmonicity.
This can be seen as follows. A wave packet moving in an anharmonic potential may break up. The wave
packet should be thought of as split in the complex plane, i.e. the amplitude must be considered with its
sign and its imaginary part and not as a probability distribution with several maxima on the real axis.

The following equation provides further insight into the phenomenon. Let us expand relation (24):

M M n—1 172
C(t)= @, al*+2 Y X |a, al*la, al* cos|(E, o — E,, A)t/R]| . (30a)
=0

n n=1m=0

In the case of a harmonic oscillator, one can define a frequency w =A"'(E, » — E,_; »); €q. (30a) then

C(t)

05

< Fig. 3. Full line: autocorrelation function calculated from rela-
. ] . tion (24), i.e. by the superposition method. Dashed line: experi-
0 2000 4000 t(a.u) mental autocorrelation function.
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reads:
M M n—-1 1/2
Ct)=| Xla,al*+2 2 X (a, 4@, al* cos(kwt)| (30b)
n=0 n=1m=0

with k = n — m. For values of t = 2mj/w, j being an integer, all the cosine functions and consequently C(7)
are strictly equal to unity, i.e. the gaussian wave packet has come back to its initial position and recovers its
initial shape. In the anharmonic case, one cannot define a frequency w. As a result the various cosine
functions do not reach their maximal values at the same time so that C(z) cannot be equal to 1 any longer
(except for very large values of ¢, around 1.21 X 10~ '? s for state A of N5 [6]). The wave packet is distorted
and interference processes occur giving rise to subsidiary maxima in C(2).

Because of its simplicity, relation (24) has found other applications in the study of some dynamical
processes (such as the interaction with a continuum in the strong-coupling limit [4]) allowing simple models
to be built.

5. Discussion

As explained in section 4, the secondary maxima appearing in the autocorrelation function of state A of
NJ' cannot be simply assigned to an overlap between two classical probability distributions. This is why
they do not appear in the autocorrelation function calculated classically. Such structures are due to
interference processes between the components of the wave packet split up by anharmonicity. This means
that they can be accounted for only in treatments involving consideration of a wavefunction as in sections 3
and 4. In addition, the breaking up of the wave packet leads to a lowering of its maximum amplitude. In
the classical method, no breaking up takes place but simply a broadening. As a result, the peaks of the
autocorrelation function flatten and have no longer maxima equal to unity. This fact is accounted for in the
three methods of calculation considered here.

6. Conclusions

The determination of the autocorrelation function of an electronic band profile provides an important
contribution to the analysis of the short-time dynamical behaviour of polyatomic ions or molecules. The
three methods considered in this paper constitute rather easy ways, at least for diatomic molecules, to
calculate an autocorrelation function of an electronic band profile corresponding to vibrational motion
only.

The classical method is based on trajectory calculations and provides rather good agreement between the
calculated and experimental autocorrelation functions if one does not take into account the appearance of
secondary maxima due to interference processes. This method has the advantage that it can easily be used
when more than one vibrational degree of freedom is concerned if one knows the potential-energy function.

The semiclassical method is based on the expansion of the wavefunction in a basis of frozen gaussian
functions [8]. As these basis functions are not orthogonal, a diagonalization has to be carried out [18]. The
result is better than the classical calculation but not as good as that obtained by the superposition method.
Anyhow, the agreement between the calculated autocorrelation function and the experimental one is quite
satisfactory. As a matter of fact, it is the best compromise between a simple classical trajectory calculation
and a full-scale calculation of wave-packet propagation on a potential-energy surface. Furthermore, this

method seems to be applicable without too much difficulty to the case of more than one degree of freedom
[20].
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The superposition method is based on the expansion of the wavefunction in the eigenfunctions [19] of
the state under consideration; this leads to a very simple expression for the autocorrelation function. The
obtained graph is in very good agreement with the graph of the experimental function. If the Franck—Con-
don factors and the vibrational energies of the state can be obtained, there is no difficulty in using this
method in the case of more than one degree of freedom.
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