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Abstract

The e-nose technology has enormous potentialities for in site monitoring of off-odours. However a number of limitations are associated with the properties of chemical sensors, the signal processing performances and the real operating conditions of the environmental field. The field experience of the research group included testing of a large amount of sensors in different sensor technologies and among those the metal oxide based gas sensors (Figaro type) are the best gas sensors for long term application, as stated during more than one year of field testing. To be usable for the off-odours field measurement, the e-nose has to deal with the lack of long term stability of these sensors. The drift and the sensors replacement have to be considered. In order to appraise the time evolution of the sensors and the effect on the results of an electronic nose, experimentation has been performed during more than three years on two identical sensor arrays. The two arrays contain the same six Figaro sensors and are in the same sensor chamber of the e-nose system. Both arrays have worked continuously, without break. This paper presents the drift of some TGS sensors for 7 years as well as the difference in the temporal behaviour of identical sensors and the consequence on the e-nose results after the sensor replacement in the sensors array. A correction of the drift and of the replacement effect is applied and the classification results are exposed, with and without correction.

1. Introduction

The artificial olfaction system is a very promising tool to monitor the off-odours in the field. Usual odour measurement techniques use human olfaction or conventional analytical techniques [1-2]. The first category represents the real odour perception but is not applicable to measure continuously bad odours in the field. The second class of techniques provides the mixture composition, but not the global information representative of the odour perception. The e-nose has the potentiality to combine “the odour perception” and the “field monitoring”. The instrument, based on non-specific gas chemical sensor arrays combined with a chemometric processing tool provides a suitable technique for in site monitoring of off-odours. The research group in Arlon has more than ten years experience in the field measurement of environmental odours. Published studies report attractive results [3-4]. This technique has probably the best potentialities to answer to the expectations of the various actors of the environmental problems in relation with the odours annoyance [5]. However, a number of limitations are associated with the properties of chemical sensors [6-7], the signal processing performances and the real operating conditions of the environmental field [8]. The field experience of the research group has shown that the metal oxide based gas sensors are the best chemical sensors for long term application, more than one year of continuous work. However, as a result of harsh environmental conditions, hardware limitations and olfactory pollution specificities, real-time odour monitoring with the electronic nose is always a real challenge. The instrument has to cope with several specific drawbacks. In particular, it has to automatically compensate the time drift [9] and the influence of ambient parameters such as temperature or humidity [10]. This paper is focused on the time drift and the long term stability of the metal oxide gas sensors (Figaro sensors). Sensor drift is a first serious impairment of gas sensors. The sensors alter over time and therefore have poor repeatability, since they produce different responses for the same odour. That is particularly troublesome for electronic noses. The sensor signals can drift during the learning phase [11]. Another frequent problem encountered in the field and particularly in highly polluted atmosphere is the sensor failure or an irreversible sensor poisoning. Clearly, life expectancy of sensors is reduced in real-life operation when compared with clean lab operations. Sensor replacement is generally required to address such issue, but, after replacement, odours should still be recognised without having to recalibrate the whole system [12]. But commercial sensors are rarely reproducible. In order to appraise the time evolution of the sensors and the effect on the results of an electronic nose, experiments were performed during several years on two identical sensor arrays. The signals of two "identical" sensors array, placed in the same measurement chamber, were observed during 7 years. After a state of the art of the sensors drift correction techniques 
 ADDIN EN.CITE 
[11-28]
, the most relevant methods for the field has been tested and the results compared in order to select the best one for our application.
2. Material and methods

E-nose system

Data were collected from a home-made e-nose instrument during 7 years without interruption.

Two sensors arrays were fixed in the same measurement e-nose chamber and contain the same six Figaro sensors. Both arrays worked continuously during 7 years, without break, under 200 ml/min continuous gas flow. To observe the sensors time evolution, always in the same conditions, even for such a long period, a calibration gas was used (ethanol, 50 ppmv in N2, diluted to 12,5 ppmv with humidified synthetic air) and the experimental set-up was developed to maintain the conditions for the calibration gas measurements. The temperature regulation inside the chamber was maintained at 40°C. RH was also controlled (RH range: 31%-37%). The experimental protocol assures no humidity and no temperature variation between the calibration gas and the odourless reference air (dry synthetic air diluted with humidified synthetic air, with the same dilution ratio used for the ethanol). The real life atmosphere was the odour generated by an urban waste composting facility. But, in order to make clear the long term stability of the sensors, two different odours were collected: print house odour (indoor sampling near the offset machine) and compost odour (outdoor sampling from the sheltered compost deposit). The odours were sampled in Tedlar bags and the tests were carried out in the laboratory by cycle "odour and off-odour". The reference off-odours were sampled, at the same time that the odours, near the source (but without smell), in order to have the same humidity and the same background air pollutants (ozone,  …) than the odour samples. More details of the sampling procedure is given in [9,29]. A discussion about the variability of the field operating conditions is in [30].
The signal considered in the study is the steady state conductance of the sensors.
Drift methods
To attempt to compensate the sensor drift, three types of solutions were tested for our applications: signal pre-processing (response variable including the base line signal), univariate sensor correction [19] and multivariate array correction 
 ADDIN EN.CITE 
[22,31]
. Adaptive models, such as multiple self-organizing maps, have not been tested because they are not well adapted for sensor replacement 
 ADDIN EN.CITE 
[14,24]
.
The first one, the signal pre-processing, considers as useful response the difference between the base line, obtained by presenting the sensor array to pure reference air, and the signal obtained after stabilisation in the polluted atmosphere. However, such solution requires cycling operation between reference air and tainted air, which is not convenient for on-site applications. That requires carrying in the field heavy gas cylinders. Alternatively, generating the reference air by a simple filtering of the ambient atmosphere produces only partial drift compensation and a lack of purity of the reference gas, increasing the data dispersion. 
Drift counteraction algorithms could be applied either for each individual sensor or for the whole pattern correction, using multivariate methods. 
For the univariate correction, a multiplicative correction factor 
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 is used. This factor is determined on ethanol measurements, at regular intervals within the real atmosphere measurement or based on a regression model [12]. The continuous temporal signal variation of the calibration gas is considered to determine a correction factor that is multiplied by the sensor response Y(t) on the real atmosphere: 
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where           , sensor signal in standard gas at time 0 and           , sensor signal in standard gas at time t' with t' inferior to t.
The second tested counteraction algorithms, the multivariate methods, require also prior calibration gas measurements. After this step, the main direction of the drift is determined in the first component space of the multivariate method, such as the Principal Component Analysis (PCA), or by selecting time as a dependant variable of a Partial Least Square regression (PLS). The drift component(s) can then be removed from the sample gas data, correcting thus the final score plot of the multivariate method [8]. 

3. Results

3.1. Drift

A serious drift of the TGS sensor signals has been observed. Figure 1 and 2 show the conductance evolution of the 6 different TGS sensors, placed in the same operating conditions for 7 years. Measurements on humidified ethanol (cycle reference air/ethanol/reference air) have been performed approximately once a month, during three years (Fig. 1). Figure 2 points out the conductance values in the same condition but with calibration gas measurements carried out 4 years later. 
More than 200% of variation is observed for the TGS 2610 and 2620. The time stability of each sensor also differs. For instance, the conductance of the TGS 822, 842 and 2610 increases continuously as a function of time, but the conductance of the TGS 880, 2620 and 2680 decreases and stabilizes after 19 months.
Univariate technique has been applied on these data. 
Figure 3 illustrates the drift compensation effect for the TGS 2620 by a multiplicative factor, q(t'), estimated from calibration measurements.

The multiplicative factor seems to be adequate to compensate the drift of this sensor.

In order to test the method performance with this calibration gas on off-odour measurements, linear discriminant analysis (LDA or linear fisher discriminant analysis) is applied for two different environmental odours: compost odour and printing house odour. Linear discriminant analysis (LDA) was used with 5 features (5 sensor conductance values) and 63 observations collected within a 22-month's period. Two classes were considered (compost class and printing house class). The Fisher-Snedecor F-ratio of intergroup/intragroup variances was chosen as a classification performance criterion. Higher the F value is, better is the separation of the classes (Table 1).
The major value of F (56) and consequently, the best separation between the printing house data set and the compost one, is obtained after the drift correction by individual multiplicative factor.

The worst performance is obtained after the "PCA sensor array" correction. The result is even worse (18) with the correction than without drift compensation (33).

3.2. Sensor replacement
The same TGS sensors of the two arrays, placed in the same operating conditions don’t have the same behaviour. Two identical sensors (same label) with the same history have different time stability. Figure 4 illustrates this observation for two TGS 2620.
Consequently, the replacement of an old or broken sensor by a new one, corresponds to having a new e-nose that requires new models of classification and quantification. The effect of a sensor replacement is shown on figure 5. After the replacement, a "jump" appears and a new drift behaviour is observed for the new "same" sensor.  
Figure 6 shows a PCA score-plot in the plane of the two first components. It concerns 260 observations, 3 classes (ethanol, background air and compost odour), 5 features (5 sensor conductance values) and a 2-year period. After the replacement of the sensors in the array with the same trade mark references, the previous calibrated model is no longer applicable for the same odorous emissions: all the observation points are shifted to another part of the diagram. 

Again, correction routines, including algorithms for handling shift, related to sensor replacement can be successfully applied. For the example, illustrated in figure 6, the classification performances were severely reduced after array replacement. The percentages of correct classification (LDA) were 40%, 100% and 33% respectively for ethanol vapour, background air and compost emission. After individual sensor correction (with the same procedure than for drift correction by individual multiplicative sensor), each classification rate reaches 100% (Table 2). 
The PCA score plot with the corrected data shows that the data obtained with the new array are moved closer together (Fig. 7). The Fisher-Snedecor value is also optimised after the correction (Table 3).
4. Conclusions

An important drift of TGS sensors are observed for a period of 7 years. In addition, the lack of manufacturing repeatability of these sensors implies a different behaviour of identical sensors with the same history. This represents a necessity to develop a new classification and regression models after few days of running or after sensor replacement (frequent in real atmosphere). But for off-odours field monitoring, the learning phase is fastidious, time consuming and consequently expensive. In fact, it looks even more efficient to buy a new instrument. 

To find an alternative, a study of a long time drift as well as the effect of sensor replacement has been carried out. Different solutions have been tested in order to compensate this problem. Finally, an easy and successful solution is proposed. A very simple method, a univariate multiplicative factor, exhibits the best results. Univariate sensor correction gives the best results for complex data like off-odours measurements. With real-life measurements, it is indeed very difficult to identify a single direction in a multivariate space that is only correlated to sensor drift. So, for each sensor, an individual multiplicative factor was calculated by estimating the drift slope for a calibration gas.

Even if this solution requires the use of a calibration gas every 3 months approximately; it permits to maintain the obtained models at the initial time. Taking into account the state of the art of the correction methods and the requirements for environmental use of the e-nose technology, this solution, is from our experience, the most advantageous. 
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Figures
Fig. 1 Conductance time evolution of the six tested TGS sensors during 3 years

Fig. 2 Conductance time evolution of the six tested TGS sensors during 7 years

Fig. 3 Drift correction of the sensor TGS 2620 by multiplicative factor estimated by calibration gas measurements
Fig. 4 Time evolution of two "identical" sensors (TGS 2620)
Fig. 5 "Jump" effect and new time evolution after the replacement of the old TGS 2620 by a new one
Fig. 6 Illustration, by a PCA score plot of the shift of the measurements after the replacement of the TGS sensors

Fig. 7 Replacement correction effect, illustrated by a PCA score plot of the measurements 
Tables

Table 1 Evaluation of the classification without correction or with correction models (by the F criterion, F-ratio of intergroup/intragroup variances).

Table 2 Classification results obtained after sensors replacement, with and without correction.

Table 3 F values obtained after sensors replacement, with and without correction.
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Fig.3
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Fig. 4
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Fig. 7
	Method
	F

	No correction
	33

	Correction by sensor (individual multiplicative factor)
	56

	Correction of the sensor array "PLS"
	26

	Correction of the sensor array "PCA"
	18


Table 1

	Source
	%age correct classification

Validation data (not used for the model learning)

	
	without correction
	with correction

	ethanol
	40
	100

	air
	100
	100

	compost
	33
	100


Table 2
Table 3

	Method
	F

	No correction
	155

	Correction by sensor (individual multiplicative factor)
	222
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