Internal Energy of Ions Produced in Electrospray Sources

Valérie Gabelica and Edwin De Pauw*

Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium.

Corresponding author: Edwin De Pauw. Tel: +32-4-3663415. Fax: +32-4-3663413. e-mail: e.depauw@ulg.ac.be

Running head: Internal energy of ESI ions

Keywords: internal energy, electrospray, soft ionization methods, collision-induced dissociation.
I. INTRODUCTION ........................................................................................................ 7

II. BRIEF OVERVIEW OF THE ELECTROSPRAY PROCESS .................. 9
    A. PRODUCTION OF CHARGED DROPLETS ......................................................... 9
    B. RAYLEIGH FISSION OF THE DROPLETS ....................................................... 10
    C. PRODUCTION OF DESOLVATED IONS .......................................................... 10

III. ELECTROSPRAY SOURCE DESIGN ........................................................... 11
    A. SUPERSONIC EXPANSION ............................................................................. 11
    B. SKIMMER SYSTEMS ..................................................................................... 12
    C. HEATED CAPILLARY CONFIGURATION ..................................................... 12

IV. INFLUENCE OF INTERNAL ENERGY ON THE APPEARANCE OF THE MASS SPECTRA: THEORY ................................................................. 13
    A. CHARACTERISTICS OF THE DISSOCIATION CHANNELS ................................. 13
    B. TIME SCALE OF THE EXPERIMENT ............................................................. 13
    C. ION INTENSITIES AS A FUNCTION OF THE INTERNAL ENERGY: THE BREAKDOWN GRAPH .............................................................................................................. 14
    D. INTERNAL ENERGY DISTRIBUTIONS $P(E)$ ................................................. 15
        1. Definition .................................................................................................... 15
        2. Influence on the breakdown graphs ......................................................... 15
        3. Limiting case 1: rapid energy exchange compared to dissociation .......... 16
        4. Limiting case 2: no more energy exchange during fragmentation .......... 16

V. ANALYTICAL ASPECTS OF ELECTROSPRAY SOURCE-CID, AND THE UNDERLYING ROLE OF INTERNAL ENERGY ........................................... 17
    A. STRUCTURE DETERMINATION BY SOURCE-CID ....................................... 17
        1. An alternative to MS/MS ................................................................. 17
        2. In-source CID for mass spectral library searching .................................. 18
    B. NONCOVALENT COMPLEXES ................................................................. 20
    C. INFLUENCE OF THE ENERGY RECEIVED IN THE SOURCE ON THE MS/MS SPECTRA ................................................................. 21

VI. DETERMINATION OF INTERNAL ENERGY IN ELECTROSPRAY 23
    A. DETERMINATION OF INTERNAL ENERGY DISTRIBUTIONS FROM THE MEASURED FRAGMENTATION EXTENT OF “THERMOMETER” IONS ................................................................. 23
        1. The “survival yield” method .................................................................... 23
2. Survival yield method including the kinetic shift ............................................ 26
3. The “characteristic temperature” method .......................................................... 27

B. MODELING OF INTERNAL ENERGY UPTAKE IN ELECTROSPRAY SOURCES ............. 28
   1. Supersonic expansion .................................................................................... 28
   2. Simulation of the ion optics .......................................................................... 30
   3. Internal energy transfer ................................................................................ 30

C. INTERNAL ENERGY OF ELECTROSPRAY-PRODUCED IONS: RESULTS .................... 32
   1. Influence of the orifice-skimmer voltage difference ..................................... 32
   2. Influence of the collision gas ....................................................................... 34
   3. Influence of the solvent .............................................................................. 36

D. COMPARISON WITH OTHER “SOFT” IONIZATION SOURCES ..................................... 36
   1. Particle bombardment .................................................................................. 36
   2. Atmospheric pressure chemical ionization (APCI) ........................................ 37
   3. Matrix-assisted laser desorption/ionization (MALDI) .................................... 37
   4. Are there softer ionization methods than electrospray? .............................. 39

VII. SUMMARY AND CONCLUSIONS ........................................................................ 42
The origin and the effects of the internal energy of ions produced by electrospray ionization (ESI) sources are reviewed. The ion internal energy has a crucial importance for the appearance of the mass spectra, notably on the nature and the abundance of the different fragments. A control of the internal energy is especially important for the successful use of electrospray mass spectral libraries. The softness of the ionization process is also a crucial issue for the study of weak non-covalent assemblies. We present different methods to experimentally determine the ion internal energy, as well as various attempts in modeling the internal energy uptake in electrospray sources. Evidence is provided that the multiple collision regime in the orifice-skimmer region results in Boltzmann-like internal energy distributions. Finally, a tentative comparison between electrospray and other ionization sources is made. Electrospray is doubtlessly softer than LSIMS, FAB, APCI and MALDI, but the question whether even softer ionization methods could exist or be conceived is also addressed.
Valérie Gabelica conducted her Ph.D. thesis on the study of non-covalent complexes by electrospray mass spectrometry under the direction of Prof. De Pauw (University of Liège) from 1998 to 2002. She spent one year (Oct. 2002-Sept. 2003) in the group of Prof. Karas (Universität Frankfurt, Germany), sponsored by the Alexander von Humboldt Foundation, working on internal energy aspects of ESI, MALDI and quadrupole ion trap CID. She is now back in the Mass Spectrometry Laboratory at the University of Liège as an FNRS post-doctoral research fellow, working on fundamentals and applications of MS to the study of biomolecular interactions.

Edwin De Pauw conducted his PhD thesis on the photochemistry of charge transfer complexes. His annexe thesis was focused on the application of Secondary Ion Mass Spectrometry to inorganic and organic molecular solids. After his thesis (1981), he spent one year in the group of F.W. Roellgen, thanks to a postdoctoral fellowship from the A. von Humboldt Foundation. Back in Liège University, he started working on Liquid SIMS in the Physical Chemistry Department where he obtained a permanent position in 1986. He spent five years as Research Scientist at the European Commission; first at Joint research Center (Environment Institute, 1987-1990), second at the Patent Office of the Commission (DG13, Luxembourg, 1990-1991). He came back at Liege University in 1991 as associate Professor and initiated the Mass Spectrometry Laboratory. He is the cofounder of the Center for the
analysis of residues at trace levels (CART, 1999) and its acting Director. He is member of the steering committee of the Genoproteomic Center (GIGA), responsible for the proteomic unit. He is Full Professor since January 2003.
I. INTRODUCTION

The internal energy of a population of ions has a controlling influence on its reactivity. Molecular ions are produced in the source of the mass spectrometer. The full scan mass spectra contain signals corresponding to the surviving molecular ions and the fragment ions formed in the source. The extent of fragmentation depends on the amount of internal energy received in the source. In electron impact (EI), the content of internal energy is high, leading to electronic and vibrational excitation of the ions. Electron impact spectra exhibit a large fragmentation extent as a consequence of fast unimolecular evolution of the primary ionic species. Moreover, as the kinetic energy of the ionizing electrons is precisely fixed (usually to 70 eV), and as the source is working at low pressure, the internal energy distribution of the ions is quite reproducible, whatever the instrument used. The EI spectra can therefore be compiled in databases. The application of EI is however restricted to compounds with a sufficient vapor pressure.

Many ionization methods have been developed to allow the production of gas phase ions from fragile compounds. Chronologically field desorption (FD), fast atom bombardment (FAB) and secondary ion mass spectrometry (SIMS), electrospray ionization (ESI) (Whitehouse et al., 1985; Yamashita & Fenn, 1984) and matrix-assisted laser desorption/ionization (MALDI) (Karas et al., 1987; Karas & Hillenkamp, 1988), have been developed to extend the field of application of mass spectrometry to non-volatile and thermolabile compounds. These methods are called “soft” because, when proper experimental conditions are used, intact molecular ions can be produced with minimal fragmentation. Alternatively, fragmentation can be induced on purpose, by changing the instrumental settings of the source. In electrospray, fragmentation is obtained usually by increasing the acceleration voltages in a medium pressure region after the droplet formation (see Section III). In MALDI, fragmentation (called post-source decay, or PSD) is induced by increasing the Laser power or by stronger acceleration of the ions through the plume. As in the case of classical ionization methods (EI, CI), structural information can be inferred from the interpretation of fragmentation patterns obtained for small and medium-size ions. Electrospray is also increasingly used for the study of noncovalent assemblies, and the interaction energetics can also be probed by fragmentation induced in the source.
The energetic characteristics of ion production and activation by electrospray ionization are however much less well defined as compared to electron impact. The ions need to cross a high-pressure region, where their internal energy can be modified, before they enter the mass analyzer. As a result, spectra may strongly differ upon experimental conditions (pressure, acceleration voltage, nature of the solution and of the gas phase). Multiply charged ions are commonly produced by ESI. Charge distributions can be shifted, non-covalent complexes can be destroyed, and fragmentation extent can be modified. This makes ESI-MS spectra difficult to compare and to reproduce. Powerful methods such as ESI and MALDI will only show their whole potential once the artifacts arising from the transfer of ions from solid phase or solution to low pressure gas phase of the analyzer will be fully understood. This paper reviews the efforts made to understand the activation processes of the ions upon emission and transfer in the electrospray sources.
II. BRIEF OVERVIEW OF THE ELECTROSPRAY PROCESS

The electrospray process is described in detail in several review papers (Amad et al., 2000; Cech & Enke, 2001; Cole, 2000; Gaskell, 1997; Kebarle, 2000; Kebarle & Peschke, 2000), and only the key features are given here.

A. Production of charged droplets

The solution containing the analyte is introduced in a capillary on which a high electric field is applied. The field causes an electrophoretic separation of the positive and negative charges in the solution. In the positive ion mode (when the capillary is set at positive potential), positive ions tend to move towards the counter-electrode and accumulate at the surface of the liquid at the tip. At a critical field, the meniscus at the tip deforms into what is called the “Taylor cone”, which continuously produces droplets enriched in positive ions. Reversing the polarity of the power supply can generate negatively charged droplets instead.

In practice, standard electrospray proceeds at flow rates of 1 to 100 µL/min. High flow rates are sometimes required when ESI is coupled with HPLC, depending on the column diameter. At such flow rates the production of the droplets has to be assisted by a coaxial sheath gas (heated or not) or by ultrasounds (Ikonomou, Blades, & Kebarle, 1991). These variants of electrospray sometimes bear different names, such as “ionspray”, “thermospray”, etc… The lower the flow rate, the lesser the need for spray assistance. Nanoelectrospray (Juraschek, Dülcks, & Karas, 1999; Wilm & Mann, 1996) (flow rate of a few nL/min) is the quintessence of electrospray: the electric field is sufficient to maintain the continuous production of charged droplets and no gas assistance is needed. The need for different names sometimes comes more from patent than from physico-chemical reasons. In the present paper, the term “electrospray” will be used to designate all electrohydrodynamic ionization methods (ionization by the application of a high electric field) on liquids infused through a capillary.
B. Rayleigh fission of the droplets

Solvent evaporation occurs due to collisions with a neutral gas (heated or not). The radius of the droplet decreases at constant charge until the so-called Rayleigh limit, where the Coulombic repulsion between the charges overcomes the surface tension (Gomez & Tang, 1994; Kebarle, 2000). This leads to the Coulomb fission of the droplet: small offspring droplets are produced that carry about 2% of the mass and 15% of the charge of the parent droplet. As evaporation carries on, the daughter droplets undergo fission themselves. This is at the origin of the very rapid reduction in size and charge of the droplets.

C. Production of desolvated ions

Two mechanisms are usually supposed to account for the production of desolvated ions in the gas phase: the ion evaporation mechanism, proposed by Iribarne and Thomson (Iribarne, Dziedzic, & Thomson, 1983; Iribarne & Thomson, 1976; Thomson & Iribarne, 1979) and the charged residue mechanism proposed by Dole (Dole, Mack, & Hines, 1968). Historically, these models had been proposed before the droplet fission scheme presented in the above section was established. With the current level of understanding, the two models can be restated as follows (Kebarle, 2000):

- **Ion evaporation mechanism (IEM):** At an intermediate stage in the droplet's lifetime (critical radius larger than the Rayleigh limit), the electric field on the surface of the droplet is sufficiently high so that solvated ions are emitted (evaporated) directly from the charged droplets.

- **Charged residue mechanism (CRM):** The charged residue model assumes that the series of droplet fission events leads to a final droplet containing a single analyte molecule (Schmelzeisen-Redeker, Bütfering, & Röllgen, 1989). The last solvent molecules evaporate until the ion is completely desolvated.

It is currently generally admitted that small ions (salts,...) are produced predominantly by the ion evaporation mechanism (Gamero-Castaño & Fernandez de la Mora, 2000a; Kebarle & Tang, 1993; Wang & Cole, 2000), while large globular proteins are produced via the charged residue mechanism (Cole, 2000; Gamero-Castaño & Fernandez de la Mora, 2000b). However, Iavarone and Williams (Iavarone
& Williams, 2003), based on the solvent-dependent extent of charging, have provided evidence that even small ions were produced by the charged residue mechanism. This lively debate is therefore far from over.

III. ELECTROSPRAY SOURCE DESIGN

Electrospray is an atmospheric pressure source, but the mass spectrometer must be operated at low pressures ($10^{-3}$ to $10^{-10}$ Torr, depending on the analyzer). The pressure is usually reduced in multiple stages (differential pumping), the different vacuum chambers being separated by small orifices, cones, or capillaries (Figure 1a-e). Two processes have a great influence on the ion internal energy at this stage. First, supersonic expansion, which is inherent to differential pumping stages separated by small orifices, increases the axial component of the ion velocity and decreases the internal energy. Second, voltage differences in the intermediate pressure region are responsible for acceleration of the ions and/or of the charged droplets. Subsequent collisions with neutral gas causes droplet evaporation, but also ion activation (increase of internal energy). The electrospray source design is therefore crucial for internal energy build-up.

A. Supersonic expansion

Only a qualitative description of supersonic expansion (Bruins, 1997) is intended here. When a gas flows from a reservoir at pressure $P_0$ into a low-pressure region at pressure $P_1$ through a small orifice of diameter $D_o$, and if $D_o$ is larger than the mean free path in the reservoir, then the collisions in the orifice give the gas a supersonic axial velocity. Molecules in this “silent zone” are shielded from the external medium by a shock wave (barrel shock laterally, and Mach disk in front) (Figure 1f). The distance from the orifice to the Mach disk ($X_M$) is given by:

$$X_M = 0.67 D_o (P_0/P_1)^{1/2}$$  \hspace{1cm} (1)

$X_M$ can range from a few millimeters to several centimeters in heated capillary sources. In supersonic expansion, the axial velocity is increased at the expenses of the
radial velocities. At the level of the shock waves (transition between the silent zone and the exterior), the velocities are re-randomized by collisions.

**B. Skimmer systems**

Different kind of sampling items can be used (Bruins, 1997): the orifice can be placed in a flat disk, at the top or at the bottom of a cone (Figure 1a-e). Skimmers (cone-shaped metal pieces) are used to sample ions that exit the orifice as a supersonic jet (Campargue, 1984; Pertel, 1975). The electric field caused by the voltage difference between the orifice and the skimmer accelerates the ions through the gas. Collisions of the analyte with the gas increase the ion internal energy. Both the sampling efficiency and the nature of the sampled ions depends on the position of the skimmer relative to the Mach disk. If it penetrates in the silent zone (Figure 1g), the sampling efficiency is greater than if located beyond the Mach disk (Figure 1h), due to the large axial component of the velocity in the silent zone. However, ions are colder in the silent zone, and non-fully desolvated droplets, or clusters formed by condensation upon supersonic expansion are more likely to be sampled, which is detrimental to the analytical performances. Beyond the Mach disk, ion trajectories are re-randomized by collisions with the surrounding gas, and ions are warmed up. Ion sampling by skimmers located beyond the Mach disk (Figure 1h) is therefore less efficient, but desolvation and declustering is more effective. In most commercial instruments, additional focusing items (tube lens, focusing ring, or focusing cone) are placed between the orifice and the skimmer, to redirect the ions towards the skimmer and increase sensitivity (Figure 1i-k). These focusing items also accelerate the ions and therefore modulate collisional activation.

**C. Heated capillary configuration**

In 1990, Chait et al. (Chowdhury, Katta, & Chait, 1990) developed another alternative: ions are transferred from atmospheric pressures to vacuum through a heated stainless steel capillary (Fig. 1e). The temperature of the heated capillary is one more degree of freedom to modulate the internal energy of ions (Busman, Rockwood, & Smith, 1992; Garcia et al., 2001; He et al., 1999; Meot-Ner (Mautner) et al., 1995; Penn et al., 1997b; Rockwood et al., 1991). Some authors (Busman, Rockwood, & Smith, 1992; He et al., 1999; Rockwood et al., 1991) tried to infer
Arrhenius parameters from the temperature dependence of the fragmentation extent. However, arguments will be presented in this paper which show that this kind of data treatment is not meaningful for quantitative thermochemical studies.

IV. INFLUENCE OF INTERNAL ENERGY ON THE APPEARANCE OF THE MASS SPECTRA: THEORY

Theoretical considerations which are important for the understanding of the discussions in the following sections are summarized below. For a more detailed discussion, the reader is encouraged to refer to the tutorial article of Vékey (Vékey, 1996). The discussion below is based on an electrospray-single stage mass analyzer (ESI-MS) configuration, and for a single analyte ion fragmenting via two competing channels. The appearance of the mass spectrum depends on different parameters.

A. Characteristics of the dissociation channels

The dissociation rate constant $k$ of an ion depends on its internal energy $E$ (Figure 2a). The internal energy of an ion is its total energy above its electronic, vibrational and rotational ground state. The dependency of $k$ versus $E$ can be described by the RRK or the RRKM theories of unimolecular dissociations (Baer & Mayer, 1997; Forst, 1973; Gilbert & Smith, 1990; Steinfeld, Francisco, & Hase, 1999). Starting at the threshold energy $E_0$, the dissociation rate increases with internal energy, and different dissociation pathways are characterized by different $k(E)$ curves. The shape of $k(E)$ depends on the potential energy surface along the reaction coordinate. Usually, a cleavage reaction displays a steeper rise in $k(E)$ than a rearrangement reaction. For a molecule which shows both kind of fragmentation, it happens very often that these curves cross at some point. Two such curves are shown in Figure 2a.

B. Time scale of the experiment

The fragmentation extent depends on the dissociation rate, and on the time after which the system is sampled (Pertel, 1975; Vékey, 1996). The ratio between the intensity of the parent ion after a time $\tau$ ($I_M$) and the intensity of the parent ion at $\tau = 0$ ($I_{M,0}$, often assumed to be equal to $I_M + \sum I_{\text{fragments}} = I_{\text{tot}}$) is given by:
The ratio $I_{M}/I_{M,0}$ is often called the “survival yield” of the parent ion. $k(E)$ is the dissociation rate constant which depends on the internal energy as shown above, and $\tau$ is the time scale of the experiment (the time after which the system is sampled, equal to the time allowed to fragment). In some cases $\tau$ can be chosen by the experimentalist (like for example in quadrupole ion trap or in FTICR MS/MS experiments), but in the case of ion dissociation in the electrospray source, $\tau$ is equal to the flight time of the ions between the source and the entrance of the mass analyzer, and therefore depends on the hardware configuration of the instrument and on the voltages applied.

The shorter the time scale $\tau$, the larger the dissociation rate must be for a fragment to be observed, and the higher the internal energy must be in order to reach that minimum rate. Let us assume for example that a fragment is detected if its intensity is $\geq 1\%$ of that of the parent ion (i.e. if $I_{M}/I_{M,0} \leq 0.99$). Therefore the rate constant $k$ must be $\geq 0.01/\tau$. If $\tau = 1$ s, then the threshold $k_1$ is $10^{-2}$ s$^{-1}$, and if $\tau = 10^{-4}$ s, then the threshold $k_2$ is $10^2$ s$^{-1}$. These two thresholds are represented by horizontal lines in Figure 2a, corresponding to two hypothetical instruments (instrument 2 having a shorter time window than instrument 1). The minimum internal energy necessary for a fragment to be observed is called the apparent threshold for fragmentation. The energy difference between the true threshold and the apparent threshold is called the “kinetic shift” (Lifshitz, 1982).

**C. Ion intensities as a function of the internal energy: the breakdown graph**

A breakdown graph is a plot of the relative intensities of the parent and the fragment ions as a function of the internal energy of the parent ion. Here, all ions are assumed to have the same internal energy $E$. The relative intensities of the parent ion M, the rearrangement fragment R and the cleavage fragment C are given by:

\[ I_{M}/I_{tot} = e^{-\Sigma k, \tau} \]  
\[ I_{R}/I_{tot} = (k_{R}(E)/\Sigma k)(1-e^{-\Sigma k, \tau}) \]  
\[ I_{C}/I_{tot} = (k_{C}(E)/\Sigma k)(1-e^{-\Sigma k, \tau}) \]  
\[ \Sigma k = k_{R}(E) + k_{C}(E) \]
The breakdown graph calculated for instrument 1 \((\tau = 1 \text{ s})\) using the \(k(E)\) curves of Figure 2a is displayed in Figure 2b. A given fragment is observed if its rate constant is larger than the threshold \(k_1\) (horizontal line 1). If the internal energy \(E\) is lower than \(E_{1,R}\), no fragment is observed. If \(E_{1,R} < E < E_{1,C}\), only a rearrangement product can be observed, as curve C is still below line 1. The cleavage product starts to appear at \(E \geq E_{1,C}\). The rearrangement product R is the most abundant until the energy \(E_{R=C}\) (at which the two \(k(E)\) curves cross) is reached. At energies \(E > E_{R=C}\), the cleavage reaction is faster than the rearrangement, and product C becomes predominant. If instrument 2 \((\tau = 10^{-4} \text{ s})\) is used instead of instrument 1, higher ion internal energies are needed for the fragments to be observed (Figure 2c), and cleavage products are now favored at all energies, as the apparent threshold \(E_{2,C}\) is smaller than \(E_{2,R}\).

We therefore see than the breakdown graph depends on the time scale of fragmentation (and therefore on the instrument chosen). The range of internal energies of analytical significance (to have a measurable fragmentation extent, i.e. between 1% and 99%) is closely linked to the instrument time scale. For a given time scale, the breakdown diagram, when expressed as a function of the internal energy \(E\), is unique for each molecule.

**D. Internal energy distributions \(P(E)\)**

1. **Definition**

When considering a ensemble of molecules, in most cases they do not all have the same internal energy \(E\). The internal energy distribution \(P(E)\) is a function which describes the probability of a molecule having a particular energy \(E\). The distribution \(P(E)\) is normalized to unity.

2. **Influence on the breakdown graphs**

The ion ratios defined by the breakdown graph should therefore be weighted by the probability of the ion having that particular energy. A distribution \(P(E)\) is modulated by all energy input (collisional activation, photon absorption) or energy output (collisional cooling, photon emission) events. Moreover, the dissociation of ions depletes the ion population at energies higher than the threshold. The distribution
\( P(E) \) is therefore changing in time, which in turn influences the observed dissociation rate. Detailed modelling of the activation/deactivation and dissociation processes by random walk simulations or master equation are therefore required (Drahos & Vékey, 2001; Dunbar, 1996; Dunbar & McMahon, 1998; Price & Williams, 1997). Two interesting limiting cases are described below, where the breakdown curves can still be predicted by a simple models, but it must be kept in mind that reality might be more complicated.

3. Limiting case 1: rapid energy exchange compared to dissociation

In that case, \( P(E) \) is determined by the equilibrium established by activation and deactivation events, but is not perturbed by the negligible contribution of the dissociation (Dunbar & McMahon, 1998; Price & Williams, 1997; Vékey, 1996). Moreover, the internal energy distribution \( P(E) \) takes the form of a Boltzmann distribution, and can be characterized by a temperature. The observed dissociation rate constant \( k_{\text{obs}} \) is the average of the unimolecular rate constant \( k(E) \) over the energy distribution \( P(E) \):

\[
k_{\text{obs}} = \int_0^\infty P(E) k(E) \, dE
\]

In practice, the temperature dependence of the rate constant can be fitted with the Arrhenius equation \( k = A \exp(-E_a/k_B T) \). It can be demonstrated that, in the rapid energy exchange limit, \( E_a \) is equal to the threshold \( E_0 \), which is extremely useful for thermochemical studies. This limiting case is applicable only in cases where there is continuous activation and deactivation during the time allowed for fragmentation.

4. Limiting case 2: no more energy exchange during fragmentation

This limiting case is particularly relevant to fragmentation in ESI-MS. It is assumed that the internal energy distribution is built up in the high-pressure region of the source. No fragmentation is supposed to occur yet at this stage. Once the ions pass the skimmer and travel in the low-pressure region, the ion internal energy distribution is assumed not to change anymore. The time allowed for the ions to fragment is the time elapsed during the trajectory from the skimmer to the entrance of the analyser.
The ion abundances are therefore weighted by the probability $P(E)$ of the ions having a particular internal energy $E$. The total abundance of ion formed or destroyed is calculated by an integral over all possible energies. For a molecule $M$ which gives a single fragment $F$ with a single rate constant $k(E)$ (for sake of simplicity), the ion intensities are given by:

$$I_{M}/I_{tot} = \int_{0}^{\infty} P(E) e^{-k(E)\tau} \, dE$$  \hspace{1cm} (8)

$$I_{F}/I_{tot} = \int_{0}^{\infty} P(E) (1-e^{-k(E)\tau}) \, dE$$  \hspace{1cm} (9)

V. ANALYTICAL ASPECTS OF ELECTROSPRAY SOURCE-CID, AND THE UNDERLYING ROLE OF INTERNAL ENERGY

A. Structure determination by source-CID

1. An alternative to MS/MS

Collision-induced dissociation spectra are usually obtained by MS/MS: the parent ion is selected, collided with a neutral gas, and the fragment ion spectrum is recorded. However, it has very early been recognized that collisional dissociation could be induced in the electrospray source by increasing the different acceleration voltages (Loo, Udseth, & Smith, 1988; Smith & Barinaga, 1990). Different names for this process have been given by users and manufacturers: nozzle-skimmer fragmentation, cone-voltage fragmentation, skimmer-CID,… In the present paper, this is will be referred to as “source-CID”. The disadvantage is that the parent ion is not selected. Rather, all ions emitted by the electrospray source undergo collisional activation, and all the fragments are collected in the same mass spectrum. Nevertheless, ion selection is not always required, for example in the analysis of pure, or HPLC-separated analytes. Chait et al. (Agnes & Horlick, 1995) successfully demonstrated this approach for peptide sequencing. Source-CID avoids any requirement for real-time data-dependent scanning softwares, as required for automated MS/MS. A simple ramp
of voltages can be applied between the different skimmers and lenses to produce various amounts of fragments during analyte elution.

Structure determination is made by the analysis of the nature and the abundance of the fragments issued from CID. Interestingly, electrospray source-CID sometimes gives different fragments than other CID methods. To illustrate this point, we show here an example of isomer differentiation by electrospray. Laprévote et al. (Laprévote et al., 1996) reported high-energy (keV) CID, LSIMS, and electrospray source-CID of indoloquinolizidine stereoisomers (Figure 3). The high-energy collision MS/MS spectra obtained on a sector instrument are highly reproducible, and give a fingerprint of the compound structure due to extensive fragmentation of the backbone, but are insensitive to the stereochemistry of the compound (Fig. 3b). LSIMS spectra also show extensive fragmentation (Fig. 3c) In contrast, in electrospray source-CID (Fig. 3d), the trans- isomer readily looses ammonia to give the fragment at \( m/z \) 225, while the cis- isomer is protected by intramolecular hydrogen bonding. Electrospray source-CID therefore favors different fragmentation pathways than high-energy (keV) MS/MS, of LSIMS mass spectra, which allow stereochemical differentiation.

This can be understood in the framework of typical breakdown graphs shown in Figures 2b and 2c. In high-energy CID MS/MS, cleavage products are favored. The situation is closer to Figure 2c. However, in electrospray source-CID, the time scale and the internal energy scale are different, and closer to the case of Figure 2b. The rearrangement reaction, which is sensitive to ion stereochemistry, can now be favored if very gentle activation conditions are used. Electrospray source-CID therefore proceeds on a longer time scale and at lower mean internal energies than MS/MS collision-induced dissociation in the keV range. Several authors have indeed shown that the breakdown curves obtained in source-CID are quite similar to those obtained in MS/MS in quadrupole collision cells (laboratory kinetic energy range: 10-100 eV) (Harrison, 1999a; Harrison, 1999b; van Dongen et al., 1999).

2. In-source CID for mass spectral library searching

In order to perform compound identification by library searching, the experimental and the library spectra must be as similar as possible. It is therefore crucial that equivalent source conditions are used for constructing the library and for recording the experimental spectra. More importantly, the libraries should be exportable, i.e.
they should be valid for any instrument. This is more difficult to achieve, for different
instruments have different source configurations (see Section III), and therefore a
given voltage on one source is not equivalent to the same voltage on another source in
terms of resulting ion activation. Moreover, an inter-laboratory comparison has shown
that significantly different spectra can be obtained on several instruments of the same
type (Bogusz et al., 1999). A calibration of the source conditions may therefore be
required for each instrument (not only each instrument type).

Different strategies for library generation and library searching of electrospray source-
CID mass spectra have been developed (Bristow et al., 2002; Hough et al., 2000;
Weinmann et al., 1999; Weinmann et al., 2001b; Weinmann et al., 2001a), but all are
based on the same principles. One or several tune compounds is(are) chosen, for
which the electrospray mass spectra are recorded at various acceleration voltages for
each instrument. The breakdown curves (relative intensities as a function of the
voltage difference between the sampling device and the skimmer) are constructed.
The breakdown curves are usually found to have the same overall shape (which
indicates a similar time scale on the different instruments), but the x-axis (voltage)
may be offset from one instrument to another. An example is shown in Figure 4.
Usually three different voltages are chosen, corresponding to low, medium, and high
fragmentation. The breakdown curves are used to find out the corresponding voltages
on the other instruments. This is a relatively simple empirical calibration of the
electrospray mass spectra. With this method, three different libraries corresponding to
the three different fragmentation conditions have to be built and searched (one for
each voltage).

One of the problems is that the voltages that correspond to low, mid or high
fragmentation yields vary with the compound: the fragmentation threshold increases
with the mass, so that higher voltages are requires to fragment larger ions (Griffin &
McAdoo, 1993). To overcome this problem, Lips et al. (Lips et al., 2001) used a
mass-dependent ramped voltage during the mass scan in order to generate their drug
library. Another important point is that the CID spectra should be highly informative
in order to provide a fingerprint that allows unambiguous compound identification
with the library. Marquet et al. (Marquet et al., 2000) therefore used a different
approach to generate information-rich libraries: for each drug, they recorded a pair of
spectra in the positive ion mode in soft and hard conditions (orifice voltages on their
API 100: +20 V and +80 V), and a pair of negative ion spectra (-20 V and –80 V). These reconstructed spectra (sum of the spectra in soft and hard conditions) showed at least as many fragments as MS/MS spectra, and sometimes as many as electron-ionization spectra. Two libraries are generated: one for positive ions and one for negative ions.

For such applications, a experimental calibration of the internal energies of ions produced in different experimental conditions (instrument configuration, voltages, pressure(s), solvent), or better, predictive tools to estimate ion internal energies in given conditions, would be extremely useful.

B. Noncovalent complexes

Another field in which source-CID is widely used is for the investigation of noncovalent complexes (Gabelica et al., 2000; Hunter, Mauk, & Douglas, 2000; Light-Wahl, Schwartz, & Smith, 1994; Ramanathan & Prokai, 1995; Rogniaux et al., 1999; Rostom et al., 2000) Source-CID allows the study of very large complexes, even when the $m/z$ ratios are too high to be selected for MS/MS (Rostom et al., 2000). The energy necessary to dissociate the complexes is a measure of the gas-phase stability, and is often quantified by a parameter like $V_{50}$, the voltage at which 50% of the complex is fragmented (Gabelica et al., 2000; Rogniaux et al., 1999). An alternative to “skimmer dissociation” is “heated capillary dissociation”, or HCD, where the dissociation of the complex is monitored as a function of the capillary temperature (Garcia et al., 2001; He et al., 1999; Penn et al., 1997b).

The comparison between source-CID spectra and MS/MS spectra obtained with different fragmentation time and energy ranges gives some clues on the time and energy range accessed in electrospray source-CID. This is shown in Figure 5 for the DNA duplex d(CGCGGGCCCGCG)₂, which fragmentation shows an exquisite sensitivity to the internal energy (Gabelica & De Pauw, 2002). Source-CID spectra have been obtained on a Finnigan LCQ mass spectrometer (source configuration: see Fig. 1i), by either increasing the capillary temperature (Fig. 5a), the acceleration due to the tube lens (Fig. 5b), or the voltage difference between the capillary and the skimmer (Fig. 5c). The fragmentation pattern is similar to that obtained in MS/MS on a quadrupole-TOF instrument, while quadrupole ion trap MS/MS spectra acquired with the Finnigan LCQ (time scale $\geq$ 3 ms) show much less direct bond cleavages and
much more base loss, which comes from a rearrangement reaction (Gabelica & De Pauw, 2002). This suggests that the dissociation time scale in source-CID is below the millisecond. It also suggests that, whatever the source of internal energy (increase of the capillary temperature or collisions between the capillary and the skimmer), the resulting mass spectra are very similar, suggesting that the dissociation takes place on the same time scale. This invalidates the approach for the determination of dissociation thresholds based on the Arrhenius treatment of dissociation rates as a function of the heated capillary temperature. As explained in Section IV-D, this is valid only in the rapid energy exchange limit (limiting case 1), i.e. if the dissociation would take place in the heated capillary only, and much slower than activation and deactivation. The fact that the HCD spectra are similar to the source-CID spectra rather suggest that the dissociation takes place after the ions leave the capillary, and probably after they pass the skimmer (limiting case 2).

C. Influence of the energy received in the source on the MS/MS spectra

The literature provides many examples where the nature of the ionization source, or the source-CID conditions do influence the MS/MS spectra. Several studies (Boschenok & Sheil, 1996; Kilby & Sheil, 1993; Smith & Barinaga, 1990) have shown that the higher the acceleration voltage in the source, the lower the collision energy has to be in order to achieve the same fragmentation extent. In other words, unless they are thermalized like in an ion trap analyzer, ions keep a memory of the internal energy they received in the source. What has been given in the source is not remaining to be added in the collision cell.

Comparative studies of several ionization sources on a same instrument are also enlightening on their relative hardness/softness. MS/MS spectra of compounds containing long aliphatic chains usually show only even-electron fragments when the ions are produced by particle bombardment methods (LSIMS or FAB), while radical fragments show up only for ESI-produced ions (Cheng, Pittenauer, & Gross, 1998; Seto et al., 2001). Bourcier et al (Bourcier et al., 2001) have shown that 1,4-benzodiazepine ions rearranged when produced by particle bombardment, and not when produced by electrospray ionization. Burinsky et al (Burinsky et al., 2001) have compared the fragmentation of 4-azasteroid and related compounds produced by electrospray and atmospheric pressure chemical ionization (APCI): the MS/MS of
dutasteride [MH]$^+$ shows different fragmentation pathways, depending on the source. The authors attribute this behavior to differences in ion populations, either in structure (isomerization) or in internal energy distributions. The usual trend is that the electrospray-produced ions show a higher fragmentation threshold than if produced by other sources. This is attributed to a lower internal energy content in electrospray ionization. However, the opposite trend has been observed by Danell and Glish (Danell & Glish, 2001), who showed that peptide ions formed by nanoelectrospray had lower BAD (boundary-activated dissociation in a quadrupole ion trap) thresholds than ions formed by LSIMS. It must however been stressed that, in trapping cells like quadrupole ion traps or FTICR cells, ions are thermalized by collisions or photon emission, while this is not possible in beam-type instruments due to different pressure and time scale. The lower BAD onsets rather indicate that rearrangement has occurred in LSIMS-produced ions, and that ions were then cooled down to a lower energy minimum in the potential energy surface. In conclusion, compared to ionization techniques like LSIMS, FAB and APCI, electrospray minimizes ion fragmentation and internal rearrangements, and can be considered as softer.
VI. DETERMINATION OF INTERNAL ENERGY IN ELECTROSPRAY

A. Determination of internal energy distributions from the measured fragmentation extent of “thermometer” ions

As we have seen in Section IV, there is an inter-dependency between (i) the ion dissociation rate, (ii) the ion internal energy $E$ or internal energy distribution $P(E)$, (iii) the time scale of the experiment, and (iv) the relative intensities of the parent and fragment ions. In principle, knowing three of these parameters allows to infer information on the fourth one. For example, in Section IV, we have shown how to calculate the ion intensities by a convolution of the rate constant $k(E)$ by the internal energy distribution $P(E)$. However, mathematically, the deconvolution procedure to infer the function $P(E)$ from the breakdown curves and $k(E)$ is not so simple, due to the fact that both $k(E)$ and $P(E)$ have a complex dependency on the energy. The simplest way to solve the problem is to characterize either the rate constant or the internal energy distribution by a single parameter instead of their whole distribution as a function of $E$. These procedures and the underlying approximations are described below.

1. The “survival yield” method

The basic assumption in this approach is that all ions having an internal energy below the dissociation threshold $E_0$ do not dissociate (are observed as intact parent ion), while all ions having an internal energy above the dissociation threshold do dissociate (are observed as fragments). In other words, the rate constant is supposed to be equal to zero below the threshold (no dissociation), and infinitely large above the threshold (complete dissociation). The full dependence of the rate constant on the internal energy is therefore characterized by a single parameter: $E_0$. The survival yield ($SY$) of the parent ion ($I_M/I_M^+\Sigma I_{\text{frag}}$) is equal to the fraction of the ions that have an internal energy below the threshold, i.e. to the integral below the internal energy distribution $P(E)$ from $E = 0$ to $E = E_0$. If the function $SY(E)$ is the integral of the function $P(E)$, then $P(E)$ can be found by derivation of $SY(E)$. One therefore needs a single ion, or a set of ions having the same internal energy distribution, showing different
fragmentation thresholds. These ions for which the values of $E_0$ are known are often called “thermometer” ions.

This approach has been originally developed in the 1980’s (Cooks et al., 1990; Kenttämaa & Cooks, 1985; Wysocki, Kenttämaa, & Cooks, 1987), using thermometer ions which fragment successively via a reaction sequence:

$$\begin{align*}
M^+ & \rightarrow F_1^+ & F_1^+ & \rightarrow F_2^+ & F_2^+ & \rightarrow F_3^+ & \rightarrow \ldots \\
E_0(1) & & E_0(2) & & E_0(3) & & \text{...}
\end{align*}$$

The thermometer ions were (C$_2$H$_5$)$_4$Si$^{+*}$, Fe(CO)$_5$$^{+*}$, and W(CO)$_6$$^{+*}$, for which the various thresholds are known. Tetraethylsilane has been used by Voyksner and Pack (Voyksner & Pack, 1991) for the determination of internal energy distribution in electrospray. Unfortunately these authors did not mention whether they studied the radical cation or the protonated ion. Indeed, these thermometer ions are more suited to electron impact or photoionization sources.

For the investigation of soft ionization techniques (initially FAB and LSIMS, and later electrospray ionization), another set of compounds has been proposed in the early 1990’s (De Pauw et al., 1990; Derwa, De Pauw, & Natalis, 1991), consisting of substituted benzylpyridinium salts (Figure 6). Those compounds have been chosen for their very simple fragmentation mechanism, consisting in the loss of neutral pyridine to give the benzyl cation as the only fragment. As the compounds have similar masses, structures, and number of degrees of freedom, they are supposed to have the same internal energy distribution. Calculation with the characteristic temperature method (see Section VI-A-3) have confirmed the validity of this assumption in the case of the benzylpyridinium ions. For the calculation of the fragmentation thresholds $E_0$, it is assumed that the fragmentation proceeds without a reverse barrier, which is likely to be the case in such a simple bond cleavage. Energy barrier for fragmentation can therefore be calculated as the energy difference between the zero-point energy of the products and the zero-point energy of the reactant.

The different substituents are listed in Table 1, together with their corresponding fragmentation thresholds obtained at different levels of approximation. The threshold values used in the early papers (Collette et al., 1998; Collette & De Pauw, 1998; De Pauw et al., 1990; Derwa, De Pauw, & Natalis, 1991) are the result of rough calculations and approximations. However the fragmentation extent in given
experimental conditions does not always correlate very well with these threshold values. The thresholds have been recalculated more recently by AM1 (semi-empirical), *ab initio* SCF 6-31G*, and B3LYP 6-31G (DFT). The higher the threshold, the higher will be the mean internal energies calculated using these values. AM1 and *ab initio* methods give threshold values with better agreement with the observed survival yields, and the latter is supposed to give more accurate absolute values.

In our most recent work (Gabelica, De Pauw & Karas, manuscript in preparation), we used the six para-substituted molecules, with the re-calculated AM1 thresholds, for investigating the shape of the internal energy distributions. The advantage of using only para-substituted molecules is that all compounds can be injected simultaneously, which is a guarantee that all survival yields are measured in the same experimental conditions. The masses of the substituents are different enough for the various parent and fragment ions to be distinguished easily. The procedure is illustrated in Figure 7. The survival yields of each molecule are calculated from the relative intensities in the mass spectra (Fig. 7a) and plotted as a function of the threshold (Fig. 7b). Two more points are added manually, expressing that no parent ion would survive if the threshold is equal to zero, and that all parent ion would survive if the threshold is very large. As explained in the first paragraph, the internal energy distribution is obtained by the derivation of $SY(E)$. In order not to bias the outcome of the result, the rigorous procedure would be to calculate manually the derivate of these few experimental points, i.e. the coordinates of $P(E)$ are given by equations (10) and (11). N experimental points plus two additional points give N+1 points representative of the internal energy distribution, as shown in Figure 7c.

\[
\text{Ordinate} = \frac{SY(N+1)-SY(N)}{E_0(N+1)-E_0(1)} \quad (10)
\]

\[
\text{Abscissa} = \frac{E_0(N)+E_0(N+1)}{2} \quad (11)
\]

Figure 7c shows a very favorable case for which (1) the survival yields rank correctly with the thresholds (otherwise some of the derivates would be negative) and (2) the points are well spread between $SY = 0$ and 1, and therefore the internal energy distribution is well-characterized. It is clear from Figure 7a that, at voltages $\leq 40$ V, or $\geq 80$ V, the internal energy distribution becomes ill-defined. For these two reasons, the derivate is often made not directly from the experimental points, but on a fitting of
these experimental points (Collette et al., 1998; Collette & De Pauw, 1998; Collette, Moenen, & De Pauw, 1998), as shown by the dashed lines in Figures 7b and 7c. While it is clear that the internal energy distribution always presents a gaussian-like overall shape, it must nevertheless be emphasized that the detailed shape of the resulting $P(E)$, especially at the edges, is influenced by the choice of the equation for fitting the survival yields curve, which is an arbitrary choice belonging to the experimentalist.

2. Survival yield method including the kinetic shift

The survival yield method as described above does not take into account the kinetic shift, and is therefore not at all quantitative. It must be recognized that, at the true threshold $E_0$, the rate constant is too slow for the reaction to be observed within the time scale of the experiment. Actually higher energies than $E_0$ must be achieved for the fragment to be observed, and true internal energy distributions have a higher mean internal energy than determined by the original survival yield method. A simple way to account for the influence of the kinetic shift has been proposed by Collette et al. (Collette et al., 1998): the true threshold $E_0$ is replaced by the appearance threshold $E_{app}$, which is the energy at which the rate constant for the dissociation is equal to $1/\tau$, $\tau$ being the time scale of the experiment. This approach therefore requires the computation of the rate constants as a function of the internal energy using RRKM equation (Hase, 1998; Lorquet, 2000; Steinfeld, Francisco, & Hase, 1999; Vékey, 1996). It must be noted that this treatment of the kinetic shift is slightly different from its traditional definition, which is usually related to threshold measurements, as explained in Section IV. Nevertheless, this is a convenient method for making the internal energy distribution determination more quantitative.

As a short conclusion on the survival yield method, it is well-suited for the investigation of the shape of the internal energy distributions. It is also well suited to tune experimental conditions on a given instrument. However, the quantitative determination of the mean internal energy depends greatly on the calculation level of the threshold, and on how accurately the kinetic shift effect is taken into account. The latter requires the determination of $\tau$, by modeling of the ion trajectory in the instrument (see below), and the calculation of $k(E)$ by RRKM method.
3. The “characteristic temperature” method

Using the “survival yield” method, it has been observed that the internal energy distributions were qualitatively similar to thermal energy distributions (Collette et al., 1998; Collette & De Pauw, 1998). It is therefore convenient to characterize the internal energy distribution by a single parameter called the “characteristic temperature”. \( T_{\text{char}} \) is the temperature of the Boltzmann internal energy distribution which would give the same fragmentation extent as observed experimentally. It is similar to the “effective temperature” concept, but the latter is often associated to the kinetic method (Drahos & Vékey, 1999b; Ervin, 2000). In addition to being mathematically convenient, the characterization of \( P(E) \) by a temperature-like parameter is also physically sound. As ionization proceeds at atmospheric pressure, excitation occurs via many collisions. The internal energy distribution produced is often similar to a thermal distribution, despite the fact that the ion is not strictly at thermal equilibrium with a bath gas (\( T_{\text{char}} \) is different from \( T_{\text{gas}} \)).

Theoretical survival yields are calculated as a function of the temperature using equation (12)

\[
SY(T) = \frac{I_M(T)}{[I_M(T)+I_F(T)]} 
\]  

(12)

\( I_M(T) \) and \( I_F(T) \) are calculated using equations (8) and (9), where \( P(E) \) is replaced by the Boltzmann energy distribution at temperature \( T \):

\[
P(E;T) = \frac{N(E)\exp(-E/k_B T)}{\int_0^\infty N(E)\exp(-E/k_B T)\,dE} 
\]  

(13)

where \( N(E) \) is the density of states at the energy \( E \), \( k_B \) is the plank constant, and \( T \) is the temperature of the Boltzmann energy distribution. The characteristic temperature is the temperature for which the calculated survival yield is equal to the observed survival yield.

On the contrary to the “survival yield” method, the “characteristic temperature” method takes explicitly into account the energy dependence of \( k(E) \) and the effect of the time scale of the experiment \( \tau \). Some refinements can be introduced in the case of quadrupole mass spectrometers, where two different time scales have to be considered. For the parent ion, \( \tau \) is the time spent from the skimmer to the exit of the quadrupole, while for the fragment ion, \( \tau \) is the time spent between the skimmer and
the entrance of the quadrupole (respectively 160 µs and 80 µs for the benzylpyridinium ions in a VG Platform mass spectrometer).

The characteristic temperature method does not necessitate a series of probe molecules, as a characteristic temperature can be calculated for each one. This feature allowed to validate one of the hypotheses used in the survival yield method, namely that all benzylpyridinium ions have the same internal energy distribution. It has been shown (Drahos et al., 1999) that these ions had indeed the same characteristic temperature (RDS of 7.9% on average). The “characteristic temperature” method has also been applied using leucine enkephalin as thermometer ion.

B. Modeling of internal energy uptake in electrospray sources

This section will survey different methods contributing to the calculation of internal energy distributions of ions produced in electrospray sources. The reader is encouraged to refer to the original papers for computational details, and to Section VI-C for a joint discussion of the experimental and the modeling results. It must be stressed that, to date, no publication was found where the supersonic expansion, the ion trajectory calculations and the internal energy transfer have been simultaneously taken into account. It must also be mentioned that Ion trajectory calculations are also important for the determination of the time scale of the experiment if one wishes to calculate the ion internal energy distribution from the measured survival yields.

1. Supersonic expansion

In supersonic expansion, the axial velocity is increased at the expenses of the radial velocities. The translational temperature (characterizing the width of the axial velocity distribution) is very low. Moreover, the first stage of the expansion is isentropic. This means that collisions at the beginning of the expansion cause an equilibration of the translational and internal degrees of freedom (Hayes & Small, 1983). Therefore the internal energy of the ions diminishes. The effect of the supersonic expansion is therefore twofold: (1) it influences the velocity of the ions and of the neutral gas, and must thereby be included in the trajectory calculations and (2) it influences the internal energy of the ions.
Campbell et al. (Campbell, Guan, & Laude, 1993) have studied the kinetic energy distributions (different from the internal energy distributions!) for optimizing the trapping parameters in ESI-FTICR-MS. The final ion velocities depend on the relative contribution of the supersonic expansion and of the acceleration between the orifice and the skimmer. The more the skimmer penetrates into the Mach disk, the more important the contribution of the acceleration voltage. Hunt et al. (Hunt et al., 1998) have presented a model and equations accounting for the m/z dependence of ion focusing in the source, which are also take into account the supersonic expansion. In their studies, the skimmer lies significantly beyond the Mach disk (VG Quattro mass spectrometer).

Schneider and Chen (Schneider & Chen, 2000) have addressed the supersonic expansion in their modeling of the collision-induced dissociation in the orifice-skimmer region of an electrospray source, which is more relevant to the present discussion. In their instrument (a prototype ionspray source from PE Sciex), the skimmer penetrates into the Mach disk, and the role of the expansion is therefore very important. Equations are provided which relate the gas number densities to the position relative to the orifice. This allows to calculate the mean free path of the ions and the number of collisions between the orifice and the skimmer. Hoxha et al. (Hoxha et al., 2001) ignored the supersonic expansion, and used a constant mean free path for their modeling of the electrospray source of a VG Platform mass spectrometer. However, with such source design, it has been shown that the skimmer lies beyond the Mach disk (Hunt et al., 1998). As the energetic collisions occur mainly near the skimmer, this approximation seems justified.

The effect of the supersonic expansion on the internal energy distribution of the ions is much less well characterized than the effect on the ion kinetic energy. The final kinetic temperature attained depend upon the properties of the gas being expanded, and on the position relative to the orifice (for equation, see (Schneider & Chen, 2000)). As the coupling between the internal and the translational degrees of freedom is not perfect (translation-rotation coupling being more efficient than translation-vibration coupling), the internal temperatures reached in the silent zone are comprised between the translational temperature and the initial temperature, i.e. between 10 K and the source temperature, but are extremely difficult to estimate (Hayes & Small, 1983; Mayer & Baer, 1996). At the level of the shock waves (transition between the
silent zone and the exterior), the translational, rotational and vibrational degrees of freedom are re-randomized by collisions with the bath gas, and the molecules are therefore warmed up again to the source temperature.

2. Simulation of the ion optics

The simplest approximation is to assume a linear field between the orifice and the skimmer (Schneider & Chen, 2000), but this does not seem very realistic due to the cone-shape of the skimmer. A tip effect is much more likely. This tip effect is even enhanced in modern sources containing additional focusing items. However, if the voltage applied is important, the shape of the source electrodes plays an important role. The shape of the electrodes defines the electric field gradient and therefore the acceleration of the ions. The only way to simulate correctly the ion trajectory is the compute explicitly the ion optics with a program like SIMION (Dahl, 1995) (Scientific Instrument Services, Ringoes, NJ). This has been shown by Hoxha et al. (Hoxha et al., 2001) in the case of the source of a VG Platform (source type: see Fig. 1(k)). The equipotential lines, shown in Figure 8, exhibit a strong tip effect at the skimmer cone. The major contribution to the acceleration of the ions occurs close to the skimmer cone where the electric field is the strongest.

3. Internal energy transfer

In a binary collision, the maximal energy available for transfer into internal energy is the relative kinetic energy in the center-of-mass frame of reference ($KE_{COM}$). A simple relationship between the laboratory kinetic energy ($KE_{lab}$) and $KE_{COM}$ is given by equation (14):

$$KE_{COM} = \frac{m_n}{m_n + m_i} KE_{lab}$$

where $m_n$ is the mass of the neutral target gas and $m_i$ is the mass of the ion of interest (McLuckey, 1991; Shulka & Futrell, 1993; Shulka & Futrell, 2000). If the collision is inelastic, part of $KE_{COM}$ is transferred into internal energy (Shulka & Futrell, 2000). The modeling must therefore take into account both the increase in internal energy and the decrease in the kinetic energy. This can be done either by conducting random walk simulations, as has been done in the two papers relevant to electrospray
modeling (Hoxha et al., 2001; Schneider & Chen, 2000), or by master equation modeling, for example with the MassKinetics program (Drahos & Vékey, 2001).

The most difficult parameter to estimate is the fraction of the center-of-mass kinetic energy which is converted into internal energy. The different modes of energy transfer and their relative efficiencies are presented very clearly in the account article of McLuckey (McLuckey, 1991). In the experimental conditions encountered in electrospray ionization sources, electronic excitation of the ions is usually ignored. Basically two mechanisms can account for the transfer of translational to vibrational energy. The first mechanism is the formation of a long-lived complex between the ion and the target gas. In this case, at each collision, the internal energy of the analyte, the internal energy of the target gas (if not atomic gas) all the relative kinetic energy $KE_{\text{COM}}$ are put in common in the complex and redistributed statistically in internal energy and relative translation energy upon dissociation. The energy transfer is very efficient but the long-lived complex model is valid only for low $KE_{\text{COM}}$ values. The second mechanism is called the “impulsive collision mechanism”. For large molecules, the collision can be viewed as inelastic with the whole molecule, but as elastic with one subunit. The recoil of that subunit is responsible for the elongation of some bonds and the recoil energy is transferred to vibrational energy that can be subsequently redistributed. The efficiency of this mechanism is typically lower than for the mechanism of complex formation, but it is favored at higher $KE_{\text{COM}}$.

Schneider and Chen used the crude approximation that all the center-of-mass kinetic energy was converted into internal energy (Schneider & Chen, 2000). Hoxha et al. (Hoxha et al., 2001) however, used the long-lived collision complex model to calculate the mean fraction of the $KE_{\text{COM}}$ converted into internal energy. This fraction $f$ decreases with the fraction of the number of degrees of freedom which are in the gas (Hoxha et al., 2001), and with the lifetime of the complex (which increases with the depth of the interaction potential energy well, with the number of degrees of freedom of the complex and decreases with $KE_{\text{COM}}$) (McLuckey, 1991). The long-lived complex model, where the energy is re-randomized at each collision, accounts for both activating and deactivating collisions. A consequence is that Boltzmann-like internal energy distributions are reached after a few collisions (Drahos & Vékey, 2001; Hoxha et al., 2001), which is in agreement with the observed shape of the
internal energy distributions, as determined using the survival yield method (see above).

C. Internal energy of electrospray-produced ions: results

1. Influence of the orifice-skimmer voltage difference

Qualitatively, it is obvious that the internal energy of the ion increases when the acceleration potential between the orifice and the skimmer increases, whatever the source configuration. Let us examine how the experimental and modeling methods described above can give some insight into the quantitative aspects of this process.

Both Voyksner and Pack (Voyksner & Pack, 1991) and Collette and De Pauw (Collette & De Pauw, 1998) have shown that, upon increasing the orifice-skimmer voltage, the internal energy distributions become wider and are shifted towards higher energies. In these two papers, the mean internal energy was calculated directly from the internal energy distributions. Voyksner and Pack found that the mean internal energy increases roughly linearly with the capillary-skimmer voltage of their source (Analytica of Brandford). However, in the work of Collette et al. (Collette et al., 1998) on the ESI sources of a VG Platform and a PE Sciex API 165 instrument, the mean internal energy was found to increase more than linearly with the acceleration voltage. In their later study using the “characteristic temperature” method (Drahos et al., 1999), it is shown that it is rather $T_{\text{char}}$ which is linearly proportional to the voltage (Figure 9). The mean internal energy is related to the temperature by equations by (Drahos & Vékey, 1999a; Vékey, 1996):

$$<E> = c(T,\nu)s.k_B.T \quad (15)$$

where $s$ is the number of oscillators, $k_B$ is the Boltzmann constant, $T$ the temperature, and $c(T,\nu)$ the heat capacity of the molecule, which depends on the vibrational frequencies and on the temperature. The dependency on the temperature can be approximated by (Drahos & Vékey, 1999a):

$$c(T,\nu) = aT + bT^2 \quad (16)$$

The linear relationship between the internal temperature and the acceleration voltage can be understood in the framework of the equilibration between the internal and the translational degrees of freedom. This is possible only if many collisions occur
between the ion and the bath gas, and if collisional activation and deactivation are considered. Then the characteristic (or ‘effective’) internal temperature is equal to the effective translational temperature (Hoxha et al., 2001), or at least directly proportional to it (Raznikov et al., 1999). This model has also been used to characterize the energy uptake in quadrupole ion trap resonant excitation, which is also characterized by multiple low-energy collisions (Goeringer & McLuckey, 1996a; Goeringer & McLuckey, 1996b). The kinetic energy in the center-of-mass frame of reference is related to the effective translational temperature by:

\[ KE_{\text{COM}} = \frac{3}{2} k_B T_{\text{eff,transl}} \]  

(17)

As a consequence,

\[ T_{\text{char,int}} \propto KE_{\text{COM}} \propto \left[ \frac{m_n}{(m_n+m_i)} \right] KE_{\text{lab}} \propto \left[ \frac{m_n}{(m_n+m_i)} \right] V \]  

(18)

This explains both the linear relationship between \( T_{\text{char}} \) and \( V \), and also the effect of the number of degrees of freedom on the slope (see the comparison between benzylpyridinium ions and leucine enkephalin in Figure 9). In such a model taking into account the de-activation process, less energy is transferred to the ion than \( KE_{\text{COM}} \), or than a constant fraction of \( KE_{\text{COM}} \) (Drahos & Vékey, 2001). Schneider and Chen (Schneider & Chen, 2000), who assumed that all \( KE_{\text{COM}} \) was converted into internal energy at each collision, predicted a linear relationship between \( <E_{\text{int}}> \) and the voltage. In conclusion, regarding the dependence of the internal energy on the acceleration voltages, the few studies to date are in contradiction, but these studies have been conducted with two different sources (one with the skimmer penetrating into the silent zone, and one with the skimmer beyond the Mach disk). More experiments joined with more accurate modeling studies are therefore needed in order to reach a consensus.

Last but not least, an interesting point in Figure 9 is the characteristic temperature extrapolated at zero acceleration voltage (Drahos et al., 1999; Takats et al., 2002). The authors checked the validity of the parameters used in the calculation of \( T_{\text{char}} \) by comparison with activation in a thermalized FTICR cell. The characteristic temperatures can be considered to approach closely the true ion temperature. As the skimmer lies beyond the Mach disk, a characteristic temperature close to the source temperature would have been expected: as no external acceleration is applied, the ions should be thermalized by the surrounding gas. This temperature extrapolated at zero
voltage could indicate either that the droplet is unexpectedly hot when the naked ion is released (without presuming of the ion production mechanism), or that, in the case of the ion evaporation mechanism, that the Coulombic repulsion between the ion and the charged droplet provides kinetic energy to the ions, which is subsequently converted into internal energy by collision with the bath gas (Takats et al., 2002).

2. Influence of the capillary temperature

As mentioned above, an increase of the capillary temperature causes an increase of the fragmentation extent, all source voltages being kept constant. Another important parameter that can be modulated by the capillary temperature is the extent of droplet evaporation or ion desolvation achieved before the acceleration in the capillary-skimmer region. Recent experiments (Gabelica, De Pauw & Karas, manuscript in preparation) have shown that the impact of desolvation on the shape of the internal energy distribution is significant. At low capillary temperatures, where a higher voltage is needed to achieve the same fragmentation extent (or survival yield) for a given molecule, the internal energy distribution becomes broader, with clearly a low-energy tail (Figure 10). The fact that a significant fraction of the ion population has a low energy, and therefore can survive without fragmentation even at high voltages, indicates that desolvation was not complete upon arrival in the capillary-skimmer region. Therefore some ions have undergone many collisions and can fragment within the time scale of the instrument, while others have not yet desolvated completely. A consequence of this kind of observation is that approximating the internal energy distribution by a Boltzmann distribution may not always be valid.

3. Influence of the nature and the pressure of the collision gas

The nature of the collision gas, for given source settings, can also shift the internal energy distribution of the ions (Figure 11). However this effect depends greatly on the source design, as explained below. Simple kinematics predict that, for a given laboratory kinetic energy (a given voltage), the center-of-mass kinetic energy, and therefore the amount of energy available for conversion into internal energy, increases with the mass of the target gas (Eqn. 14). Therefore the fragmentation extent increases with the mass of the target gas (Douglas, 1982). Although this is the usually observed trend (Collette & De Pauw, 1998; Schmidt, Bahr, & Karas, 2001), the opposite may
also be observed when the collision gas undergoes condensation in the supersonic expansion and when the skimmer penetrates into the silent zone (Schneider, Douglas, & Chen, 2001b). In addition to its mass, the number of degrees of freedom of the gas influences the fragmentation extent. This is obvious in the comparison between argon and CO2 in Figure 10. The larger the number of gas DOF, the larger the fraction of $E_{\text{COM}}$ which ends up in the gas (and therefore not in the ion) upon collision (Collette & De Pauw, 1998; Hoxha et al., 2001; Takats et al., 2002).

In addition to the nature of the gas, its pressure is also a very important parameter, as shown by Schmidt et al. (Schmidt, Bahr, & Karas, 2001), who introduced a gas directly in the capillary-skimmer region of their home-made heated capillary nanoelectrospray source. Increased pressure was found particularly useful in the case of sugars or non-covalent complexes, in order to facilitate desolvation without provoking extensive fragmentation. In their evaluation of the reproducibility of source-CID mass spectral libraries, Bristow et al. (Bristow et al., 2002) noticed that, on some sources, high infusion flow rates resulted in lower fragmentation extent, and attributed this to an increase of the partial pressure in the source.

Again this effect comes from the concomitance of the droplet evaporation and the ion activation processes. Indeed, a fraction of the ion population may be already fully desolvated (a collision at this stage will thereby cause ion activation), while another fraction may still be included in droplets (a collision will likely cause solvent evaporation). In terms of $P(E)$, this translates into a low-energy tail as shown in Figure 10. An increase of the gas pressure in the orifice-skimmer region induces a reduction of the ion mean free path. As the ions are slowed down by inelastic collisions, the mean ion kinetic energy is reduced when the pressure is increased. Schmidt, Bahr & Karas (2001) suggested that the ions undergo more numerous, but less energetic collisions with the gas. In terms of $P(E)$, this would translate into a narrower internal energy distribution. In order to prove this hypothesis, we studied the shape of the internal energy distributions using benzylpyrdinium ions in the same instrument where the source pressure can be varied. A capillary temperature of 50 °C was used in order to start with a $P(E)$ having a low-energy tail. The effect of increasing the source pressure is shown in Figure 12. A small increase of the source pressure suppresses the low-energy tail of the distribution, thereby increasing the mean internal energy and rendering the distribution more thermal-like. This indicates
more efficient desolvation. Further increase of the pressure shifts the distribution towards lower energies, maintaining the thermal-like shape. This second effect is due to the lower mean kinetic energy of the ions when the mean free path is reduced.

4. Influence of the solvent

There is only one report (Collette & De Pauw, 1998) on the influence of the solvent on the internal energy distribution. The authors compared the \( P(E) \) obtained with the same instrumental settings for the benzylpyridinium ions in water/methanol and in water/glycerol (90:10). Glycerol has a lower vapor pressure than water, and droplets will be enriched in glycerol upon evaporation. The internal energy distribution is shifted to higher energies when glycerol is used in the mobile phase (Figure 13). Several hypotheses can explain this observation. (1) The internal energy of the ions may depend on the temperature of the droplet at the moment the ions are emitted in the gas phase. Droplet evaporation is caused by friction when the droplets are drifted by the electric field through the gas at atmospheric pressure. As glycerol requires higher energy for evaporation, the droplets will be hotter when glycerol is added in the mobile phase. (2) The glycerol layer at the surface of the droplets may change the ion ejection dynamics (the framework of the IEM), and give a higher kinetic energy to the ejected ions, which will undergo more energetic collisions with the gas. The range of mobile phases is however limited by their ease of application in routine HPLC and ESI.

D. Comparison with other “soft” ionization sources

1. Particle bombardment

This discussion concerns ionization methods where secondary ions are emitted from liquid matrices after the bombardment of ions (liquin secondary ion mass spectrometry, LSIMS) or atoms (fast atom bombardment, FAB). The “survival yield” method was used for the estimation of the internal energies of secondary ions in LSIMS (De Pauw et al., 1990; Derwa & De Pauw, 1989; Derwa, De Pauw, & Natalis, 1991). However the direct comparison with electrospray is difficult because the kinetic shift was not taken into account in these early papers. The best way to
compare ESI to particle bombardment methods is to compare the fragmentation extent of a given molecule obtained on a single instrument which can be equipped with both sources. In the single MS spectra, it is generally observed that ions produced by electrospray undergo less fragmentation than when produced by FAB or LSIMS (Griffiths et al., 1996; Melnyk et al., 1998). The nature of the liquid matrix was found to have an influence on the fragmentation extent, m-nitrobenzylalcohol being softer than thioglycerol (Takayama et al., 1990). Similarly, MS/MS spectra on electrospray or particle bombardment-produced ions suggest that electrospray ionization minimizes both fragmentation and isomerization (see Section V-C for the detailed discussion). It appears doubtless that ion internal energies are lower in electrospray than in particle bombardment methods.

2. Atmospheric pressure chemical ionization (APCI)

In APCI, the solution vaporization is assisted by a strong gas flow and high temperatures (in the order of 500 °C), but no high voltage is applied. Ionization is produced by an electric discharge in the source. Similarly to particle bombardment methods, it was found that the internal energy of ions is higher in APCI than in ESI, resulting in lower fragmentation thresholds in MS/MS (Harrison, 1999a), or in isomerization (Burinsky et al., 2001).

3. Matrix-assisted laser desorption/ionization (MALDI)

The problem of MALDI is more complicated, and the reader is encouraged to refer to recent review articles for a thorough discussion of the desorption and ionization mechanisms (Dreisewerd, 2003; Karas & Krüger, 2003; Knochenmuss & Zenobi, 2003; Zenobi & Knochenmuss, 1998). We will focus here on the points relevant to the comparison with ESI. There are clearly different sources of energy in MALDI, and the matrix plays a determinant role in the various energy transfer processes. Fast fragmentation is often referred to as “in-source decay” (ISD) (Brown, Carr, & Lennon, 1996; Brown & Lennon, 1995), with time constants on the order of the phase transition process. Subsequent supersonic expansion induces internal energy cooling of the analyte. In the framework of a ‘thermal’ desorption model, the internal temperature of the analyte will depend on the phase-transition temperature (or sublimation temperature) of the matrix (Mowry & Johnston, 1994; Thierolf, Bahr, &
Karas, 1997), and on possible bottlenecks in the internal energy transfer from the matrix to the analyte (Vertes, Irinyi, & Gijbels, 1993). Glückmann and Karas (Glückmann & Karas, 1999) suggested that the matrix softness could be correlated with its initial velocity, indicating internal energy cooling upon expansion. The key point is therefore the balance between the energy required to separate the analyte from its matrix shell and the internal excitation of the analyte. This recalls the effect of adding glycerol to the mobile phase in ESI. In addition to fast-forming fragments, metastable fragments are also observed, and this process is referred to as “post-source decay” (PSD) (Kaufmann, Kirsch, & Spengler, 1994; Spengler, 1997; Spengler, Kirsch, & Kaufmann, 1992b). In this case, the internal energy input probably comes from collisions with the matrix plume and/or residual gas upon acceleration. By analogy to ESI, this can be compared with source-CID, but in MALDI-TOF instruments operated in vacuum, collisions with the matrix may play a more significant role compared to collisions with inert gas. A clear rationalization of the matrix effects on the internal energy of ions produced by MALDI is even rendered more difficult by the fact that the relative matrix hardness/softness varies with the class of analyte that is investigated. In PSD of peptides and proteins, the matrix ranking, from hardest to softest (based on the relative fragmentation extent) is: α-cyano-4-hydroxycinnamic acid (HCCA) > sinapinic acid (SA) > 2,5-dihydroxybenzoic acid (DHB) > 3-hydroxypicolinic acid (HPA) (Karas et al., 1995; Spengler, Kirsch, & Kaufmann, 1992a). In the case of dinucleotide anions, however, Stevenson, Breuker, & Zenobi (Stevenson, Breuker, & Zenobi, 2000) obtained SA > DHB > HCCA, which is not correlated to the matrix sublimation temperatures, but rather to the exothermicity of the gas-phase proton transfer reaction between the analyte and the matrix. This points out the importance of the in-plume matrix-analyte chemical interactions, in addition to the physical interactions.

Only one quantitative evaluation of the ion internal energies has been published to date (Luo, Marginean, & Vertes, 2002). The authors used the benzylpyridinium ions as thermometer ions. The matrix hardness ranking was found to be: DHB > SA > HCCA, with a strong dependence on laser fluence. However, as the thermometer molecules are quaternary ammonium ions, the question whether these results are relevant to the MALDI of peptides, proteins or nucleic acids is still debatable. Quantitatively, Luo et al. the lowest effective internal energy (3.2 eV) was found for
HCCA at threshold laser fluence (the kinetic shift was taken into account (τ = 100 ns)). This represents a higher internal energy than in ESI, where extrapolations at zero acceleration voltage give mean internal energies equal to 2.0 eV (Collette et al., 1998). This correlates well with the significantly higher fragmentation extent observed for gangliosides by ESI-FTMS and MALDI-FTMS on the same instrument (Penn et al., 1997a). The MALDI-FTMS instrument configuration implies longer fragmentation time scales than MALDI-TOFMS, and is therefore very sensitive to metastable fragmentation. The use of atmospheric pressure MALDI sources, with thereby collisional cooling in the source was shown to be softer than vacuum-operated MALDI sources (Moyer & Cotter, 2002; O'Connor & Costello, 2001). Only prompt fragmentation is possible in such MALDI sources. A recently submitted paper (Greisch, Gabelica, Remacle & De Pauw) describes the characteristic temperature using the set of benzyl pyridinium ions already used in ESI. Those are found in the range between 1200 and 1600 °K. In the paper, non classical matrices such as CaCO3 and NaNO3 were used to avoid interferences in the low mass region. The applicability of the method to larger systems and classical matrices remains to be proven.

4. Are there softer ionization methods than electrospray?

Several other source designs have been explored, with the aim of transferring intact weak non-covalent associations in the gas phase. Recently, the observation of amino acid clusters using “sonic spray” has been reported (Takats et al., 2003). The sonic spray source (Hirabayashi, Sakairi, & Koizumi, 1994; Hirabayashi, Sakairi, & Koizumi, 1995; Hirabayashi et al., 1998) employs an extremely high nebulizing gas flow rate, but no voltage difference is applied between the capillary and the counter-electrode. The formation of charged droplets is attributed to statistical charge distribution during droplet formation. Takats et al. (2003) compared the performance of a sonic spray source and an electrospray source, both coupled to a quadrupole ion trap mass spectrometer, using the same instrumental settings. The sonic spray source was found to be softer than the electrospray in terms of formation of intact clusters. The major difference between the two ionization methods resides in the charge density of the droplets. In electrospray, the concentration of excess charge (Enke, 1997) on a droplet is much higher than in sonic spray. In the latter, the Rayleigh limit is not likely to be reached, and shrinkage of the droplet until complete evaporation
(charged residue mechanism) is supposed to occur (Takats et al., 2003). This may be the origin of the softness of sonic spray.

Another source type that has been developed for the analysis of thermally labile assemblies is the “cold-spray” ionization source (Sakamoto et al., 2000). In this case, both the sample probe (inlet capillary) and the desolvation chamber are cooled down (-80 to 10 °C). This source is especially useful for those species which are not stable in solution at room temperature, like e.g. AT-rich DNA complexes (Sakamoto & Yamaguchi, 2003), or Grignard reagents (Sakamoto, Imamoto, & Yamaguchi, 2001). The source can be operated in electrospray mode (with a high voltage on the capillary) and in the sonic spray mode (no voltage) (Sakamoto et al., 2003). While in this source, the internal energy of the system before the ionization process is minimized, it is doubtful that the final energy when the ions are fully desolvated is different from that obtained in the corresponding electrospray or sonic spray conditions. For very fragile species, the authors used experimental conditions where the analyte is still partially solvated (Sakamoto et al., 2000; Sakamoto, Imamoto, & Yamaguchi, 2001; Sakamoto & Yamaguchi, 2003).

In all these methods, solvent evaporation is ensured by collisions with a bath gas. We have seen above that in those cases the ion desolvation and the ion activation processes are sometimes not decoupled in time and space, and that a fraction of the analyte population can be already desolvated while another is still embedded in a matrix shell. Hiraoka et al. (Hiraoka et al., 1998; Hiraoka, Matsushita, & Hukasawa, 1997; Kudaka et al., 2000) have developed an experimental setup, called “laser spray”, in which a IR laser beam (CO$_2$ laser; 10.6 µm) is fired on the spray. This enhances solvent evaporation and was reported to increases the ion signal. The gain in softness compared to conventional electrospray has however not been evaluated. It will depend on the balance between solvent activation (and consequently evaporation), analyte activation and energy transfer between the analyte and the solvent. This is analog to the ‘MALDI’ approach, where energy is provided specifically to the matrix by UV absorption, hoping that matrix-to-analyte energy transfer is not too large. Therefore the softest method will be the one where energy is transmitted the most selectively to the solvent.

Brutschy et al. have developed a method based on this principle, called laser-induced liquid beam ionization/desorption, or LILBID (Kleinekofort, Avdiev, & Brutschy,
1996; Sobott et al., 1998; Wattenberg et al., 1999). The desorption of the ions from a neutral liquid beam is induced by an IR laser pulse with the wavelength tuned to a strong absorption band of the liquid, i.e. 2.5-3.5 μm (2800-4000 cm⁻¹) for water. The solvent undergoes a phase transition followed by expansion. During expansion most of the analytes will be ejected mostly as neutral ion pairs, but a small fraction will remain separated from its counter-ions and will be detected as charged species. The efficiency of separation of ion pairs increases with the dielectric constant of the solvent. The internal energy imparted to LILBID ions has not been quantified yet, but the methods seems promisingly soft: its ability to produce intact non-covalent complex has been clearly demonstrated (Kleinekofort et al., 1996; Kleinekofort et al., 1997; Wattenberg et al., 2000; Wattenberg, Sobott, & Brutschy, 2000).
VII. SUMMARY AND CONCLUSIONS

It becomes clear that, whatever the ionization method, the internal energy imparted to the analyte depends on two factors: (1) the minimal energy that must be given in order to separate the analyte from its matrix (volatile solvent in ESI, liquid matrix in FAB/LSIMS, crystalline matrix in MALDI), from its counter-ions, and from possible contaminants, and (2) the subsequent collisions of the naked analyte in the source (in the orifice-skimmer region in ESI, with the plume in MALDI, etc…). While the latter can easily be controlled by adjustment of the experimental conditions, the former is inherent to the ionization method. We also already mentioned that these two processes are sometimes not decoupled in time and in space, and a fraction of the analyte population can be already desolvated while another is still embedded in a matrix shell.

On the fundamental point of view, the study of internal energy and internal energy distributions is a tool which allows to probe the mechanism by which the analyte is separated from its matrix shell and ionized. In that respect, the nature of the matrix is crucial: the matrix should be easily vaporized/sublimed, and the chemical interactions with the analyte should not be too strong (else the remaining analyte molecules would be difficult to separate from the analyte). As a result, the choice of the matrix should be driven by the nature of the analyte. We have seen above that hydrophilic analytes are actually difficult to desolvate without fragmenting. Studies on the matrix effect on the ion internal energy in ESI (Collette et al., 1998) or in MALDI (Luo, Marginean, & Vertes, 2002) are just beginning to emerge. To our opinion, further studies in that direction will hopefully give a better understanding of the ionization process (for electrospray as well as for other ionization sources), and eventually to the rational design of new matrices and/or additives for specific applications.

Another fundamental issue in close relationship with the matrix effect is the on-going debate on the ion production mechanism, i.e. the charged residue model versus the ion evaporation model. But if the difference in ion internal energy is indicative of differences in the ion production mechanism (CRM vs. IEM), then ion internal energy measurements could be a probe of the ion formation mechanism. Further studies on the internal energy of ions produced by sonic spray, where the CRM is the only possible ionization route, would be enlightening.
While for some applications, ionization conditions must be as soft as possible, for some others, a certain degree of internal excitation is needed to induce fragmentation on purpose. The easiest procedure is to use collision-induced dissociation. This can be realized in normal MS/MS, and we have seen that for beam-type instruments, the energy received in the source has an influence on the MS/MS spectra. CID can also be realized in the source itself, by acceleration in the orifice-skimmer region. A calibration of the ion internal energy as a function of the experimental conditions (acceleration voltage, nature and pressure of the collision gas) could possibly allow energy-resolved measurements to be achieved, either to generate standardized mass spectral libraries, or for thermochemical studies. Such applications on quantitative determination of ion thermochemistry by source-CID are just beginning to emerge (Schneider & Chen, 2000; Schneider, Douglas, & Chen, 2001a).

VIII. ACKNOWLEDGEMENTS

The authors acknowledge the FNRS (Fonds National de la Recherche Scientifique, Belgium) and the University of Liège for supporting the acquisition of the instrumentation. VG is grateful to the FNRS (Fonds National de la Recherche Scientifique, Belgium) for a postdoctoral research fellowship and to the Alexander von Humboldt foundation for sponsoring a research stay in Germany. This research has been supported by the ARC (Actions de Recherche Concertées / Communauté Française de Belgique).
Table 1. Fragmentation thresholds of the benzylpyridinium ions used for the calibration of the internal energies.

<table>
<thead>
<tr>
<th>R</th>
<th>$E_0$ (eV) as used by (Collette et al., 1998; Collette &amp; De Pauw, 1998)</th>
<th>AM1&lt;sup&gt;c&lt;/sup&gt;</th>
<th>SCF &lt;i&gt;ab initio&lt;/i&gt; 6-31G&lt;sup&gt;d&lt;/sup&gt;</th>
<th>B3LYP 6-31G&lt;sup&gt;e&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-OCH&lt;sub&gt;3&lt;/sub&gt;</td>
<td>1.34&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.508</td>
<td>1.40</td>
<td>1.856</td>
</tr>
<tr>
<td>p-CH&lt;sub&gt;3&lt;/sub&gt;</td>
<td>1.60&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.767</td>
<td>1.80</td>
<td>2.209</td>
</tr>
<tr>
<td>o-CH&lt;sub&gt;3&lt;/sub&gt;</td>
<td>1.64&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.803</td>
<td>-</td>
<td>2.288</td>
</tr>
<tr>
<td>p-F</td>
<td>1.80&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.867</td>
<td>1.93</td>
<td>2.436</td>
</tr>
<tr>
<td>p-Cl</td>
<td>1.73&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.899</td>
<td>2.04</td>
<td>2.436</td>
</tr>
<tr>
<td>m-CH&lt;sub&gt;3&lt;/sub&gt;</td>
<td>1.65&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.901</td>
<td>1.99</td>
<td>2.371</td>
</tr>
<tr>
<td>m-OCH&lt;sub&gt;3&lt;/sub&gt;</td>
<td>1.68&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.945</td>
<td>2.17</td>
<td>2.358</td>
</tr>
<tr>
<td>p-CN</td>
<td></td>
<td>2.097</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>p-NO&lt;sub&gt;2&lt;/sub&gt;</td>
<td>2.12&lt;sup&gt;a&lt;/sup&gt;</td>
<td>2.352</td>
<td>-</td>
<td>2.910</td>
</tr>
</tbody>
</table>

<sup>a</sup> Calculated by AM1 with MOPAC (Katritzky et al., 1990)

<sup>b</sup> Calculated by correlation with ionization energies (Derwa, De Pauw, & Natalis, 1991)

<sup>c</sup> Calculated with Hyperchem (Hypercube, Inc., Gainesville, FL).

<sup>d</sup> J.-F. Greisch (personal communication); calculated with GAMESS-US.

<sup>e</sup> G. Dive (personal communication); calculated with Gaussian.
Figure 1. Different source configurations. (a-e): Sampling of ions and gas via different shapes of orifices and tubes; (a) orifice in a flat disk (SCIEX API 100/300); (b) orifice in the top of a cone (Micromass, SCIEX API 3); (c) orifice in the bottom of a cone (Vestec); (d) glass tube with metallized ends (Analytica for HP, Jeol, Bruker,…); (e) heated metal tube (ThermoFinnigan). (f-h): Free jet expansion of gas and ions into vacuum; (f) basic principle; (g) arrangement with skimmer penetrating into the silent zone; (h) skimmer located more distant than the Mach disk. (i-k): Additional focusing items located in the molecular beam stage for forcing ions through the skimmer orifice; (i) tube lens (ThermoFinnigan); (j) ring (SCIEX); (k) cone (Micromass). Adapted from (Bruins, 1997)
Figure 2: (a) Rate constants as a function of the internal energy for two hypothetical competing reaction channels (a rearrangement and a cleavage reaction). The curves have a RRKM-like dependency, but have been calculated with hypothetical thresholds and frequency sets. The breakdown diagrams for (b) instrument 1 ($\tau = 1 \text{ s}$) and (c) instrument 2 ($\tau = 10^{-4} \text{ s}$) have been generated with equations (3-6), using the hypothetical $k(E)$ curves displayed in panel (a).
Figure 3. (a) Structure of the indoloquinolizidine stereoisomers 1 and 2 (m = 242 Da). (b) Collision-induced dissociation spectra of $1H^+$ (top) and $2H^+$ (bottom) at 4 keV collision energy. (c) Electrospray mass spectra of $1H^+$ (top) and $2H^+$ (bottom) recorded with a difference of 24 V between the sampling cone and the skimmer voltages. (Laprévote et al., 1996)
Figure 4. Chemical structure of haloperidol and breakdown curves from orifice ramping experiments using API 365 (a), API 2000 (b) and API 3000 (c) instruments. (Weinmann et al., 2001a)
Figure 5. Full scan MS spectra of duplex d(CGCGGGCCCGCG)₂ obtained with a Finnigan LCQ under hard source conditions achieved in three different ways and in soft conditions. (a) The capillary temperature is increased to 300 °C. (b) The tube lens offset is decreased to –30 V. (c) The capillary voltage is decreased to -130 V. (d) The soft source conditions are: capillary temperature = 170 °C, capillary voltage = -30 V and tube lens offset = 40 V. DS = double-stranded DNA; ss = single-stranded DNA; -B = neutral base loss from DS or ss; 1 = w₂⁻; 2 = a₅-B²⁻; 3 = a₃-B⁻; 4 = a₆-B²⁻; 5 = w₆²⁻; 6 = w₃⁻; 7 = a₄-B⁻; 8 = w₇⁻; 9 = w₈²⁻; 10 = w₄⁻; 11 = a₅-B⁻; 12 = w₁₀²⁻.
Figure 6: Structure and fragmentation pathway of the benzylpyridinium cations.
Figure 7. Calculation of the internal energy distribution with the survival yield method. Breakdown curves are recorded as a function of the capillary-skimmer voltage (Finnigan LCQ; solvent: H₂O/MeOH 50/50; capillary temperature: 230 °C; tube lens offset: -30 V) (b) Survival yields at a capillary-skimmer voltage of 60 V as a function of the fragmentation threshold. The two points with coordinates (0,0) and (1,3.5) have been added manually. Dashed line: fitting of the points with a sigmoid (3 parameters). (c) Internal energy distribution. Filled circles: derivate of the experimental points in (b). Dashed line: derivate of the dashed line in (b).
Figure 8. Geometry of the relevant part of the source of the VG Platform single quadrupole mass spectrometer as simulated by SIMION, equipotential lines and one representative ion trajectory (Hoxha et al., 2001).
Figure 9. Characteristic temperatures of benzylpyridinium salts (average for all six compounds) obtained on a PE-SCIEX API 165 (solid line, +) and on a VG Platform (dashed line, ×) by varying the cone voltage. The same experiment was performed in the case of leucine enkephalin on the PE-SCIEX instrument (dashed-dotted line, ▲) and on the VG Platform (dotted line, ●). (Drahos et al., 1999)
Figure 10. Influence of the capillary temperature on the shape of the internal energy distributions. Experiments were performed on a Mariner o-TOF instrument with a modified nanospray source including a heated transfer capillary (Schmidt, Bahr, & Karas, 2001). The source pressure was maintained constant. The solvent used was water/methanol (50:50). The different distributions correspond to experimental conditions which all give the same survival yield (0.63) for the p-fluorobenzylpyridinium ion. (Gabelica, De Pauw & Karas, manuscript in preparation)
Figure 11. Internal energy distributions obtained for different collision gases for 15 V on the sampling cone (VG Platform instrument) and water/acetonitrile (50:50) as mobile phase. (Collette & De Pauw, 1998)
Figure 12. Influence of the source pressure on the internal energy distributions. Experiments were performed on a Mariner o-TOF instrument with a modified nanospray source including a heated transfer capillary (Schmidt, Bahr, & Karas, 2001). The capillary temperature was 50 °C and the capillary voltage at 200 V in all experiments. The solvent used was water/methanol (50:50). The pressure given in the legend corresponds to the pressure measured in the first pumping stage, and is proportional to the source pressure. (Gabelica, De Pauw & Karas, manuscript in preparation.)
Figure 13. Internal energy distributions obtained using water/methanol (90:10) or water/glycerol (90:10) with nitrogen as collision gas and 15 V on the sampling cone (VG Platform instrument). (Collette & De Pauw, 1998)
References


Smith RD, Barinaga CJ. 1990. Internal energy effects in the collision-induced
dissociation of large biopolymer molecular ions produced by electrospray
ionization tandem mass spectrometry of cytochrome c. Rapid Commun Mass
Spectrom 4: 54-57.

desorption mass spectrometry on thin liquid jets. Fresenius J Anal Chem 360:
745-749.

Spectrom 32: 1019-1036.


Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics;


formed by sonic spray ionization. Anal Chem in press.

on the extent of fragmentation in molecular ions M+ produced under fast
atom bombardment (FAB) conditions. Int J Mass Spectrom Ion Proc 96: 196-
179.

Thierolf M, Bahr U, Karas M. 1997. Which matrix properties determine if MALDI
ions survive or die (fragment) ? Proceedings of the 45th ASMS Conference on
Mass Spectrometry and Allied Topics  856.

Thomson BA, Iribarne JV. 1979. Field induced ion evaporation from liquid surfaces

Comparison between collision induced dissociation of electrosprayed
protonated peptides in the up-front source region and in a low-energy collision

445-463.


