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Abstract 

 
The paper presents the results of a data mining analysis aiming to improve the cost knowledge of the 
labour intensive straightening process. The data mining approach yields a formula linking the 
straightening cost to the sections scantlings (plate thickness, dimension and inter-distance of 
longitudinal stiffeners, dimension and inter-distance of transversal frames) and to other section 
characteristics. 
 
1 Introduction 
 
The complexity of modern manufacturing processes in a highly competitive environment forces the 
manufacturers to invest massively in automation and monitoring systems. The large data flows from 
these new installations are sources of valuable and hidden knowledge that is so far hardly used. Data 
mining methods through integrated data analysis tools such as the software product PEPITo® give a 
solution to this situation, allowing easy retrieval of knowledge starting from a data base. This is also a 
unique opportunity to learn more quickly about the process and to detect hidden and complex 
relationships between parameters involved. Within this framework we have decided to apply this data 
analysis method to the straightening process in shipbuilding. 
 
In shipbuilding, the assembly of elements by welding involves necessarily temperature gradients 
within the material. This phenomenon causes deformations which have to be reduced to obtain an 
acceptable surface flatness. The straightening is the process that consists to eliminate these distortions 
for esthetical or functional reasons. The straightening process is labour intensive. Estimating the 
straightening impact on the production workload is interesting in the context of production simulation, 
cost assessment of ship hull, structure optimization, design for production, etc. 
 
To reach these objectives, the idea was to elaborate, through a data mining approach, a formula 
linking the straightening cost to the sections scantlings (plate thickness, dimension and inter-distance 
of longitudinal stiffeners, dimension and inter-distance of transversal frames) and to other section 
characteristics. This paper describes each stage of the methodology: the data description, the analysis 
of data quality, the data exploration and finally the choice of discriminatory attributes and the 
generation of the data-driven models. Some interesting techniques coming from PEPITo® software 
were used in order to perform this analysis like: a linear correlation analysis by dendrograms, 
conditioned histograms, conditioned dots clouds, decision trees tool (based on minimisation entropy) 
and a Neuronal Network Analysis. 
 
2 Data Mining 
 
2.1 General Definition 
 
Data Mining (DM) is aims to extract synthesized and previously unknown information from large 
databases. By definition, DM extracts valid, previously unknown, comprehensible, and useful 
information from large databases for further processing. The data analysis process tries to discover 
useful patterns in data that are not obvious to the user and to create useful information and knowledge 
from data to help in decision-making. 
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2.2 PEPITo® – A Unique Solution for Manufacturing and Process Intelligence 
 
Data mining is increasingly used in enterprises decision-making processes. Data mining uses a broad 
range of tools from statistics, automatic learning, pattern recognition, database technologies, 
visualization and artificial intelligence. This mix of technologies has been combined in the PEPITo 
software, http://www.pepite.be, used in the work presented here. PEPITo combines visualization, 
advanced statistics and predictive analytics tools. Furthermore PEPITo has a scalable, high-
performance object database enabling it to handle problems with very large data sets (millions of 
objects with thousands of parameters each). The simple and intuitive user interface hides the 
complexity of data mining from average users, enabling them to quickly perform data mining tasks on 
simple problems. In addition, PEPITo has a powerful scripting language (KDLisp). KDLisp is fully 
programmable with direct access to all the data mining functions, in essence making PEPITo a 
flexible data mining toolbox. This is significant since most data mining applications involve an 
iterative process of exploring data models with different data mining techniques. The toolbox concept 
enables users to easily prototype different data models and to combine, modify and adapt the tools 
according to characteristics of the problem. It also allows users to integrate the solution seamlessly 
with other software.   
 
3 The data mining process 
 
We followed the freely available CRISP-DM data mining methodology, http://www.crisp-dm.org, 
Fig.1. This methodology was developed in the 1990s by a consortium of data mining experts, 
consultants and end users. The proposed reference model covers all aspects of a data mining study, 
from problem definition, to data analysis and final live deployment. We briefly summarize the 
different stages of the process below.  
 

 
Fig.1:  CRISP-DM methodology 

 
1. Business Understanding - This initial phase focuses on understanding the project objectives 

and requirements from a business perspective, then converting this knowledge into a data 
mining problem definition and a preliminary plan designed to achieve the objectives. 

2. Data understanding - The data understanding phase starts with an initial data collection and 
proceeds with activities in order to get familiar with the data, to identify quality problems, to 
discover first insights into the data or to detect interesting subsets to form hypotheses for 
hidden information. 

3. Data preparation - The data preparation phase covers all activities to construct the final 
dataset (data that will be fed into the modelling tool(s)) from the initial raw data. Data 
preparation tasks are likely to be performed multiple times and not in any prescribed order. 
Tasks include tables, objects and attributes selection as well as transformation and cleaning of 
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data for modelling tools. 
4.  Modelling - In this phase, various modelling techniques are applied and their parameters are 

calibrated to optimal values. Typically, there are several techniques for the same data mining 
problem type. Some techniques have specific requirements on the form of data. Therefore, 
stepping back to data preparation phase is often necessary. 

5. Evaluation - At this stage in the project, you have built a model (or models) that appears to 
have high quality from a data analysis perspective. Before proceeding to final deployment of 
the model, it is important to thoroughly evaluate the model and review the steps executed to 
construct the model to be certain it properly achieves the business objectives.  

6. Deployment - Depending on requirements, the deployment phase can be as simple as 
generating a report, or as complex as implementing a repeatable data mining process across 
the whole enterprise. 

 
4 Straightening process database study 
 
Some interesting tools for data analysis are used in this study in order to find a relevant relation 
between the straightening cost and the sections scantlings. These tools and the different steps of the 
study are presented in this section. 
 
4.1 Methodology 
 
First of all, a database was established in order to specify the characteristics of each section and the 
straightening time associated. 
The data mining analysis within the CRISP-DM methodology is divided in four main parts: 

- Data description stage: This step consists in a presentation of the attributes (fields of the data 
base), with their distribution and other statistical parameters (minimum, maximum, mean and 
variance). 

- Data quality stage: This step lists the problematic recordings (strange distribution, missed 
values, data in conflict with their physical meaning) in order to take care of them in the next 
stages. 

- Data exploration stage: This step consists in pointing out interesting characteristics of the 
database with the help of visualization tools and descriptive statistical methods. In order to 
select the determinant attributes in the straightening estimation, different tools of linear 
correlation analysis (dendrogram), conditioned histograms, conditioned dots clouds, etc were 
used. 

- Data modelling stage: This step consists in building the relation between the straightening 
cost and the sections characteristics by the use of learning methods like decision tree analysis, 
artificial neuronal network analysis, etc. 

 
4.2 Data base architecture 
 
Several sources have been used to constitute the database, Table I:  
 

- a workload table of giving the estimated and the real value of the work duration (in hours) ; 
and giving the responsible of the straightening work (the shipyard workers or sub-
contractors). 

- ships plans to extract the scantling and dimensions of the main frames. 
- tables describing all characteristics of sections constituents 

 
This data base consists of approximately 1000 different entities coming from almost 15 passenger 
ships. 
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Table I: Description of the database relating to the straightening 
 

Field Example Unit Description 
Ship 32 - Ship identification 
Section v102 -  
R_time_on_surf 100 h/m² Time of strengthening work spent by m²  

Section_surf 396,2 m² Surface of the section calculated by the multiplication of 
width and length, it is thus the ground obstruction surface 

Section_weight 210,4 T Total weight of the section (decks constituents + girders + 
transversal frames + bulkheads + plating..) 

Deck_weight 64.2 T Weight of the deck (plates + stiffeners + girders) 
Plate_weight 59.89 T Weight of deck plates 
Delta_stiff 700 mm Distance between longitudinal stiffeners 
Delta_frame 2760 mm Distance between transversal stiffeners 
Thickness 25 mm Relevant thickness of the deck plates 
H_stiff 280 mm High of longitudinal stiffeners 
T_ stiff 11 mm Thickness of longitudinal stiffeners 
H_web_frame 1600 mm High of transversal stiffeners webs 
T_web_frame 15 mm Thickness of transversal stiffeners webs 
H_flange_frame  120 mm Width of transversal stiffeners flanges 
T_flange_frame  15 mm Thickness of transversal stiffeners flanges 
Delta_deck 3600 mm Distance between two deck 
Double_bottom Y - Y if double bottom else N 
Section_length 17 m Length of ground obstruction surface 
Section_width 31 m Width of ground obstruction surface 
Deck_nbr 4 - Number of the deck 

Slice 4 - Slice of the ship where the section is (position in the ship 
axis) 

Grade A - Steel grade 

Special N - Id special (formed parts of the ships = not precise data about 
deck surface) thus Y else N 

Family 1 - Clusters of section defined by ship areas 
Deck_surf 525 m² Surface of the horizontal plates constituting the deck 
S_weight_on_surf 0,628 T/m² Section weight on deck surface 
S_weight_on_length 5,725 T/m Section weight on section length 
D_weight_on_surf 0,192 T/m² Deck weight on deck surface 
D_weight_on_length 0,1793 T/m² Deck weight on section length 

 
4.3 Data description 
 
This step consisted in a presentation of the attributes (fields of the data base), with their distribution 
and other statistical parameters (minimum, maximum, mean and variance). One of difficulties which 
arose during the data base analysis is that the most structural attributes show a discrete distribution 
with one or few dominant modes, see Fig.2 (2) and (3). For instance, the distance between stiffeners 
has very often the same value. Those attributes are almost “constant” parameters and thus do not 
constitute a conclusive information source. In order to minimize this effect, we have replaced some 
attributes. However, by dividing the weight of plate attribute by the section surface, we obtained 
information similar to the thickness, but having the advantage to present a distribution much less 
discrete. 
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Fig.2: Distribution histograms of attributes (from PEPITo®) 

 
4.4 Data quality 
 
This step listed the problematic recordings (strange distribution, missed values, data in conflict with 
their physical meaning) in order to take care of them in the next stages. The histograms of all 
attributes have been realized in order to observe the data and to point out the missed or absurd values. 
We have decided to eject the recordings corresponding to a straightening time upper a certain value 
(expressed in h/m²). Moreover, the data were restricted to the passenger ships. 
 
4.5 Data exploration 
 
This work stage consisted in using different approaches to visualize the correlations existing between 
the attributes and the straightening workload in order to finally select the parameters having the most 
relevant influence on the straightening assessment. In order to fulfil this stage, four different 
approaches were used: 

- a linear correlation analysis trough a dendrograms elaboration 
- conventional conditioned distribution histograms 
- conventional dots clouds diagrams 
- a decision trees analysis 
 

4.5.1 Dendrogram analysis  
 
4.5.1.1 Methodology 
 
The dendrogram is the graphical representation, Fig.3, of a statistical tool called hierarchical 
agglomerative clustering. Hierarchical clustering aims to define a sequence of N clusterings of k 
clusters, for k ∈ [1,...,N], so that clusters form a nested sequence. The agglomerative algorithm starts 
with the initial set of N attributes, considered as N singleton clusters. At each step it proceeds by 
identifying the two most similar clusters and merging them to form a new cluster. This step is 
repeated until all attributes have been merged together into a single cluster. The similarity among the 
attributes is measured with the linear correlation coefficient: 

 
 rho(x , y)=cov(x , y)/σx .σy           (1) 
 

(1) Sections Surface (3) Distrance between stiffeners

(4) Thickness(2) Straightening time
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where, cov(x,y) represents the covariance between X and Y; and σx is the standard deviation of x. 
This tool is particularly interesting for the analysis of attribute similarities, detecting and eliminating 
the attributes that are too much linear correlated, or detecting important linear correlations between a 
goal attribute and input attributes. On a dendrogram, the coefficients displayed represent the minimum 
linear correlation coefficients between one attribute and a group of attributes or between two groups 
of attributes. The range of the coefficient is in [0,1].  
 
4.5.2 Application 
 
Fig.3 shows a dendrogram analysis of the straightening database. The study showed that the interest 
attribute (straightening in h/m²) does not seem to be strongly correlated to the other numerical 
parameters of the database (in particular the scantling variables). This indicates that there are not 
linear relations between the scantling variables and the straightening cost. On the other hand, this does 
not prohibit the existence of a nonlinear relation. 
 

 
Fig.3: Dendrogram of attributes from straightening database (from PEPITo®) 

 
4.5.3 Conditioned distribution histograms 
 
Fig.4 shows a histogram of straightening workload (h/m²) conditioned by the thickness plate. Before 
the use of this method, it is necessary to classify the recordings in clusters following their membership 
in a particular values range of an attribute; for example, we separate the sections in three groups A, B 
and C for low, medium or high value of the thickness attribute. We can also visualize the Gaussian 
curve extrapolated for each cluster and compare the means and standard deviation. The result of this 
analyze is that the straightening workload grows when the plate thickness decreases. But we note that 
the dispersion of results is very high. 
 

 
Fig.4: Histogram of straightening workload (h/m²) conditioned by plate thickness (from PEPITo®) 
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4.5.4 Dots clouds diagrams 
 
The following dots clouds diagrams, Fig.5, show straightening cost in function the section weight 
respectively conditioned by section family and steel grade. The most interesting result is that we can 
see a correlation (1/X) between straightening cost and section weight whereas we rather await 
something of similar with the thickness of deck plates. Each cluster (family and steel grade) points at 
different places from the curve. We can thus see their influence on the straightening cost.  
 

(1) Straightening in function of 
section weight and family

(2) Straightening in function of 
section weight and steel grade  

Fig.5 : Dots clouds of the straightening database (from PEPITo®) 
 
4.5.5 Decision Tree 
 
The technique of decision trees (DT) is a tool used in classification problems. It aims to elaborate 
automatic ‘if-then’ rules. It has a symbolic output and symbolic and/or numerical inputs. The basic 
procedure is a search algorithm minimizing a score measure (entropy measure). The implicit goal of 
this iterative search is to produce a tree, as simple as possible, providing a maximum amount of 
information about the classification variable of the learning problem. The tree building asks is 
decomposed generally into two subtasks: Tree growing which aims at deriving the tree structure and 
tests and tree pruning which aims at determining the appropriate complexity of the tree. The main 
strength of DT is its interpretability indeed it ease identification of the relevant attributes for a 
problem. DT is a computationally efficient tool, but less accurate than a neural network.  
 

 
Fig.6: Decision tree relating to straightening work (from PEPITo®) 
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This automatic technique performs a series of tests that permit to separate the data in sub-groups. 
Typically, if we define a cluster LOW (few straightening work – good quality – light grey) and a 
cluster HIGH (lot of straightening work – poor quality – dark grey), the tree generates itself in order 
to dispatch the recordings following their quality, Fig.6. If the separation is well established, the 
extremity cells tend to have one colour and the path that conducts to the green cells traduces us the 
value that the different attributes have to take to obtain few straightening work. 
 
This method provides two interesting outputs: 

• the list of discriminatory attributes and theirs relative percentage (weight of section [56.3%], 
section family [7.7%], thickness [4.7%], etc.) 

• the finding of thresholds in order to make the most efficient separation between attributes. For 
instance, the main branch of the tree are divided with the following rule : “If the section 
weight < K1 or 163 tons then straightening is HIGH” 

 
We can deduce that section weight is decisive, but other parameters such as family or thickness are 
also interesting. This method has the major advantage to select the most relevant variables before an 
analysis by an artificial neuronal network in order to avoid unnecessary high computing times. 
 
4.6 Data modelling 
 
4.6.1 Selection of relevant attributes 
 
The visualisation methods presented so far revealed that ‘section weight’ is the most decisive 
parameter, followed by ‘section family’ and ‘plate thickness’. None of the scantling attributes 
(‘delta_stiffeners’, ‘H_stiffeners’, ‘delta_frame’, etc) seem to be correlated to the straightening 
workload. Because the attribute ‘section weight’ can fluctuate as function of the section dimensions, 
we decided to use ‘section weight’ divided by the section surface. Finally, we selected ‘section weight 
divided by (surface or length)’, ‘section family’ and ‘section surface’ and ‘distance between 
stiffeners’ as  input parameters used to establish the straightening estimation formula. 
 
4.6.2 Artificial Neuronal Network 
 
We used the Artificial Neuronal Network (ANN) technique to find the relation between the five 
previous attributes and the straightening cost. Artificial Neural Networks, e.g. Mesbahi (2003), have 
gained popularity for their effective manner to manage complex, multiple input situations and provide 
a single output. In shipbuilding research, ANNs have been used e.g. for hull resistance prediction, 
Couser et al. (2004), safety prediction, Gerigk (2005), manoeuvrability prediction, Ebada and Abdel-
Maksoug (2006), that for freight rate prediction, Bruce and Morgan (2006), or propulsion prediction, 
Roddy et al. (2006). One of their key advantages is their ability to easily model complex, non-linear 
systems, a feature which is not true of statistical regression methods where an appropriate non-linear 
function must first be found. An advantage of artificial neural networks over statistical methods is 
their ability to adapt to new data. Once an ANN architecture has been designed, it can quickly be 
retrained as new data becomes available. Essentially, a complex set of data can be modelled using 
ANNs to establish patterns in such systems. 
 
The basic architecture, Fig.7, consists of an input layer (with all input variables), and output layer 
(with one or more output variables) and one or more hidden layers that process the input variables to 
the output variables, using weights and (usually nonlinear) transfer functions. The main strength of 
ANN is its universal approximation capability. It is probably the most accurate data mining method 
among the available data-driven prediction techniques. Unfortunately, from the point of view of 
interpretability it is perceived as a black box. ANNs require considerable CPU time during the 
training stage and may become cumbersome for highly dimensioned input spaces. It is thus advisable 
to use first methods to that reduce the input space, like decision (or regression) trees or dendrograms. 
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INPUT
LAYER

HIDDEN
LAYER(S)

OUTPUT
LAYER  

Fig.1 : Artificial Neuronal Network (ANN) Architecture 
 
4.6.3 Application 
 
After having chosen the input parameters, we filtered the input records to obtain the most reliable 
relation between straightening cost and scantling variables: 

- we omitted sections where the straightening work was done by sub-contractors because time 
measurements (cost table) of straightening are less reliable. 

- We considered only the sections having a width near 30 m, because we used the ‘weight 
section divided by the section length’. 

This filtering drastically reduced our database. 
 

(1) ANN with 5 inputs

(2)     ANN with 9 inputs

INPUT
LAYER

HIDDEN
LAYER

OUTPUT
LAYER

INPUT
LAYER

HIDDEN
LAYER

OUTPUT
LAYER  

Fig.8: Error diagrams relating to ANN analysis (from PEPITo®) 
 
We used two ANNs, Fig.8:   

1. One with 5 input parameters (‘family’, ‘section surface’, ‘thickness’, ‘section weight divided 
by length’, ‘distance between stiffeners’), a hidden layer of 5 nodes and 1 output parameter 
(‘straightening cost’); 
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2. One with 9 input parameters (‘family’, ‘section surface’, ‘thickness’, ‘section weight divided 
by length’, ‘distance between stiffeners’, ‘steel grade’, ‘special flag and double bottom flag’), 
a hidden layer of 5 nodes and 1 output parameter (‘straightening cost’); 

 
The left side of Fig.8 shows histogram errors of the ANN analysis. It compress the value to be 
predicted (‘straightening cost’) and the value predicted (‘straightening cost coming from the output of 
ANN’) during the validation test of the results. The error dispersion is less large in the model at 9 
inputs than in the model at 5 inputs. Indeed, the correlation obtained is 0.744 for the model at 5 inputs 
and 0.888 for the model at 9 inputs. However, the method has its limits. Since the recordings were 
restricted to the works realised by the shipyard workers, the quantity of data exploited was small and 
thus the robustness of the formula was not very good. When we constructed the error diagrams, we 
voluntarily tested the equation on the same data set than the one used to establish the relation. As a 
consequence, the precision given will be optimistic. We await  new data to test the results with a test 
set different than the learning set. 
 
The analysis of the sensibilities consists in modifying the value of an input attribute (the others being 
maintained constant) and to observe this impact on the output variable. This methodology has several 
advantages: visualise a projection of the multi-parameters relation in a two dimensions graphic, 
understand the validity domains, and outline the influence of different variables. Fig.9Erreur ! 
Source du renvoi introuvable. presents the relation sensibility towards the family attribute; the other 
parameters being maintained fixed to their average value. We observe a normal comportment; e.g. the 
section coming from superstructures have small thickness and are thus characterised by an important 
straightening contrary to the sections of hull bottom. 
 

 
Fig.9: Sensitivity towards the family attribute 

 
5 Conclusions 
 
This data mining study, respecting a rigorous protocol for analyzing the data (since the CRISP-DM 
methodology was used), has shown how various prediction models of the straightening workload (in 
h/m²) for deck plate in passenger ships can be designed. We consider that the data mining analysis 
process and the related tools available on the market will provide an important added value in 
modelling the ship industry. 
 
Among the various modelling techniques offered in PEPITo®, we privileged the regression 
techniques (prediction of a numerical continuous variable) of non-linear type and in particular the 
hybrid techniques using jointly the decision tree analysis and the artificial neuronal networks. This 
choice was led by the observation of the very weak linear correlation existing between straightening 
cost and the scantling variables within this data base. 
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The advantages of data mining utilisation are: 
 

- Selection of the most relevant variables before artificial neuronal network analysis thanks to 
the decision tree. Moreover, the preliminary identification of the key factors improves the 
effectiveness of the ANN and reduces the computing times. 

- Prediction accuracy brought by the method of the ANN. 
 
We believe that data mining will become an important approach for ship design and production. 
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