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In this paper, we compare the elemental and isotopic (C, N, Pb) geochemistry of 

lake sediments from two contrasted environments in South-Central Chile. The first lake, 

Laguna Chica de San Pedro (LCSP), is situated in the urbanized area of the Biobio 

Region (36°S). The second lake, Lago Puyehue (40°S), is located 400 km to the 

southeast of LCSP and belongs to an Andean national park. Our aim is to identify 

environmental impacts associated with increasing industrial activities and land-

degradation during the last 150 years. In LCSP, shifts in C/N atomic ratios, δ13C and 

δ15N from 1915–1937 to the late 80’s are attributed to successive land-degradation 

episodes in the lake watershed. Based on a Pb isotopic mixing model, we estimate that 

up to 20% of lead in LCSP sediments is supplied from urban atmospheric pollution. By 

contrast, human impact in the watershed of Lago Puyehue is very limited. We observe 

no change in organic geochemistry during the last 150 years and lead contamination 

remains lower than 5%, even during the last decades. Although contamination levels are 

much higher in LCSP than in Lago Puyehue, a peak in anthropogenic Pb is recorded 

during the same period (1974–1976) at both sites. This maximum contamination level is 

consistent with increased industrial activity in the vicinity of Concepción.  

 

Supporting information may be found in the online version of this article. 
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Lake sediments constitute sensitive archives of environmental changes affecting the 

lakes and their catchments (e.g., Smol, 2008). Since geochemistry of lake sediments is 

largely controlled by the nature and the processes occurring in the lake catchment 

(Mackereth, 1966; Engstrom and Wright, 1984), sedimentary geochemistry is one of the 

best methods to reconstruct paleoenvironmental changes that occurred in lake 

watersheds. Moreover, recent improvements in dating techniques (e.g., 210Pb, 14C) of 

recent sediments allow sediment cores to be used as faithful recorders of recent human 

impacts (Smol, 2008). For instance, variations in sedimentation rates have been used to 

study historical changes in erosion processes and assess land-use changes during 

historical times (Debels et al., 1999; Luque and Julia, 2002). Paleolimnological 

approaches have also been used to support studies of identification of metal pollution in 

aquatic environments (Smol, 2008). Among metals, lead is a good pollution indicator 

that is immobile in natural environment archives such as lake sediments (Bränvall et al., 

2001). Recently, stable Pb isotopic signatures of lake sediments have been used to trace 

the source of anthropogenic contaminations associated with Pb (e.g., Gallon et al., 

2005, Hou et al., 2006, Couillard et al., 2008).  

Carbon to nitrogen elemental ratios, as well as stable carbon (δ13C) or nitrogen 

(δ15N) isotope ratios of sedimentary organic matter is frequently used to reconstruct 

sources of sedimentary organic matter and past lake productivity (e.g., Schelske and 

Hodell, 1991; Brenner et al., 1999; Meyers, 2003; Perdue and Koprivnjak, 2007; Das et 

al., 2008). Organic geochemistry reflects the autochtonous or allochtonous origin of the 

organic matter, i.e., aquatic-derived organic matter vs. terrestrial vegetation. Since 

terrestrial plants are characterized by C-rich and protein-poor structural material, their 

C/N atomic ratios is generally well above 20 (Meyers and Terranes, 2001). On the 

contrary, the C/N ratio of lake plankton averages 8 to 10, which makes the C/N ratio of 

lake sedimentary organic matter a useful tool to reconstruct organic matter origin, and 

environmental changes that occurred in lakes and their watersheds. Similarly, the 

carbon isotopic composition of organic matter in lake sediments is influenced by both 

organic matter sources and paleoproductivity rates (Meyers and Terranes, 2001). 

Therefore combining organic geochemical composition and stable carbon or nitrogen 

isotopic signature of lake sedimentary organic matter generally reveals important clues 

about past lake productivity and changes in terrestrial supplies.  
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Lead isotopes analysis has been applied to diverse materials in order to assess 

spatial and temporal changes of recent pollution from industries and from leaded 

gasoline (e.g., Shirahata et al., 1980; Rosman et al., 1993; Véron and Church, 1997). 

The sources of lead preserved in sedimentary archives are diverse and can be traced 

using their isotopic signature (Renberg et al., 2002), which depends on the geological 

origin and age of the original lead-bearing rocks and sediments (Faure, 1986). 

Naturally, lead is transported to sedimentary environments through weathering of soils 

and bedrock or more directly within mineral matter eroded from the catchment. The 

anthropogenic source of lead is associated with airborne particles from leaded gasoline 

and industries. Alkyl-lead, a common man-made organic form a lead, has been used as 

a fuel additive to reduce "knock" in combustion engines since the 1920s (Bollhöfer and 

Rosman, 2000). Other major sources of atmospheric Pb are mining, smelting, refining 

of non-ferrous metal, waste incineration and coal burning (Nriagu and Pacyna, 1988, 

Bollhöfer and Rosman, 2000). Lead is also associated with the emission of other 

pollutants and it has been used to study long range transport and atmospheric mixing 

processes responsible for the pollution of remote environments (e.g., Duce et al., 1983).  

Prior to the advent of lead pollution, atmospheric deposition contributed an 

insignificant fraction of lead accumulated in lake sediments relative to the supply from 

the catchment (Bindler et al., 2001). However, since ancient times, lead derived from a 

variety of human activities has been transported atmospherically and deposited on lakes 

and their catchments (Renberg et al., 2002). In modern times, anthropogenic lead 

accounts for approximately 95% of the global lead cycle (Settle and Patterson, 1980). 

On a global scale, ∼85% of industrial Pb emissions are introduced in the atmosphere in 

the Northern Hemisphere (Schaule and Patterson, 1981). Taking into account the 

residence time of Pb-rich aerosols in the atmosphere (∼10 days — Settle and Patterson, 

1991), those Northern Hemisphere emissions have a negligible impact on the Southern 

Hemisphere (Bollhöfer and Rosman, 2000).  

Early studies of atmospheric contamination of lake sediments focused on long-

established industrialized regions of Europe and North America (Boyle, 2001). More 

recently, work has been undertaken in the newly industrialized countries and in areas 

less directly influenced by industrial activities. However, the Southern Hemisphere 

remains relatively understudied. Here, we use stable lead isotopes (new data) and 

organic geochemistry (new data and data from Bertrand et al., 2005) to identify the 

environmental impacts associated with increasing industrial activities and land-
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degradation during the last 150 years in South-Central Chile. We compare sedimentary 

geochemical records from two contrasting lake settings, i.e., Laguna Chica de San 

Pedro, which is located in an urbanized area and thus immediately affected by 

pollution, and Lago Puyehue, which is located in an Andean national park with very 

limited human activities. Our aim is to investigate the local and global impacts of 

anthropogenic activities in Chile, i.e., one of the most industrialized countries in South 

America, with over 90% of its population living in urban areas. 

 

2. Material and study area 

2.1. Location 

Laguna Chica de San Pedro (LCSP; 36º51´S, 73º05´W) is a mesotrophic coastal 

lake located in the vicinity of Concepción, at approximately 3.5 km from the Pacific 

Ocean (Fig. 1). It is situated in an industrial and highly populated region (population 

density is 32 x the Chilean average), at an altitude of 5 m.a.s.l. The bathymetry of the 

lake is rather simple, with a single basin that reaches a maximum depth of 18 m in its 

center (Urrutia et al., 2000a). LCSP presents a surface area of 0.82 km2 and a small 

drainage basin of 4.5 km2 (Urrutia et al., 2000a, Parra et al., 2003), which belongs to 

the metamorphic mountain range of Nahuelbuta. LCSP is surrounded by mountains of 

Precambrian metamorphic rocks (shale, phyllite) on its eastern side and by Late 

Pleistocene and Holocene fluvial sandy sediments on its western side (Acencio, 1994; 

Chirinos, 2005). The watershed of LCSP is a narrow basin, elongated in a North-South 

direction with steep western and eastern flanks (Debels et al., 1999). It is covered by 

alfisols (soils developed under temperate forests), which are characterized by a clayey 

matrix with some quartz grains (Cisternas, 2000). Only one small river drains the 

watershed of LCSP, and flows into the lake in its southern part. Since the late 19th 

century, human activities have affected the lake and its watershed through clear-cutting 

of the native forest, wheat growing, introduction of exotic trees, and urbanization 

(Cisternas et al., 1999). The native forest occupied 70% of the lake watershed in 1943, 

and decreased to 13% in 1994. The introduction of the macrophyte Egeria densa in the 

mid 1980’s has created apparent oligotrophic conditions (Urrutia et al., 2000b).  

Lago Puyehue (40°40'S, 72°20'W) is an oligotrophic, moraine-dammed lake located 

at the foothill of the Cordillera de Los Andes, at approximately 50 km from the city of 

Osorno (Fig. 1). The lake lies at an elevation of 185 m.a.s.l. and has a complex 

bathymetry, with several sub-basins separated by a continuous bathymetric ridge and 
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with a series of small bedrock islands in its centre (Charlet et al., 2008). The lake has a 

surface area of 164 km² and a maximum depth of 123 m, and is located in a Tertiary 

valley over-deepened by Quaternary glacial advances (Campos et al., 1989). The 

watershed of the lake covers 1267 km² and is composed of Quaternary volcanic rocks 

that are generally buried under several meters of post-glacial andosoils (i.e., Trumaos) 

(Laugenie, 1982; Bertrand and Fagel, 2008). Several active volcanoes surround the 

lake: the Antillanca and Puyehue-Cordón de Caulle volcanic complexes eastward, and 

the Osorno volcano to the South (Fig. 1). The eastern part of the lake watershed belongs 

to a natural park (the Parque Nacional Puyehue) that is virtually free of anthropogenic 

influence. The population is concentrated in small lowly-populated villages along the 

southern shore of the lake. The whole region is dominated by westerly winds and the 

lake is fed by Rio Golgol to the East and by several smaller rivers (Fig. 1). Its outlet, 

i.e., Rio Pilmaiquen, merges with Rio Bueno and flows into the Pacific westward. Since 

1944, Rio Pilmaiquen has been damned by a hydro-electric station 6 km downstream of 

Lago Puyehue (Laugenie, 1982). The lake is monomictic, with stratification in summer 

and mixing during the winter months (Campos et al., 1989).  
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2.2. Coring and core processing 

In May 2003 duplicate sediment cores were taken in the central part of LCSP, at a 

depth of 17 m (Chirinos et al., 2005b). The sampling site was selected with the aid of a 

Lowrance X-16 sonar and sediment cores were obtained by divers using 1 m long 

Plexiglass tubes with an inner diameter of 5.8 cm. The sediment cores were then 

capped, sealed and stored at 4 ºC until analysis. For this work, one of the cores has been 

sampled in 1 cm thick slices. The core is 60 cm long and is composed of dark silty mud 

containing less than 5% of sand particles (Chirinos et al., 2005b). The sediment is 

dominated by detrital minerals (clays, plagioclase and quartz) with only a few diatoms 

(biogenic silica ~3–4%). Microscopically, the sediment is homogeneous without any 

laminations.  

In Lago Puyehue, the selection of the coring site is based on high-resolution seismic 

profiles obtained in February 2002 (Charlet et al., 2008). Site PU-II is located on a sub-

aquatic moraine ridge at 48.4 m depth in the southern part of the lake (Fig. 1). The site 

is under the influence of interflows from the Golgol river. At PU-II site, five short cores 

were taken using a Uwitec short gravity coring device. For this paper, core PU-II-P4 

has been opened described and sampled every 1 cm. Organic geochemistry was 
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measured on parallel core PU-II-P5. Macroscopically, sediment core PU-II-P4 is 

composed of homogeneous to finely laminated silty sediments, and contains a few 

tephra layers. The core contains two fine green layers representing the in-situ alteration 

of pumices at 4.0–4.5 cm and at 8.5–9.0 cm, and two sandy tephra layers at 12.0–12.5 

cm and 42.0–42.2 cm (Bertrand et al., 2005, 2008). Microscopic observations reveal 

the occurrence of annually laminated sediments composed of an alternation of 

terrigenous clays and diatomaceous clays, except for a massive layer between 3.5 and 6 

cm (Boës and Fagel, 2008).  

In addition to the sediment cores, soil and river sediment samples were collected in 

the watersheds of both lakes. In the watershed of LCSP, we sampled two soil profiles, 

as well as the sediment of the only river flowing into the lake (Fig. 1). In the watershed 

of Lago Puyehue, we collected 21 river sediment samples and 12 soil sediment samples 

from two distinct profiles. The results obtained on these samples are detailed in 

Bertrand et al. (in press). In both cases, the samples have been sieved at 105 μm and the 

fine fraction of the sediment has been analyzed for bulk organic geochemistry 

according to the methods described hereafter. Some of these samples have also been 

analyzed for lead isotopes (see Tables 3a and 3b, online supporting information). 

 

2.3 Chronology 

The age-depth model of LCSP sediment core (Fig. 2) is based on 210Pb 

concentrations (Chirinos et al., 2005a). Ages have been estimated using the constant 

rate of supply model (CRS) and are listed in Table 2a (online supporting information). 

The oldest available 210Pb date corresponds to AD 1880 ± 26 years, at a depth of 18 cm. 

Here, we focus on the upper 20 cm of the sediment core, which represents the last ∼150 

years. Low sedimentation rates have been calculated between 14 and 18 cm (as low as 

0.04 mm/yr), and the highest sedimentation rates occur at 9–10 cm (1.5 mm/yr, AD 

1976–1977).  

For the sediments of PU-II coring site, the age-depth model (Fig. 2) is based on 

varve-counting results obtained on parallel core PU-II-P5 (Boës and Fagel, 2008). They 

are in agreement with radionuclide profiles (210Pb and 137Cs; Arnaud et al., 2006) and 

with the recognition of historically-documented event deposits (Boës and Fagel, 2008, 

Bertrand et al., 2008). In particular, the massive layer microscopically described at 3.5–

6 cm has been attributed to the 1960 Valdivia earthquake and used as a time-marker 

(Boës and Fagel, 2008). In this paper, we focus on the upper 22 cm of PU-II-P4 
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sediment core, which covers the last ∼150 years (1833–1842 AD at 21.5 cm). 

Sedimentation rates vary from 0.7 to 1.7 mm/year (Table 2b, online supporting 

information).  

 

3. Methods 

3.1 Bulk organic geochemistry 

Stable isotope ratios of carbon and nitrogen were measured by  

continuous flow isotope ratio mass spectrometry after sample combustion to CO2 and  

N2 at 1000°C in an on-line elemental analyzer. For PU-II-P5 sediments, approx 25 mg 

of sediment was oven-dried, ground and homogenized in an agate mortar, and analyzed 

on a FISONS NA 1500 NC elemental analyser in line with an Optima mass 

spectrometer (GV Instrument, Lab. Océanologie, ULg, Belgium). The other samples 

(LCSP, river and soils samples) were freeze-dried, ground and homogenized in an agate 

mortar, decarbonated using 1N sulphurous acid and analyzed at the UCDavis Stable 

Isotope Facility, USA, on an Europa Hydra 20/20 mass spectrometer in line with an 

ANCA-GSL elemental analyzer. Before introduction to the IRMS the gases were 

separated on a Carbosieve G column. Isotopic measurements are presented as δ values 

(‰) expressed relative to VPDB (δ13C) or AIR (δ15N) standards. The precision is 

calculated by replicate analysis of internal standards, i.e., sucrose (ULg, δ13C = -10.3 ± 

0.2 ‰) or a mixture of ammonium sulfate and sucrose (UCDavis, δ13C = -23.83 ‰, 

δ15N = 1.33 ‰).  For δ13C, the precision is 0.04 ‰ (UCDavis) or 0.20 ‰ (ULg), and 

the precision for δ15N is 0.18 ‰ (UCDavis).  

 

3.2. Inorganic geochemistry and Pb isotopes 

Total Pb and Ti concentrations of LCSP sediments were determined by ICP-OES 

with an accuracy of 16% for Pb and 1.5% for Ti (2 RSD, Chirinos et al., 2005b). For 

sediment core PU-II-P4, total Ti concentrations were determined by XRF on fused glass 

beads, with an accuracy of 3 % (Bertrand et al., 2005) and total Pb was estimated by 

MC-ICP-MS (accuracy: 10%). 

For Pb isotopes, ~500 mg of sediment was heated at 550°C overnight to volatilize 

organic matter. The weight loss-on-ignition at 550°C ranges between 13 to 16% for 

LCSP sediments (Chirinos, 2005) and vary between 1.5 and 11% for PU-II-P4 

sediments (Bertrand et al., 2005). The samples (~50 mg for LCSP and 100 mg for PU-
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II-P4) were subsequently dissolved in closed Teflon beakers in an HF-HNO3 mixture, 

and placed on a hot plate (110°C) for 3 days. The solution was then evaporated to 

dryness, re-dissolved in HCl, re-evaporated and finally dissolved in 0.8N HBr. Lead 

(Pb) was chemically extracted using an AG1-X8 anionic resin loaded in a 2 ml column 

in an HBr environment (Manhès et al., 1978). Pb isotopes were measured using a Nu-

Plasma Multi Collector-Inductively Coupled Plasma-Mass Spectrometer (MC-ICP-MS) 

at the 'Département des Sciences de la Terre et de l’Environnement' (DSTE - Université 

Libre de Bruxelles). As an internal isotopic standard, a thallium solution was added to 

each sample and standard to monitor and correct for mass dependent isotopic 

fractionation. Whilst the samples were characterized by a large variability in Pb 

concentrations, the sample solutions were prepared to obtain a beam intensity in the 

Axial collector (204Pb) of minimum 100 mV, and a Tl/Pb ratio of ~ 0.2, matching the Pb 

and Tl concentrations of the NBS981 standard (200 ppb in Pb, added with 50 ppb in Tl). 

Tl/Pb ratio was relatively stable from one day of analysis to another. For PU-II-P4 

sediments, Tl/Pb ranges between 0.14 and 0.23. For LCSP, this ratio is usually less than 

0.5, except for one sample (0.58). In the course of the study, measurements of NBS981 

yielded weighted average values of 36.7158 ± 0.027 (2SD) for 208Pb/204Pb, 15.4969 ± 

0.011 for 207Pb/204Pb, 16.9399 ± 0.0011 for 206Pb/204Pb, 0.9148 ± 0.0001 for 207Pb/206Pb, 

and 2.1674 ± 0.0007 for 208Pb/206Pb, which are in good agreement with long term 

laboratory values (n = 1000, 208Pb/204Pb = 36.7130 ± 0.012 (2SD), 207Pb/204Pb = 

15.4950 ± 0.004 (2SD), 206Pb/204Pb = 16.9393 ± 0.0044 (2SD)), with the TIMS values 

published by Galer and Abouchami (1998), and with the MC-ICP-MS values of Weis et 

al. (2006). These values are also in agreement with TIMS triple-spike values previously 

published by Galer and Abouchami (1998). Although the NBS981 standard results were 

within error of the triple-spike values after online correction for instrumental mass bias 

by Tl addition, the results were further corrected by the sample-standard bracketing 

method (as described by White et al. (2000) and Weis et al. (2006)) to circumvent any 

instrumental drift during the analytical session. Duplicates of the entire analytical 

procedure (n = 7) are reported in Table 3 (online supporting information), and all fall 

within error bars.  

 

4. Results 

4.1. Laguna Chica de San Pedro 
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The TOC and TON profiles of LCSP are roughly parallel, with the TOC and TON 

values ranging from 3.1 to 5.0 % and 0.3 to 0.5 %, respectively (Fig. 3a). The C/N 

atomic ratio varies from 11.2 to 15.2. The carbon and nitrogen isotopic values range 

from -22.8 to -27.6 ‰ and 2.7 to 4.6 ‰, respectively. Two significant changes are 

observed in all the variables at around 5 cm and 14 cm depth (Fig. 3a). The samples 

collected in the lake watershed show values typical for terrestrial organic matter (C/N: 

16.5 ± 1.0; δ13C: -25.8 ± 0.9; δ15N: 7.6 ± 2.5), with no significant difference between 

the river sediment sample and the soil samples (Table 1a, online supporting 

information). 

Lead concentration and isotopic composition has been determined in thirteen 

samples from LCSP sediment core and on a few samples from the catchment (soil 

profiles and river sediments, see location on Figure 1) (Figs. 4-6; Tables 2a and 3a, 

online supporting information). The Pb composition of LCSP sediments remains 

relatively stable in the lower core section, i.e., in the interval between 11 and 20 cm 

corresponding to sediments older than 1972 A.D (Fig. 5). For instance the mean 
206Pb/204Pb ranges around 18.533 ± 0.022 (2 SD). Then a shift to lower 206Pb/204Pb, 
207Pb/204Pb and 208Pb/204Pb ratios is observed in the upper 10 cm (Figs. 5 and 6). It is 

especially pronounced in the last 3 cm, i.e., in sediments younger than 1992 (Fig. 5). 

The 206Pb/204Pb ratio decreases down to 18.257 ± 0.022 in the upper 0–1 cm sample. 

The range of variation in 206Pb/204Pb ratio (standard deviation = 0.079) reached in the 

upper section is 4-fold higher than in the lower section. Note that the general trend in 

the Pb isotopic profile, in particular the uppermost sharp shift, is confirmed by the three 

duplicate analyses reported on Fig. 5. The signature of the soil and river samples is 

more scattered, with 206Pb/204Pb ranging between 18.481 and 18.768 (mean = 18.628; 

standard deviation = 0.11, online supporting information table 3a). The river sediments 

and the lower soil sample of site 2 display the highest isotopic ratios. The lowest 

isotopic ratios (e.g., 206Pb/204Pb = 18.4807 ± 0.0010) are recorded in the upper soil 

sample at site 2 (see Fig. 1 for location). At site 1 the two soil samples collected from 

the upper brown to black and lower red to brown horizons give similar Pb composition 

(e.g., 18.5847 ± 0.0009 < 206Pb/204Pb <18.5869 ± 0.0009, online supporting information 

table 3a). Those Pb ratios are more radiogenic than the lacustrine sediments values. For 

instance, all the 206Pb/204Pb values for LCSP are lower than 18.5644 ± 0.0018. The 

mean soil signature displays slightly more radiogenic 206Pb/204Pb ratios (18.593) than 

the lower core section (Fig. 5). 
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4.2 Lago Puyehue 

The TOC and TON profiles of the upper 22 cm of PU-II-P5 sediment core are 

roughly parallel (Fig. 3b), with particularly low values at 13.5 cm, which are due to 

the occurrence of a tephra layer (Bertrand et al., 2005). The lake sediments 

(excluding the tephra layer) are characterized by TOC and TON values ranging from 

1.9 to 3.6 %, and 0.3 to 0.2 %, respectively, and slightly decreasing towards the 

bottom of the core. The C/N ratio and the δ13C values do not show any particular 

trend, and the values range between 12.8 and 14.7 for C/N and -27.8 to -28.8 ‰ for 

δ13C. The river sediment samples are characterized by more terrestrial values that do 

not vary significantly between the different rivers (C/N: 13.1 ± 1.0 and δ13C: -27.2 ± 

0.5). Details regarding each particular river are given in Bertrand et al (in press).  

The Pb elemental and isotopic composition of 10 bulk sediment samples from 

sediment core PU-II-P4 are reported in figures 4, 5 and 6, and the data are presented 

in tables 2b and 3b (online supporting information). The Pb isotopic ratios vary 

within a narrow range in most of the studied core section. For instance, the 
206Pb/204Pb values are comprised between 18.5069 ± 0.0007 and 18.6097 ± 0.0008 

(Fig. 5). Similarly to the LCSP record, a slight excursion to lower 206Pb/204Pb, 
207Pb/204Pb and 208Pb/204Pb ratios occur in the upper sediment section. The change is 

gradual. It appears within the upper 3 cm, i.e., since at least 1976 AD (Fig. 5). Again, 

duplicates (n=5, online supporting information table 3a) confirmed the observed 

isotopic trend.  

 

5. Discussion 

5.1 Sources of organic matter and land-use changes over the last 150 years 

Here, we use the bulk organic geochemical data obtained on the sedimentary 

organic matter of LCSP and PU-II-P5 to reconstruct the variations in the main 

sources of organic carbon during the last 150 years. In lake systems, terrestrial plants 

and lake plankton generally have very similar δ13C values (-25 to -30 ‰ for lake 

plankton, -22 to -30 ‰ for C3 terrestrial plants) but significantly distinct C/N atomic 

ratios (Meyers and Teranes, 2001). Therefore, our interpretation in terms of sources 

of sedimentary organic matter is primary based on the carbon to nitrogen ratio data.  

 

5.1.1 Laguna Chica de San Pedro 
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In LCSP, the lake sedimentary organic matter represents a mixture of terrestrial 

organic matter (C/N: 16.5 ± 1.0) and lake plankton (C/N generally between 6 and 10, 

Meyers and Terranes, 2001). Shifts towards higher C/N ratios are interpreted as a 

higher supply of terrestrial organic matter and/or lower lake productivity and vice 

versa. At LCSP, the measured C/N atomic ratios and isotopic values display 

significant and concomitant shifts, evidencing a variable contribution of lake versus 

terrestrial organic matter during the last ~150 years. In the deepest part of the core 

(20–14 cm, i.e., 1880–1953 AD) the C/N ratios are relatively low (~12), evidencing a 

high contribution of lake plankton compared to the supply of terrestrial organic 

matter. Then, around 1950–1955, the C/N ratios and the TOC sharply increase, 

which probably represents a higher supply of terrestrial organic matter, with approx. 

~80% of the organic matter originating from the lake watershed. The C/N values 

remain high until around 1986, where they gradually decrease towards the present-

day conditions, reflecting a decrease in the terrestrial supply of sedimentary organic 

matter and/or higher lake productivity during the last 2 decades. During the last 17 

years, the TOC values are generally low, evidencing that the shift in the C/N atomic 

ratio at around 5 cm is most likely due to a decrease in the supply of terrestrial 

organic matter. A shift towards less negative δ13C and a concomitant decrease of the 

δ15N values (Fig. 3) between in ~1953 AD are in agreement with an increased supply 

of terrestrially-derived organic carbon during the 1953–1986 AD period. 

The significant increase in the supply of terrestrial organic matter to LCSP at 

around 1953 is strikingly consistent with a rapid increase in the total mass 

accumulation rate of sediment in the same core (Chirinos et al., 2005a) and in 

another core from the same lake (Cisternas and Araneda, 2001; Cisternas et al., 

2001). In addition, Urrutia et al. (2000b) observed a significant increase in terrestrial 

hydrocarbons and fatty acids in ~ 1945 in agreement with our interpretation. 

The observed changes in the supply of terrestrial organic carbon are most likely 

linked to anthropogenic activities in the watershed of LCSP, mostly related to 

deforestation. Although the replacement of the native forest by commercial 

plantation in the watershed of LCSP began at the end of the 19th century, it only 

became intensive in the mid 20th century (Debels et al., 1999; Urrutia et al., 2000b, 

Cisternas et al., 2001). In 1943, the native forest still occupied 70% of the watershed 

area and no area had been left deforested (Cisternas et al., 2001). Between 1943 and 

1955, 17% of the forest had been logged and replaced by exotic species. Most of the 
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native species disappeared between 1943 and 1994 (from 70.1% to 12.6 %). 

Although some of them have been replaced by pine plantations, deforested areas 

started to occur in 1961, and were covering up to 22% of the lake watershed between 

1961 and 1981 (Cisternas et al., 2001). In 1994, most of the watershed had been 

replanted with exotic species. In the watershed of LCSP, human settlement began in 

1961 and peaked in 1981 (Cisternas et al., 2001).  

Deforestation and denudation of the soil cover generally result in increased soil 

erosion and runoff of soil particles (including organic matter), which in turn triggers 

higher sedimentation rates in lake sediments (e.g., Page and Trustrum, 1997). The 

increased supply of terrestrial organic matter in the sediments of LCSP between 1953 

and 1986 is in good agreement with the peak of anthropogenic activities in the lake 

watershed, especially deforestation, clear-cutting of indigenous species and human 

settlement. After 1986, our results show a decrease in TOC and C/N, which reflects a 

decrease in the supply of terrestrial organic matter into the lake. This change is very 

likely related to the stabilization of the soils in the lake watershed in response to 

reforestation after 1981. It is noteworthy that the anthropogenic introduction of the 

macrophyte Egeria densa in LCSP in the mid-eighties (Urrutia et al., 2000b) is not 

directly recorded in the lake sediments (i.e., no increase in C/N), although it acted a 

sink for nutrients, resulting in the actual apparent oligotrophication of the lake. 

 

5.1.2 Lago Puyehue 

The sedimentary organic matter of core PU-II-P4 is composed of a mixture of 

terrestrial and aquatic end-members that are characterized by average C/N atomic 

ratios of 13.7 (river sediment), 14.6 (soils and paleosoils), and 8.5 (lake plankton), 

respectively (Bertrand et al, in press). By contrast with the sediments of LCSP, the 

sediments of Lago Puyehue show rather stable C/N and δ13C values during the last 

150 years (Fig. 3), ranging around 13.4 and 28.4 ‰, respectively. No significant 

trend is observed and the only excursions of the C/N ratio occur at 8–9 and 13–14 

cm, in relation with a clay layer (weathered pumices) and a sandy tephra layer, 

respectively. Because of the remote location of Lago Puyehue and its situation within 

a national park, anthropogenic impacts in the lake watershed are very minor, and do 

not affect the soil erosion and the terrestrial runoff. Neither can they modify the lake 

trophic conditions. Therefore, the composition of the bulk sedimentary organic 

matter in Lago Puyehue reflects the natural supply and export production of 
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terrestrial and aquatic organic matter. Changes in its composition over longer time-

scales are driven by natural variations in lake productivity, resulting from natural 

changes in the supply of nutrients to the lake (Bertrand et al., 2005). The sediments 

of Lago Puyehue are therefore a good archive of paleoclimate changes over the last 

millennia (Bertrand et al., 2005) and even since the Last Glacial Maximum (Bertrand 

et al., in press), but do no contain any evidence of anthropogenic impact.  

 

5.2. Sedimentary Pb isotopes: a record of human activities over the last 150 years 

Stable Pb isotopes in lake sediments are widely used in environmental studies as 

tracers of historical pollution (e.g., Bränvall et al., 1997; Arnaud et al., 2004; Vermillon 

et al., 2005; Couillard et al., 2008). Lead pollution in lake sediments can be traced using 

two distinct methods. The first one, generally less accurate than the second, uses lead 

concentrations. The second method, using lead stable isotopes, is much more precise, 

and generally allows to trace the sources of lead. Here, we compare estimates calculated 

by both methods. 

 

5.2.1 Estimation of anthropogenic lead using Pb concentrations 

Lead concentrations in sediments (Pbsample) integrate both the natural Pb 

associated with the sediment matrix, and the Pb supplied from atmospheric pollution. 

Therefore, the easiest method to estimate the anthropogenic fraction of Pb 

(Pbanthropogenic) in lake sediments is by subtracting the natural Pb concentration from 

the sample concentration (Fig. 4). To take into account the variations of Pb 

concentration related to change in sediment composition (i.e., dilution effect), the 

natural Pb fraction is estimated for each sample by using the sample concentration of 

a naturally-derived conservative element (Arnaud et al., 2004). Assuming that the 

natural Pb/Ti ratio is constant in the whole core, the anthropogenic Pb concentration 

is calculated following equation (1): 

Pbanthropogenic = Pbsample  - [(Ti sample * Pb/Tinatural)]  (1) 

where Pb/Tinatural is the Pb/Ti ratio measured in pre-anthropogenic sediments.  

The assumption that the Pb/Tinatural  ratio of pre-anthropogenic sediments is 

constant in the whole core is usually valid for lakes with catchments characterized by 

a relatively small size (like for LCSP) and/or by a simple and homogeneous geology 

(like for both lakes: metamorphic rocks in LCSP, dominant volcanic andesitic or 

basaltic rocks in Puyehue).  
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In order to compare distant records, anthropogenic Pb fluxes are generally more 

appropriate than concentrations (Arnaud et al., 2004). Therefore, we calculated the 

flux of bulk (Fbulk) and anthropogenic (Fanthropogenic) lead using the concentration data, 

the dry density D (g/cm3) and the sediment accumulation rate SAR (cm/yr) estimated 

from the respective age models:  

Fbulk = D * SAR * Pbsample     (2) 

Fanthropogenic = Fbulk * %Pbanthropogenic    (3) 

For PU-II-P4 sediment samples, the total Pb concentrations are low and vary 

around 8 ppm (standard deviation: 2 ppm), with slightly higher values after 1962 

(Fig. 4). This value is close to the natural background Pb concentrations (7 ppm) in 

the regional andosoils (Deraymaeker, 2003). The calculated Pbanthropogenic reaches its 

maximum (5 ppm) in the sample corresponding to year 1976, where it represents 

more than 40% of the total Pb (Fig. 4). It corresponds to the highest anthropogenic 

flux (1.0 mg/m2/yr).  

In LCSP sediments, the total lead concentration increases from 40 ppm in the 

pre-industrial samples (before 1965) up to a maximum of 58 ppm in the sample 

corresponding to year 1974 (Fig. 4). It corresponds to 18 ppm of Pbanthropogenic and an 

anthropogenic flux of 10 mg/m2/yr. The flux of Pbanthropogenic is the highest in 1985 

(16.1 mg/m2/yr) but is generally well above 10 mg/m2/yr between 1974 and 1991, 

where it represents up to 30% of the total Pb. 

In both lakes, we evidence a peak in Pb concentration in 1974–1976 (Fig. 4). 

Taking into account the error in age model and the sampling resolution, it 

corresponds to a synchronous change despite the contrasted environments of the two 

lake settings. Such change underlines the global character of the Pb contamination in 

Chile. The contamination by industrial airborne particles is approximately 10 times 

greater in LCSP than in Lago Puyehue, reflecting the natural setting characterizing 

the region of Puyehue. Interestingly, the inception of airborne pollution in LCSP is 

consistent with the detection of spheroidal carbonaceous particles, i.e., residue of 

fossil fuel combustion, in LCSP sediments. Indeed, using the same sediment core, 

Chirinos et al. (2005a) have detected the occurrence of SCP only in sediments 

younger than 1976 (first 11 cm of the sediment core). Detection of contamination in 

newly industrialized countries and in areas remote from industry can be difficult and 

it is important to pay attention to estimation of the natural concentrations, especially 

in region where atmospheric contamination is minor (Boyle, 2001), as it is the case 
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in Chile. Even if Concepción is one of the most industrialized cities in Chile, the flux 

of anthropogenic Pb recorded in the sediments of LCSP (10–15 mg/m2/yr) is still 2–3 

times lower than in the French Alps and in Canada (30 mg/m2/yr, Arnaud et al., 

2004; Ndzangou et al., 2005). 

 

5.2.2 Estimation of anthropogenic lead using Pb stable isotopes 

The anthropogenic lead content can similarly be calculated using lead stable 

isotopes, with the main advantage that we can now discuss the possible sources of 

anthropogenic lead. The downcore records of the 206Pb/204Pb ratio are illustrated in Fig. 

5. They show that the Pb isotopic composition of the two sedimentary environments 

depicts a similar trend through the last ∼150 years, with less radiogenic values in the 

most recent sediments. The isotopic sedimentary Pb signatures are relatively constant in 

older sediments (Fig. 5). The 206Pb/207Pb and 208Pb/206Pb results are illustrated in Fig. 6. 

At both sites, we note a decrease of the 206Pb/207Pb and an increase of 208Pb/206Pb ratios 

towards the surface (Fig. 6b). The shift seems to start earlier in the sediments of LCSP 

than in those of Lago Puyehue, (i.e., between 1969 and 1976 and between 1976 and 

1990, respectively), although this might be affected by the relatively low sampling 

resolution. These trends evidence a supply of anthropogenic Pb than can be estimated 

using Pb isotopes after identification of the isotopic signatures of the natural and 

anthropogenic sources. In both lakes, the lead isotopic compositions (206Pb/207Pb – 
208Pb/206Pb) are distributed along two different trends (Fig. 6), which can be interpreted 

as mixing lines between two end-members. One end-member represents the regional 

natural background sedimentation. The other end-member, characterized by lower 
206Pb/207Pb and higher 208Pb/206Pb ratios, coincides with the anthropogenic source. 

 

a. Identification of the natural sources of lead 

In lake sediments the “old” or pre-industrial samples are usually used as 

representative of the isotopic composition of the sediment matrix (e.g., Arnaud et al., 

2004). In Lago Puyehue, a long record of the sedimentary Pb composition is 

available (Deraymaeker, 2003). The range of variation of Pb ratios measured on an 

11 m-long core (PU-II) is narrow. The Holocene and deglacial sediments are 

characterized by stable Pb isotopic signatures. Their averaged signature ratios 

(206Pb/207Pb ∼1.191; 208Pb/206Pb ∼2.071) are therefore used to characterize the natural 

end-member. The definition of this natural end-member is consistent with regional 
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soil and volcanic rock data (Fig. 6). The Puyehue catchment is covered by volcanic-

derived soils (“Trumaos”, Bertrand and Fagel, 2008), characterized by 206Pb/207Pb 

and 208Pb/206Pb ratios of 1.192 and 2.070, respectively. The Trumaos signature is 

therefore in good agreement with the sedimentary pre-anthropogenic Pb isotopic 

composition (Deraymaeker, 2003; Fig. 6). The average Pb isotopic composition of 

the volcanic rocks from the surrounding area also perfectly agrees with the 

composition of the pre-industrial sediments. For instance the mean 206Pb/204Pb value 

calculated for the Southern Volcanic Zone (SVZ) between 36 and 41°S (18.5984 ± 

0.0619, online supporting information table 3b) perfectly agrees with the 

sedimentary 206Pb/204Pb values of PU-II-P4 below 3 cm (Fig. 5). In the 208Pb/206Pb - 
206Pb/207Pb biplot (Fig. 6), the mean SVZ signature (206Pb/207Pb: 1.192, 208Pb/206Pb: 

2.068–2.070) is adjacent to the Trumaos-representative signature.  

According to the 210Pb age model, the sediment core from LCSP can be divided 

into a pre-industrial period before 1915 (below 16 cm) and an industrial period after 

1915 (Chirinos et al., 2005b). We can therefore estimate the natural Pb isotopic 

signature by the averaging the results of the 3 lowest samples, resulting in 206Pb/207Pb 

and 208Pb/206Pb ratios of 1.186 and 2.084, respectively (online supporting information 

table 3a). Unfortunately, there is a lack of data regarding the Pb isotopic composition 

of rocks in the region of Concepción. However, in January 2007 we collected and 

analyzed several sediment samples from soils outcropping around the lake and from 

the only river flowing into LCSP. Although we are aware this sampling is not 

exhaustive, it gives an estimate of the scattering of the natural Pb isotopic 

composition of the LCSP watershed. The mean watershed signature (206Pb/207Pb: 

1.192, 208Pb/206Pb: 2.079) and the mean soil signature (206Pb/207Pb: 1.190, 
208Pb/206Pb: 2.080) are comparable to the Pb isotopic composition of the pre-

industrial LCSP sediment samples (Fig. 6). The only outlier is soil 2A, which has 

been collected in the upper part of an outcrop in the southern part of the lake 

watershed, and may therefore contain industrial lead. 

 

b. Identification of the anthropogenic sources of lead 

The composition of the anthropogenic end-member is influenced by Pb 

atmospheric emissions related to alkyl-lead and industrial activities. Bollhöfer and 

Rosman (2000) have analyzed aerosols collected between 1994 and 1999 at >70 sites 

widespread in Southern Hemisphere in order to define the modern isotopic signature 
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for atmospheric lead. The isotopic composition in Chile is characterized by low 
206Pb/207Pb ratios (down to 1.06 at the Southern tip of Chile), probably reflecting the 

supply of alkyl-lead from the UK producer Associated Octel, i.e., the world’s 

primary alkyl-lead producer. Associated Octel has used Pb from different ores (e.g., 

Broken Hill in Australia) in variable proportions with time and location (Véron et al., 

1999). In Chilean airborne samples, the 206Pb/207Pb ratio, for instance, increases 

northward, from Punta Arenas (1.063) via Villarica (1.069) and Concepción (1.103) 

up to a maximum ratio of 1.150–1.182 in Santiago (see online supporting 

information table 3). This shift can be explained either by different market shares in 

petrol (different alkyl-lead mixings provided to different cities) or by a change in 

relative contribution of industrial Pb and leaded petrol. Industrial activities may be a 

more important source of atmospheric Pb in Santiago than at the Southern tip of the 

country. Keeping in mind this spatial variability, we selected the lead isotopic 

signature of airborne particles from the closest city of each lake (Concepción for 

LCSP, Villarica for Puyehue) to characterize the anthropogenic end-member of each 

location.  

 

c. Estimation of natural vs. anthropogenic lead contribution using Pb isotopes 

Assuming that the lead isotopic composition of each sample is a mixture of only 

two sources, i.e., natural lead derived from soil and rocks from the catchment 

(ISnatural) and anthropogenic lead (ISanthropogenic), we can estimate the relative 

contribution of natural and anthropogenic lead using a simple binary mixing model 

(equation 4 — e.g., Renberg et al., 2002): 

ISsample = α * ISanthropogenic + β * ISnatural , with α + β = 1   (4) 

The end-members used in our calculation and the calculated mixing-lines are 

reported on figure 6b. In the region of Puyehue the contribution of anthropogenic Pb 

always remains lower than 5% during the last 150 years (Fig. 6). This low 

environmental contamination level persists during the late decade. At LCSP, the 

fraction of antropogenic Pb significantly increases during the recent years (Fig. 6), 

from less than 5% between 1945 and 1994, to 10% in 1998 and even 20% in 2002 

(Fig. 6b).  

 

5.2.3 Anthropogenic lead: general interpretation and comparison of the two 

estimates 
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Although several studies suggest that the main process of anthropogenic lead 

incorporation into lake systems is direct atmospheric deposition (Dillon and Evans, 

1982; Blais and Kalff, 1993), others show that pollutants previously deposited in lake 

catchments also contribute significantly to the global supply of Pb to lake sediments 

(Miller and Friedland, 1994). These studies however show that the anthropogenic lead, 

mainly deposited in lake catchments after 1960, will not be released to upland streams 

before the middle of the next century (Miller and Friedland, 1994), and has therefore no 

influence on the lake sedimentary records of Pb pollution. In addition, the recent 

increase in anthropogenic lead at LCSP can only represent a direct atmospheric supply 

since the reforestation of the LCSP watershed has stabilized soils and reduced the 

sediment supply to the lake. Keeping in mind that small variations in concentration may 

be difficult to interpret (Bränvall et al., 2001), we consider that the anthropogenic 

estimates using Pb concentrations fit noticeably well with our Pb isotopic approach. 

Although the estimates using Pb concentrations are constantly higher than the estimates 

using Pb isotopes, both methods show an increased anthropogenic lead supply for the 

last 30 years, which is much more distinct in the region of Concepción than around 

Puyehue.  

 

6. Summary and conclusion 

We used a geochemical approach combining elemental and isotopic carbon, 

nitrogen and lead, to compare the anthropogenic impact in South-Central Chile, as 

recorded in two contrasted lake settings, i.e., LCSP located near the city of 

Concepción (36°S) and Lago Puyehue, situated in a National Park at the foothills of 

the Chilean Andes (40°S).  

For the region of Puyehue both methods underline the minimal impact of 

anthropogenic activities on the natural sedimentation processes. Although the lake 

receives a small amount of anthropogenic lead from atmospheric deposition, its 

relative contribution is always lower than 5 %. Since no industrial activity takes 

place in the watershed of the lake, the anthropogenic lead deposited in Lago Puyehue 

probably originates from relatively long-distance atmospheric transport. A fraction of 

the Puyehue anthropogenic lead may also originate from road transport to Argentina, 

as one of the main routes to cross the Andes runs along the southern shore of the 

lake.  
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Recent sedimentation in LCSP reflects variable human activities in the region of 

Concepción during the 20th century. The bulk organic geochemical data provide clear 

evidence for deforestation episodes in the lake watershed from 1915–1937 to the late 

80’s, with an accentuation between 1943 and 1987, when most of the native forest 

has been logged and replaced by exotic species. Using two different approaches, we 

demonstrate that airborne pollution in the region of Concepción started to become 

significant sometime between 1974 and 1982. We estimate that anthropogenic lead 

constitutes up to 10 to 20% of total Pb supplies during the last decade. This 

interpretation is consistent with the detection of spheroidal carbonaceous particles, 

i.e., residue of fossil fuel combustion, in lake sediments deposited after 1976.  

Although the contamination levels are much higher around Concepción than in 

the region of Puyehue (the Pb anthropogenic flux is 10 times lower at Puyehue than 

at LCSP), the maximum Pb contamination is observed in the mid-seventies (1974–

1976) at both sites, suggesting a large-scale Pb pollution.  
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Figure 1 – Location of Laguna Chica de San Pedro (LCSP) and Lago Puyehue in 

South-Central Chile. Bathymetric maps are from Campos et al., 1989 (Puyehue) and 

Urrutia et al., 2000a (LCSP). LCSP1 and 2 indicate the location of the soil samples 

collected in the watershed of LCSP.  

 

Figure 2 – Age-depth models of cores LCSP and PU-II-P4, based on 210Pb 

analysis (LCSP, data from Chirinos et al., 2005a) and varve-counting (PU-II-P4, data 

from Boës and Fagel, 2008). For Puyehue, the open squares represent the average 

age of the 1-cm thick sediment samples used in this study and the error bars are 

calculated as the cumulated varve-number difference between three independent 

counts. 

 

Figure 3 – Bulk organic geochemistry of cores LCSP (a) and PU-II-P4 (b). 

Total Organic Carbon (TOC) and Total Organic Nitrogen (TON) are in weight 

%, and δ13C and δ15N are in ‰ relative to VPDB and AIR, respectively. Zones 1, 2 

and 3 (LCSP) indicate changes in bulk organic geochemistry, resulting from 

anthropogenic activities in the lake watershed (see text). Data are presented in tables 

1a and 1b (online supporting information). 

 

Figure 4 – Total, natural and anthropogenic lead concentrations (a), and flux of 

anthropogenic Pb (b) in sediment cores LCSP and PU-II-P4. 

In (a), the error bars cumulate errors associated with the geochemical analysis of Pb 

(± 10% for PU-II-P4, ± 16% for LCSP) and Ti (3% for PU-II-P4 and 1.5% for LCSP). 

In (b), the error bars cumulate the errors on anthropogenic lead concentrations, sediment 

accumulation rates and density. See online supporting information for data.  

 

Figure 5 – Temporal evolution of 206Pb/204Pb ratios measured on bulk lake 

sediments from LCSP and Lago Puyehue. The grey symbols correspond to duplicate 

analyses. “SVZ” (upper dashed arrow and dark grey area) refers to the isotopic 

composition of rocks from the Southern Volcanic Zone of Chile. “Trumaos” (vertical 

dashed arrow) refers to the isotopic composition of soils in the vicinity of Puyehue. 

“LCSP soils” (lower dashed arrow and light grey area) refers to the mean isotopic 
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composition of soils in the watershed of Laguna Chica de San Pedro. Data are 

presented in tables 3a and 3b (online supporting information).  

 

Figure 6 – 206Pb/207Pb vs. 208Pb/206Pb isotopic biplots.  

(a) Close up on the data obtained on the lake sediment samples. Open symbols 

represent duplicate analyses. The values calculated for the natural end-members are also 

indicated. SVZ: Southern Volcanic Zone.  

(b) Extended biplot showing the data obtained on the lake sediment samples, the 

selected end-members, and the mixing-lines (with 10% increments).  

For data and/or references see tables 3a and 3b (online supporting information). 
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