Prostate brachytherapy

192Ir or 125I prostate brachytherapy as a boost to external beam radiotherapy in locally advanced prostatic cancer: A dosimetric point of view

Philippe Nickers*, Benedicte Thissen, Nicolas Jansen, J.M. Deneufbourg

Department of Radiation Oncology, University Hospital of Liège, Liege, Belgium

Abstract

Purpose: This work aims at comparing the dosimetric possibilities of 125I or 192Ir prostate brachytherapy (Bt) as a boost to external beam radiotherapy in the treatment of locally advanced adenocarcinoma.

Methods and materials: From 1/1997 to 12/2002, 260 patients were treated. Until 12/2001 a low dose rate (LDR) treatment with 192Ir wires was used, later replaced by a high dose rate (HDR) delivered with an 192Ir stepping source technology. For the present work, we selected 40 patients including the last 20 treated, respectively, by LDR and HDR. The planning CT Scans of all these 40 patients were transferred into the 3D Prowess® system for 125I permanent implants design according to the Seattle method. The reference data for dosimetric comparisons were the V100 and the prescribed dose for 192Ir as well as the dose delivered with 125I techniques to the 192Ir V100. We compared V100-150 data as well as doses to the organs at risks (OR) and cold spots (CS).

Results: The V100 is 85.3 ± 8% for 192Ir LDR and 96 ± 2% for HDR techniques (P<0.0001). In comparison with 125I, the 192Ir LDR mode induces higher hyperdosage volumes inside the CTV but also more CS, while maximal doses to urethra and rectum are, respectively, 17 and 39% less with 125I (P<0.0001). In comparison with the 192Ir HDR mode, 125I Bt induces higher hyperdosage volumes and slightly more CS deliberately planned around the bladder neck. If delivered doses to urethra are identical, those to the 20% anterior part of the rectum are 33% less with 125I (P<0.0001).

The 125I Bt technique was only possible in 24 out of the 40 patients studied due to pelvic bone arch interference.

Conclusions: At the present time, there is no evident dosimetric superiority of one Bt method when all the criteria are taken into account. However, improving Bt techniques to implant any prostatic size could found the superiority of the 125I or permanent implants. 125I indeed allows large hyperdosage volumes inside the CTV in comparison with 192Ir HDR techniques while lowering doses to OR and minimizing CS.

Keywords: Prostate; Brachytherapy; Dosimetry; Selectivity; 125I; 192Ir

This work aims at comparing the dosimetric properties of 125I or 192Ir prostate brachytherapy (Bt) as a boost to external beam radiotherapy (EBRT) in the treatment of locally advanced prostate cancer. It also analyses the feasibility of 125I methods when 192Ir Bt techniques were possible.

The success of prostatic Bt is continuously growing. In the USA, it is now included in 36% of prostate radiation treatments [14]. It is indeed a highly conformal treatment allowing to easily spare the rectal mucosa while delivering doses 1.2-1.5 times higher than the prescribed dose (PD) to 50-70% of the clinical target volume (CTV) and mainly to the peripheral zone.

Exclusive Bt is one of the treatments of choice for good prognosis prostate tumours. It is however less satisfactory for intermediate or unfavourable prognosis cancers, offering 5 years biochemical no evidence of disease of 60% or less [1,3]. Combinations with EBRT are thus mandatory, leading to rates between 70 and 90% [4,5,9,17,21].

EBRT and Bt associations are numerous [4,5,9,17,21]. 192Ir high dose rate (HDR) Bt use has been encouraged as it takes benefits from the low α/β ratio of 1.5 Grays (Gy) of prostate tumours [7]. Severe late toxicity rates of 3-6% are reported [8,16]. Techniques using the very low dose rate [12] provided by 125I or 103Pd seem to induce the same percentages of 5 years biochemical no evidence of disease with severe late side effects of 1-2% [10,22]. One possible explanation consists in the high selectivity of Bt delivering particularly high doses to the CTV while minimizing the importance of the α/β factor. We wanted to test this hypothesis by comparing the dosimetric characteristics of both 192Ir and permanent implants techniques.
Methods and materials

From January 1997 to December 2002, 260 patients with locally advanced prostatic adenocarcinoma were treated with 192Ir Bt as a boost to EBRT.

Until December 2001, a low dose rate (LDR) treatment by 192Ir wires was used [19]. The treatment planning was calculated in 2D with the Isis® system (Curie Institute, Paris, France). The LDR was later replaced by a HDR delivered by a unique 192Ir source, using stepping source technologies. The treatment planning was calculated in 3D with the Theraplan 3.6 R® system now integrated in the Brachyvision® module (Varian Medical Systems, Haan, Germany).

During the whole evaluated period, the method of vector implantation remained unchanged and has been previously described [19]. In summary, 4-6 and sometimes eight lines were implanted according to the principles of the Paris system [6]. The majority of implants included a central square of 20-22 mm side at the centre of which ran the urethra at mid prostate (Fig. 1). At the base and apex, the urethra had to remain at equal distance from the two anterior lines. In case of large prostate sizes, 2-4 additional lines were implanted laterally in triangular shapes. Catheters were inserted manually without template, under endorectal echographic control to overcome problems of pelvic bone arch interference, to diverge slightly at the base of the prostate when the size increases and to modify the vectors travelling posteriorly to include the seminal vesicles at least in their caudal half (Fig. 2). The optimisation of the delivered dose was based on the rules of the Paris system assuming a homogeneous distribution of catheters inside the CTV. For the whole study the CTV was defined as the prostate with a security margin of 2 mm posteriorly, 5 mm from the pelvic bone arch and 3 mm from the remaining border, the caudal part of the seminal vesicles as postero lateral border of the prostate and 3 mm from the urethra at mid prostate (Fig. 1). At the base and apex, the urethra had to remain at equal distance from the two anterior lines. In case of large prostate sizes, 2-4 additional lines were implanted laterally in triangular shapes. Catheters were inserted manually without template, under endorectal echographic control to overcome problems of pelvic bone arch interference, to diverge slightly at the base of the prostate when the size increases and to modify the vectors travelling posteriorly to include the seminal vesicles at least in their caudal half (Fig. 2). The optimisation of the delivered dose was based on the rules of the Paris system assuming a homogeneous distribution of catheters inside the CTV. For the whole study the CTV was defined as the prostate with a security margin of 2 mm posteriorly, 5 mm from the posterior lateral border of the prostate and 3 mm from the remaining border, the caudal part of the seminal vesicles as well as from the prostatic base and apex.

With regard to LDR Bt, a selective loading of 192Ir wires with a linear activity of 10 μCi Gy⁻¹ cm⁻¹ m² was used as an additional mode of optimising the delivered dose. The prescription isodose, evaluated in a 2D mode, was considered as the mean of the different isodoses surrounding the CTV while avoiding the central region with the urethra. The 192Ir technique included a central square of 20-22 mm side at the centre of which ran the urethra at mid prostate (Fig. 1). At the base and apex, the urethra had to remain at equal distance from the two anterior lines. In case of large prostate sizes, 2-4 additional lines were implanted laterally in triangular shapes. Catheters were inserted manually without template, under endorectal echographic control to overcome problems of pelvic bone arch interference, to diverge slightly at the base of the prostate when the size increases and to modify the vectors travelling posteriorly to include the seminal vesicles at least in their caudal half (Fig. 2). The optimisation of the delivered dose was based on the rules of the Paris system assuming a homogeneous distribution of catheters inside the CTV. For the whole study the CTV was defined as the prostate with a security margin of 2 mm posteriorly, 5 mm from the posterior lateral border of the prostate and 3 mm from the remaining border, the caudal part of the seminal vesicles as well as from the prostatic base and apex.

With regard to LDR Bt, a selective loading of 192Ir wires with a linear activity of 10 μCi Gy⁻¹ cm⁻¹ m² was used as an additional mode of optimising the delivered dose. The prescription isodose, evaluated in a 2D mode, was considered as the mean of the different isodoses surrounding the CTV while avoiding the central region with the urethra. The 192Ir technique included a central square of 20-22 mm side at the centre of which ran the urethra at mid prostate (Fig. 1). At the base and apex, the urethra had to remain at equal distance from the two anterior lines. In case of large prostate sizes, 2-4 additional lines were implanted laterally in triangular shapes. Catheters were inserted manually without template, under endorectal echographic control to overcome problems of pelvic bone arch interference, to diverge slightly at the base of the prostate when the size increases and to modify the vectors travelling posteriorly to include the seminal vesicles at least in their caudal half (Fig. 2). The optimisation of the delivered dose was based on the rules of the Paris system assuming a homogeneous distribution of catheters inside the CTV. For the whole study the CTV was defined as the prostate with a security margin of 2 mm posteriorly, 5 mm from the posterior lateral border of the prostate and 3 mm from the remaining border, the caudal part of the seminal vesicles as well as from the prostatic base and apex.

The six lines for 192Ir Bt (2) diverge slightly from the apex to the base, allowing to overcome this dosimetric problem.

CTV on all CT Scan slices, 5 mm apart. The prescription isodose had to surround as homogeneously as possible the CTV but no more than 130% of the PD was tolerated to 20% of the urethra and no more than 75 and 50% to, respectively, 20 and 33% of the rectum.

Regarding the HDR, an inverse treatment planning philosophy was used as an additional way of dose optimisation [20]. Constraints for doses to CTV and organs at risk (OR) were similar to tolerance limits established for the LDR mode.

The last 20 patients treated in the LDR mode as well as the last 20 patients treated in the HDR mode were selected for the present work.

At first, the CT Scan data of the 20 patients treated in LDR with 192Ir wires were transferred in the Theraplan 3.6 R® module to calculate the delivered dose in 3D. This LDR was simulated by using equal dwell times all over the travelling of the 192Ir source.

Afterwards the CT Scan of the 20 patients treated in the LDR mode and of the 20 patients treated in the HDR mode, including also the contours of the CTV and OR delineated in the Theraplan 3.6 R® treatment planning, were transferred in the 3D Prowess R® system (Prowess Inc, Chico, USA) for 125I dosimetry. The design of a homogeneous seeds arrangement inside the CTV was performed according to the modified uniform Seattle approach [11] usually applied in our department for good prognosis tumours while ignoring deliberately any situation of pelvic bone arch interference. These problems were considered in a separate analysis. The seeds intended to deliver a theoretical PD to the CTV while sparing the rectal wall posteriorly [18]. A relative sparing of the bladder neck was also planned. Like for 192Ir techniques no more than 130% of the PD was tolerated to 20% of the urethra and no more than 75 and 50% to, respectively, 20 and 33% of the rectum.

Dose volume histograms were calculated for LDR and HDR 192Ir and for 125I Bt. The percentage of CTV having really received the PD with LDR and HDR 192Ir Bt (V100) [18] was determined as well as the corresponding dose delivered to this V100 with simulated 125I Bt. The latter dose was called 'normalised prescription dose' for 125I ('NPD) as a reference to allow comparisons between 192Ir and 125I Bt.

![Fig. 1. A perineal view of the prostate. The Clinical Target Volume (CTV) contour is indicated with the arrow. 1, 2 and 3 point out, respectively, the pelvic bone arch, the rectum and the urethra. The 125I technique includes 24 lines (4) distributed homogeneously inside the CTV while avoiding the central region with the urethra. The 192Ir technique is represented by six lines implanted in a central square and two lateral triangles (5).](image1)

![Fig. 2. The interference of the pelvic bone arch. All the lines designed for 125I brachytherapy (Bt) (1) cannot be implanted due to an important bone arch interference delineated by the dotted line. The six lines for Ir192 Bt (2) diverge slightly from the apex to the base, allowing to overcome this dosimetric problem.](image2)
methods. The volumes of CTV receiving 110-150% of the PD and 125INPD were also calculated (V110 to V150).

The cold spots (CS) were evaluated by the ratio of the minimal dose delivered to 99% of the CTV (D99) on the PD or 125INPD (D99/PD or D99/125INPD). This ratio thus increases with D99. The doses delivered to 20, 33 and 50% of the urethra and rectum were also calculated. We defined the UD20-33-50/PD, RD20-33-50/PD and UD20-33-50/125INPD, RD20-33-50/125INPD values corresponding, respectively, to the ratio of the minimal doses delivered to the hottest 20, 33 and 50% of the urethra and rectum on the PD or the 125INPD.

We finally looked if the seed arrangement designed in 125I Bt techniques was compatible with the pelvic bone arch, making the procedure technically feasible or not. Interference was searched by overlaying the treatment lines and the bone arch on 3D views (Fig. 2).

Paired Student t-test was used to compare the different dosimetric data obtained from LDR and HDR 192Ir and from the bone arch on 3D views (Fig. 2).

Results

The V100 is 85.3 ± 8% in the 192Ir LDR mode against 96 ± 2% for the HDR mode (P < 0.0001). The V110 to V150 are 78.2 ± 9% to 41.8 ± 10.3% for 192Ir in the LDR mode and 89.1 ± 3.7% to 38.8 ± 6.7% in the HDR mode. These differences are significant (P < 0.001) except for the V130 and V150. The CS expressed by the ratio of the UD20-50 on the PD or 125INPD, UD20/PD- 125INPD, UD33/PD- 125INPD and UD50/PD-125INPD were also calculated (V110 to V150).

When 192Ir in the HDR mode and 125I Bt techniques are compared for the same V100, the 125I V110-150 are 2.5% (P = 0.02) to 36% (P = 0.003) greater than those obtained with 192Ir. The delivered doses by 125I Bt to the urethra and rectum are weak, with RD20/125INPD and UD20/125INPD ratios of 39 and 17% less (P < 0.0001) (Tables 1 and 2).

When 192Ir in the HDR mode and 125I Bt techniques are compared for the same V100, the 125I V110-150 are 2.5% (P = 0.02) to 36% (P = 0.003) greater than those obtained with 192Ir. The D99/125INPD ratio is 0.89 ± 0.1 against 0.84 ± 0.1 for the D99/125INPD (P = 0.04) meaning that CS are slightly more prominent with 125I. The latter however have been deliberately planned around the bladder neck only. Unlike for HDR 192Ir, the CS were deliberately designed near the bladder neck and could have been avoided by increasing the number of seeds at this level.

Table 1
<table>
<thead>
<tr>
<th>Ratio of the UD20-50 on the PD or 125INPD, n = 20</th>
<th>I125</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>UD20/PD or UD20/125INPD</td>
<td>1.33 ± 0.15</td>
<td>1.1 ± 0.08</td>
</tr>
<tr>
<td>UD33/PD or UD33/125INPD</td>
<td>1.28 ± 0.15</td>
<td>1.03 ± 0.13</td>
</tr>
<tr>
<td>UD50/PD or UD50/125INPD</td>
<td>1.08 ± 0.14</td>
<td>0.89 ± 0.16</td>
</tr>
</tbody>
</table>

Paired Student t-test.

Table 2
<table>
<thead>
<tr>
<th>Ratio of the RD20-50 on the PD or 125INPD, n = 20</th>
<th>I125</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD20/PD or RD20/125INPD</td>
<td>0.51 ± 0.1</td>
<td>0.31 ± 0.04</td>
</tr>
<tr>
<td>RD33/PD or RD33/125INPD</td>
<td>0.37 ± 0.07</td>
<td>0.2 ± 0.03</td>
</tr>
<tr>
<td>RD50/PD or RD50/125INPD</td>
<td>0.27 ± 0.05</td>
<td>0.13 ± 0.03</td>
</tr>
</tbody>
</table>

Paired Student t-test.

Table 3
<table>
<thead>
<tr>
<th>Ratio of the UD20-50 on the PD or 125INPD, n = 20</th>
<th>I125</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>UD20/PD or UD20/125INPD</td>
<td>1.24 ± 0.09</td>
<td>1.29 ± 0.15</td>
</tr>
<tr>
<td>UD33/PD or UD33/125INPD</td>
<td>1.20 ± 0.07</td>
<td>1.25 ± 0.15</td>
</tr>
<tr>
<td>UD50/PD or UD50/125INPD</td>
<td>1.06 ± 0.06</td>
<td>1.09 ± 0.13</td>
</tr>
</tbody>
</table>

Paired Student t-test.
The 125I technique is only possible in 24 out of the 40 patients due to pelvic bone arch interference (Fig. 2). The mean prostatic volume is then 48 ± 8 cc in comparison with 56 ± 17 cc when Bt is technically unfeasible ($P=0.002$).

Discussion

The methodology

The dosimetric selectivity of 192Ir and 125I prostate Bt is proposed as an alternative explanation of the particular efficacy of prostate Bt. Performed on the same patient, a comparison between 192Ir and 125I techniques remains however a difficult task as the real dosimetry of a Bt technique can only be compared to the theoretical dosimetric data obtained from the other. We compared 192Ir Bt to pre plans designed for 125I Bt. The latter are never implemented perfectly in practice and are very often slightly degraded dosimetrically depending on the skill of the brachytherapist. We postulate however that the theoretical plans could be translated correctly in practice by a well trained team. An inverse methodology, comparing 125I Bt post plans to theoretical pre plans designed for 192Ir techniques would have suffered from similar limitations.

The 125I Bt plans were performed using the same CTV as those delineated for 192Ir techniques, according to the Seattle method [11] usually applied for good prognosis prostatic tumours in our department, while ignoring the 192Ir treatment plans formerly calculated. The goal of the work was indeed to compare two different Bt methods performed in daily practice by a same well trained team.

Whatever the radioisotope or Bt technique used, the treatment plans intended to surround the CTV with the reference isodose while maintaining the UD/PD and RD/PD ratios below similar pre established levels and avoiding as much as possible CS represented by the D99/PD or D99/125INPD data. For a same V100, the dosimetric comparisons were made between V110 and V150, CS and OR treatment data. They were thus based on dose (D99/PD or D99/125INPD ratio) and volume (V100-150) parameters.

To facilitate dosimetric comparisons between 192Ir and 125I Bt methods, we introduced the concept of ‘normalised prescription dose’ for 125I (125INPD), corresponding to the dose delivered to the V100 established for 192Ir. When comparing the V110-V150 values of both techniques we wanted thus to refer to an identical initial V100 value. We did not pay attention to absolute delivered doses but only to dose ratios.

The dosimetric selectivity of LDR and HDR 192Ir Bt

The V100 are 85% for LDR 192Ir Bt against 96% for the HDR mode ($P<0.0001$). The D99/PD values are greater with HDR Bt ($P<0.0001$). The delivered doses to urethra are less with the HDR mode as the UD20/PD ratio is 1.24 against 1.33 for the LDR mode ($P=0.025$). For both LDR and HDR Bt, the RD20/PD values are less than 0.55 and considered safe.

The dosimetric selectivity of 192Ir LDR techniques can be thus improved by the HDR mode using stepping source technology and 3D treatment plans.

The dosimetric selectivity of 125I Bt in comparison with the 192Ir techniques

When 192Ir in the LDR mode and 125I Bt techniques are compared, the 125I V110-150 are 1–20% ($P\leq0.004$) less than the values obtained with 192Ir. However, the volume of CS is smaller with 125I as the D99/125INPD ratio is 0.77 against 0.71 for 192Ir ($P=0.03$). Moreover, the RD20/125INPD and UD20/125INPD ratios are, respectively, 39 and 17% less than with 192Ir ($P<0.0001$).

The dose homogeneity inside the CTV is thus greater with 125I as V110–150 and CS are of less importance in comparison with 192Ir in the LDR mode. Likewise, OR are better spared with 125I.

When 192Ir in the HDR mode and 125I Bt techniques are compared, the 125I V110–150 are, respectively, 2.5% ($P=0.02$) to 36% ($P=0.003$) greater than the values obtained with 192Ir. The D99/125INPD ratio of 0.84 against 0.89 for 192Ir underlines the increase of CS with 125I ($P=0.004$). These are however only located around the bladder neck and have been deliberately planned (Fig. 3(b)). They could have been avoided by increasing the number of seeds at this level. Finally, if the UD/PD and UD/125INPD values are identical, the RD20/125INPD are 33% less than with 192Ir ($P<0.0001$).

The V110-150 and CS deliberately planned are thus of greater importance with 125I. Furthermore, the rectal wall is better spared with 125I.

All these differences are in favour of 125I use provided that designed plans can be really transposed in practice.

The pelvic bone arch interference

The present 125I Bt was only possible in 60% of patients as the pelvic bone arch did not allow to place the most anterior required needles (Fig. 2). We could argue that a more appropriate angulation of the template would have solved some of these problems. However, the mean CTV volume in these situations was 56 cc versus 48 cc without interference ($P=0.002$). Due to pelvic bone arch limitations, 50 cc is in general the maximal authorized prostatic volume in the literature for permanent implants and 60 cc for temporary 192Ir methods [13].

According to 192Ir techniques developed in the present work, the manual implantation of a small number of plastic vectors [19] permitted in each case to overcome the pelvic bone arch in order to implant prostatic sizes as high as 70–80 cc.

Table 4

<table>
<thead>
<tr>
<th>Ratio of the RD20-50 on the PD or 125INPD, n=20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
</tr>
<tr>
<td>RD20/PD or RD20/125INPD</td>
</tr>
<tr>
<td>RD33/PD or RD33/125INPD</td>
</tr>
<tr>
<td>RD50/PD or RD50/125INPD</td>
</tr>
</tbody>
</table>

Paired Student t-test.
The number of catheters

Would a higher number of catheters in the 192Ir techniques have reduced the dosimetric advantage of 125I Bt [2]? The hypothesis cannot be refuted but the use of a higher number of sources delivering low energy beams increases the dosimetric capabilities and should remain in favour of 125I Bt or permanent implants in general. So much of the difference in dosimetric parameters observed is probably a predictable consequence of the radial dose function of the two different radioisotopes. Moreover, one of the goals of modern radiotherapy techniques is to increase the V100-150 for boosting the more radioresistant zones [15] favouring thus permanent implants use.

The dosimetric selectivity and radiobiologic data

Can the dosimetric selectivity of Bt techniques be an alternative explanation of treatment efficacy in comparison with the radiobiologic data? Prostate tumours have a low α/β ratio, favouring theoretically HDR use. In the literature however, EBT and permanent implants boost have given similar encouraging results as those reported after HDR boost [4,5,9,17,21]. One possible explanation consists in the particularly high selectivity of both the most modern 192Ir and 125I Bt, allowing the delivery of very high V100-150. This could be also explained by other radiobiologic factors than the α/β ratio, such as the continuous mode of irradiation and its role in the reoxygenation and the repopulation of clonogens which are playing a major role in the efficiency of Bt [23].

Hence, if some rectal toxicity remains considering the present Bt methods, a higher degree of rectal sparing and a very low dose rate should favour permanent implants use. However, the bone arch interference remained a significant problem, only with permanent implants in the present work. New efforts should be made to overcome the unfavourable situations through treatment planning innovations like the ‘beam eye view concept’ used in EBRT to find the most appropriate angulations of penetrating needles and why not through partially automated procedures with robotic assistance to implant diverging needles like in the present 192Ir Bt technique.

Conclusions

There is no evident superiority of one Bt method when all the dosimetric criteria are taken into account. However, improving Bt capabilities to implant any prostatic size by overcoming systematically the pelvic bone arch could found the superiority of the 125I or permanent implant techniques. The latter indeed induce the highest V100-150 in comparison with 192Ir HDR techniques while reducing the doses to OR and minimizing CS.

* Corresponding author. Address: Philippe Nickers, University Hospital of Liège, Domaine Universitaire du Sart Tilmant, B35 4000 Liège, Belgium. E-mail address: philippe.nickers@skynet.be

Received 24 January 2005; received in revised form 7 August 2005; accepted 7 September 2005; available online 10 October 2005

References

