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Abstract: Mixtures of trees can be used to model any multivariate distributions. In this
work the possibility to learn these models from data by causal learning is explored. The
algorithm developed aims at approximating all first order relationships between pairs
of variables by a mixture of a given size. This approach is evaluated based on synthetic
data, and seems promising.
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1 Introduction

A bayesian network (BN) represents the probability density of a set of random variables by ex-
ploiting independence relations among them. Such a model allows to perform prediction or optimiza-
tion in uncertain problems.

However, the complexity of those operations scales poorly with the number of variables [1],
whereas practical problems keep growing in size. Using a mixture of simple models has the po-
tential to greatly improve the scalability of the algorithms, without necessarily leading to a decrease
in accuracy. Indeed, a mixture of trees (MT) can perfectly model any probability density [2].

In this work we explore the possiblity to learn a MT by causal learning. This class of methods
build BNs based on the independence relationships between variables derived from data. To assess
the interest of this approach, we devised a first basic algorithm, and applied it to synthetic problems.

We will first briefly discuss scaling and modeling properties of BNs and MTs. In the second part,
a short introduction to causal learning will be provided, followed by a description of our method.
Finally, our testing methodology and first results will be presented.

2 Bayesian Networks

A BN over a set X of n discrete variables is a directed acyclic graph (i.e. a graph without directed
cycle) associating to each variable one node of the graph and a conditional probability table over
the parents of that node. Therefore, a BN encodes a joint distribution over X , and it is theoretically
possible to perform any inference over that distribution. However, it has been shown that this operation
is NP-hard should the underlying undirected graph (skeleton) have cycles [1]. Stochastic algorithms
have also been developed for that task, but their behavior is not guaranteed for large problems.

Trees are a subclass of BNs, for which each node of the graph has only one parent, and hence
its skeleton is acyclic. For that last reason, standard operations are much more efficient over trees :
learning the optimal tree (MWST) scales proportionally to n2, and inference, to n. However, due to
more drastic limitations on their structure, the modeling power of trees is inferior to that of a BN.



2.1 Mixtures of Trees

A mixture model of size m consists of a weighted set of different models, each of them defined
over X . The probability of an event is equal to the weighted sum of its probability encoded by each
term of the mixture. We consider here mixtures of tree structured BN models.

In that case, it has been shown that it is possible to model any density, providedm is large enough.
Moreover, the MT retains the scaling properties of trees: inference is still linear in the number of
variables [2], making MT an attractive candidate for scaling graphical models to large problems.

Several approaches have already been developed to build MT, such as maximizing data likelihood
[2], random drawing [3], or using a Dirichlet Process [4].

The main drawback of MTs is their reduced interpretability: it is no longer possible to graphically
infer conditional independences. However, MTs can still be used to analize the structure of a problem,
by counting edges between pairs of variables over all terms of the mixture [2].

3 Causal Learning of Mixtures of Trees

Two widespread frameworks exists for learning BNs from data: optimization and causal learn-
ing. The main idea behind causal learning is to build a model by exploiting independence relations
between variables. These methods usually start by detecting independence relationships that seem to
be satisfied by the data set (for example by using a χ2 hypothesis test), and to derive from them the
absence (or the presence) of an edge in the graph, and its orientation.

The idea behind the algorithm presented in this work is to build a MT that closely represents
first-order independence relations between variables, in the sense that the MT can be interpreted as
proposed by [2] to recover them: the influence between two variables is deemed proportional to the
number of edges linking these two variables in the whole MT.

We decided to use the mutual information (MI) to measure the strength of the relations between
any two variables i, j. Thus, the number of edges between i and j (Ni,j) over the MT should be
proportional to the MI between i and j. To any edge we therefore associate a fictious weight (denoted
by Iedge, and identical for all edges) corresponding to the portion of MI it represents. Since the goal
of the model is to represent perfectly all the pair-wise interactions between variables, the sum of all
edge-weights provided by the MT should be equal (to a factor of proportionality, here chosen equal
to 1) to the sum of all pair-wise mutual informations between variables. Since a MT of size m over n
variables has exactly m ∗ (n− 1) edges, we have that:

Iedge =
∑n

i=1

∑n
j=i+1 Ii,j

m ∗ (n− 1)
, (1)

and knowing Iedge, it is possible to compute the target value of Ni,j by:

Ni,j ∗ Iedge = Ii,j . (2)

However, this number is rarely an integer, and the MT can only be an approximation of the
relations between variables.

The last challenge is to distribute the edges between the terms of the MT, ensuring the formation of
trees. To do so, we decided to build one tree at a time, starting by an empty tree, and to recursively add
the edge with the highest corresponding Ni,j (then decreased by 1) while retaining the tree structure.



4 Results

To assess the interest of this approach, we tested our algorithm according to the methodology
proposed in [3]. We randomly generated 10 BNs over 16 binary variables and of bounded in-degree
5. For each of these BNs, 10 data sets of 50 observations were generated. Results given below are
averaged over these data sets and BNs.

Our algorithm was applied to these data sets for growing values of m, and outputs were evaluated
by computing the Kullback-Leibler divergence (KLD) to the data generating distribution, while using
Laplace estimates of the conditional probability tables for each tree in each MT model. The KLD is
a non-symetric measure of the difference between two probability distributions. These values were
compared against two references for every data set: the data generating BN whose parameters had
been reestimated from the data set, and the MT of size one, which is, by construction, the MWST.

The main result of our simulations, summarized in Tab. 1, is that our approach outperforms both
reference models. Another important observation is that our method does not seem to overfit the data.

BN rel. MT1 MT10 MT100 MT200
KLD 6.08 1.33 1.11 1.1 1.1

Table 1. The Kullback-Leibler divergence (KLD) to target BN of different MTm and of 2 references : the
relearned structure (BN rel.) and the MWST (MT1). Results are averaged on 10 BN times 10 sets of 50 samples.

5 Conclusion

The algorithm proposed is a first attempt to learn a MT by a causal approach, and the results
obtained are promising, although further work is needed to test our approach on real applications, and
to compare it to other algorithms.

Based on those results, several research directions can be proposed. A first one would be to seek
to approximate more than first-order independence relationships. A second line of research would be
to investigate different approaches to the distribution of the edges among the different trees.
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