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ABSTRACT 
 
Nowadays, noise and vibration problems tend to become an important 
part of the design process in the naval industry. Vibrations often affect 
the passengers comfort, but more dangerously may damage the 
structure, embarked merchandise and equipments. A simple way to 
avoid vibrations is to prevent the resonance conditions. The paper 
presents a study about the vibration of local structures (beam structures 
and stiffened panels) with application in the marine industry. The 
model has been implemented in FORTRAN into a numerical module 
and will be integrated in the near future with the LBR-5 generic 
stiffened structure optimization code. 
 
KEY WORDS: Vibration; natural frequency; resonance; stiffened 
panel; concentrated mass; Lapack library 
 
INTRODUCTION 
 
Vibrations acting into the mechanical systems can cause many 
problems at different levels such as mechanical and performance 
degradation. If we include the human factor, the study of the vibration 
becomes extremely important. 
 
The main application of this study refers to marine field and 
particularly to ferries and RO-RO ships for which the vibrational 
comportment is often verified in the preliminary design stage process or 
during the structural design phase. A ferry or RO-RO ship is 
characterized by very large decks that may suffer from fatigue due to 
vibrations. The LNG’s tank walls can be also affected by vibrations, 
but in this case we must take into account the fluid-structure 
interaction. Another important application connecting the marine and 
vehicle fields refers to the dynamics vehicle/ship-deck investigations. 
The experiences demonstrate that the dynamic interactions between the 
vehicles and the vessel deck (for example, a roll-on/roll-off RO-RO 
vessel with vehicle cargo) may be very different from that of static 
case. It was found that the vehicle cargoes can work as mass dumpers 
to reduce at least one mode shape response of the deck (Jia, 2004). 

The work presented in this paper do not treat the global vibrations of 
these ships and it is devoted only to local structure, such as beams, 
stiffened panels, their assemblies, and other connected problems. Thus, 
in addition of the marine engineering field (decks, ship tanks, offshore 
structures), this study may be applied in other engineering domains 
such as automotive or civil construction industries. 
 
For type of structure, the vibration analyses have a dual aim. The first 
goal is purely theoretical and supposes to determine their natural 
frequencies. The second aim assumes to measure and compare, during 
the normal operating, the vibrational characteristics (vibrational 
displacement, velocity and acceleration) with the agreed limit values 
because despite careful analysis, vibrations cannot be avoided 
completely. This paper will not cover these last aspects, but it will give 
you some general indications to calculate the vibrational magnitudes. 
 
Compared to analytical models, the 3D-FEM models are preferred 
because almost structural details and mass distribution can be modeled. 
However, the FE simulations cannot be evermore used in multi-crietria 
structural optimization design processes due to its very large CPU 
times. But, today the naval industry has very strict deadlines and the 
optimization was pushed in the early-stage design process. In this 
phase, a sub-critical or a super-critical vibration designs can be 
formulated. Generally, a sub-critical design (all natural frequencies of 
the system are higher than the highest significant excitation frequency) 
is preferred. The super-critical design is more exigent and requires 
verification by the response calculations (Asmussen, 2001). 
 
Thereby, the research work covers analytical vibration modeling of 3D 
beam structures and 3D stiffened shells (orthotropic panel), as well as 
the finite element analyses necessary to validate and asses the limitation 
of the method. This modeling allows to easily taking into account the 
concentrated masses distributed on the panel surface. The numerical 
model constituted the base of a vibration module written in FORTRAN. 
Due to analytical formulation, the vibration module can be effortlessly 
implemented under an EF code through external subroutines (i.e. 
UVARM user variables routines in ABAQUS). 



 

NUMERICAL MODEL 
 
Analytical method and particularities 
 
The analytical method is based on the elastic, homogeneous and 
isotropic material hypothesis. The Euler-Bernoulli formulation assumes 
that cross-section, which are initially plane and perpendicular to the 
axis of the beam, remain plane and perpendicular to this axis. The 
transverse shear deformation is thereby neglected. 

 
 
Fig. 1 – Efforts and sign convention for a single beam 
 
Considering the dynamic equilibrium of an elementary section of a 
beam (Fig. 1), we obtain the next equations of motion for the three 
fundamental cases, axial, flexural and torsional respectively (Thomson, 
1981), Eqs. 1~3. The torsion and the flexion are uncoupled in this 
study. 
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where u is the axial displacement, v is the transversal displacement and 
θ is the angular rotation (twist). A represents the cross-section area, I is 
the second moment of area, Ip is the polar second moment of area, G 
the shear modulus and J is the torsional constant. 
 
Since the system is supposed undamped, we assume that a mode of 
vibration is harmonic, as for discrete systems. Thus the general solution 
of  Eqs. 1~3 is one of the form: 
 
( ) ( ) ( )Ψ+= txtxh ωφ sin,  (4) 

 
where h is the displacement or rotation, ω is the pulsation, Ψ a constant 
and Φ(x) an eigenfunction, which describe the mode shape at the 
frequency ω. Substituting Eq. 4 in the previous equations and factoring 
out the sine terms, we get the next solutions in axial, flexural and 
torsional cases respectively: 
 

( ) ( ) ( )xaAxaAxU cossin 21 +=  (5) 
( ) ( ) ( ) ( ) ( )xbBxbBxbBxbBxV coshsinhcossin 4321 +++=  (6) 
( ) ( ) ( )xcCxcCx cossin 21 +=Θ  (7) 

where Ea ρω=  (pulsation multiplied by the velocity of propagation 

of extensional waves in the beam), ( )IEAb ρω 2=  and 

( )JGIpc ρω= . In theory, the constants A, B, C are evaluated using 
the boundary conditions. Knowing the displacements and rotation 
expressions, we can calculate the internal nodal forces in the nodes of 
the beam by the next formulae, for normal and transversal efforts, and 
torque and bending moments respectively, Eqs. 8~10. 
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For a single beam (Fig. 1) it is possible to eliminate the constants in 
order to obtain an expression between nodal local forces (FL, six per 
node) and nodal local displacements (UL, six per node), Eq. 11. 
 

[ ] ( )[ ] [ ] 1121212112 , x
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L

x
L UCKF ω=  (11) 

 
where Cmp represents the mechanical and physical characteristics of the 
beam. 
 
The matrix KL represents the stiffness and mass matrix. It is considered 
a continuous matrix because a beam represents in this case a continuum 
system. A continuous system has its mass, elasticity and damping 
distributed. Therefore its mass is inseparable from the elasticity of the 
beam. In this way, this matrix [KL(ω, Cpm)] cannot be decomposed into 
a separate mass matrix and a separate stiffness matrix without losing in 
accuracy. This matrix is non-symmetrical and the pulsation ω is located 
inside the sin, cos, sinh and cosh functions. 
 
In the case of a 3D multi-beam structure, the nodal local efforts and 
displacement must be projected into a global coordinate system. A 
global continuous stiffness and mass matrix will be obtained. This 
matrix connects the global nodal effort with the global nodal 
displacements and allows us to calculate the eigenfrequencies of the 
system: 
 

[ ] ( )[ ] [ ] 11 , xdofdofxdofmp
G

xdof
G UCKF ω=  (12) 

 
where “dof” represents the total number of degrees of freedom. In 
reality the resonant phenomena express by very important structural 
displacements, but numerically the displacements is supposed to tend 
towards the infinite one. This condition is accomplished by the 
cancellation of the determinant of the matrix KG, Eq. 13. 
 

( )[ ]( ) 0,det =
dofxdofmp

G CK ω  (13) 

 
Calculating this determinant, an equation function of the pulsation ω 
(or function of the frequency f) is obtained. The solutions of this 
equation represent the eigenfrequencies of the beam structure. The total 
number of the natural frequencies is equal to the degree of the 
characteristic equation, Eq. 13. 
 



 

Knowing the external forces acting into the nodes structure, form the 
Eq. 13 we can obtain the vibrational displacements of each node. For 
harmonic excitations (at frequencies different from resonant 
frequencies), the vibrational parameters are connected through the 
following relations, Eq. 14 
 

sfv ⋅⋅= π2  and vfa ⋅⋅= π2  (14) 
 
Concentrated masses 
 
The beam modeling can easily take into account the concentrated 
masses on the stiffened panel surface. The masses must be distributed 
into the beam structure nodes. The presence of these auxiliary masses 
will determine a decrease of the eigenfrequencies values because the 
pulsation ω is proportional to the square root of k/m (stiffness/mass). To 
implement the concentrated masses into the vibration calculus, we write 
the dynamic equilibrium for each node that has an associated mass. We 
obtain: 
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where Fdynamic are the dynamic inertial forces dues to the concentrated 
masses. Numerically Fdynamic is represented by a diagonal matrix. 
Considering a harmonic function of time for the displacements, the 
above relation become: 
 

( )[ ] [ ]( ) ( )[ ] 0, 2 =− xUMCK amp
G ωω  (16) 

 
where [Ma] is the additional mass matrix. To calculate the 
eigenfrequencies of a beam structure with additional masses, we 
compute the determinant of the next expression: 
 

( )[ ] [ ]( ) 0,det 2 =− amp
G MCK ωω  (17) 

 
Stiffened panels 
 
To calculate analytically the eigenfrequencies of a stiffened panel we 
employ a virtual artifice that consists in the decomposition of the panel 
into a beam grid, as presented in the Fig. 2. The vibration analysis uses 
then the beam model already described. 
 

 
 
Fig. 2 – Decomposition of a stiffened panel into a beam grid 

This choice allows us to use the beam theory to solve the problem. At 
the same time it will be easily to assess vibration for complex structures 
like stiffened panels - beams assemblies and also to take into account 
concentrated masses distributed on the panel surface. 
 
The mass of the plate (without stiffeners) will be distributed along the 
longitudinal stiffeners in order to keep the beam aspect approximation. 
The main condition is to preserve the global inertia of the stiffened 
panel and total mass of the structure.  For stiffened panels having only 
one direction stiffeners, the mass of the plate will be distributed on the 
second direction (perpendicularly on stiffeners) by creating virtual 
beam on this direction. 
 
After the split of the stiffened panel into a beam grid, it is necessary to 
calculate the second moment of area of each beam section of the new 
structure. The second moment of area about y-axis Iy is calculated with 
respect to the vertical principal axis of the considered cross section 
(Fig. 3). 
 

 
 
Fig. 3 – Notations of transversal cross-section 
 
To calculate the second moment of area about z-axis Iz, we define three 
feasible cases. For the first case, this parameter is defined with respect 
to the horizontal principal axis of the considered section. This axis pass 
through the barycenter of the beam section for each beam, noted C1 on 
Fig. 4. 

 
 
Fig. 4 – Decomposition of a transversal side of a panel into beams 
 
In the second case, Iz is calculated with respect to the horizontal 
principal axis of the undivided section of the stiffened panel, passing 
through the barycenter (noted C2 for transversal section and C3 for 
longitudinal section) of the entire side, Fig. 4. Therefore, after the 
decomposition of a side of the panel into beams, all parameters Iz are 
calculated with respect to the same axis. This position of this axis on 
the ordinate Oz may be different for transversal and longitudinal cases. 
For the third case, all Iz of transversal and longitudinal sections are 
calculated with respect to the axis passing through the virtual centroid 
Cz of the whole stiffened panel. The position of this point on the 
ordinate Oz is given by the Eq. 18. 
 

( ) ( )LTLL
c

TT
cz AAAzAzC +⋅+⋅=  (18) 

 
where zc

T and zc
L are the centroid (C) of the transversal and horizontal 

cross-section area of the entire stiffened panel, and AT and AL the 
correspondents cross-section areas. 



 

CPU time dissemination 
 
The resolution of the Eq. 13 and Eq. 16, where the unknown is the 
pulsation, makes it possible to find the eigenfrequencies of the beam 
structure. Numerically, two methods were tested. 
 
The first method supposes to divide the relevant frequency interval into 
small fixed intervals and calculate the determinant at each frequency 
step. A change of the determinant sign indicates a solution of the 
characteristic equation. The accuracy of this method is influenced by 
the frequency step dimension, but smaller is the step larger is the CPU 
calculation time. We have tried 5 common numerical methods to 
calculate the determinant of the global mass and stiffness continuous 
matrix, Eq.13. The Table 1 summarizes the CPU time machine 
necessary to find the first natural frequency of a beam structure with 
300 degrees of freedom. The program carries out 37 calculations of the 
determinant (frequency range from 0.1 Hz to 3.7 Hz with an increment 
of 0.1 Hz, the first eigenfrequency being between 3.6 Hz and 3.7 Hz). 
 
Table 1. Numerical methods used to calculate the determinant of a 
matrix 
 

Method (single precision) CPU time 
Leverrier algorithm hours 
Product of eigenvalues (Lapack) 57.00 s 

Gauss partial-pivoting scheme 14.9 s 
Classic LU decomposition 11.5 s 
Optimized LU decomposition (Lapack) 7.9 s 

 
The optimized LU decomposition using Lapack libraries of linear 
algebra routines proves to be the fastest method with 0.21 seconds per 
increment for this case. Using the same method, for a beam structure 
with 990 dof, the time was around 1 s per increment (on a laptop with 
Intel Centrino Core 2 Duo T7300 2 GHz, 4 GB DDR2 RAM). All 
methods give identically results. 
 
The second method supposes to dissociate the matrix ( )mp

G CK ,ω  into 

a mass matrix ( )mp
G CM  and a static stiffness matrix ( )mp

G CK , similar 
to the discrete systems. To obtain the static stiffness matrix, we carry 
out series expansions at least 15 terms of the matrix ( )mp

G CK ,ω  and 

of his double derivation with regard to ω in the vicinity of 0=ω . 
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These matrices are independents of the frequency f. With this approach, 
the resonant frequencies are obtained solving the eigenvalue problem, 
Eq. 21. 
 

02 =− GG MK ω  (21) 

 
The CPU time is considerably reduced: 1.4 s instead 7.9 s for the case 
characterized by 300 dof. 
 

The last method represents an approximation of the analytical method 
and it is valid for the lower frequency domain (< 100 Hz). For a simple 
analysis, the first method is more relevant but is not the case for the 
optimization software that requires very small CPU time. In this case, 
the second method shall be used. 
 
TESTS AND RESULTS 
 
3D beam structures 
 
The first validation of the vibration tool was realized on 3D beam 
structures. The finite element simulations used a beam modeling. For 
both simulations (FE and vibration tool), all connected nodes are 
rigidly joined, instead all non-connected nodes are clamped. All the 
beam sections are identically. We have treated two typical of structures, 
i.e. a 3D type (masts,  
Fig. 5) and a planar type (planar grid, Fig. 6). The material is steel (E = 
2.1e11 N/m2, ρ = 7800 kg/m3, ν = 0.3). 
 

 
 
Fig. 5 – First problem test - 3D multi-beam structure, length 24 m, 
width = 6 m, annular section (Φ = 100 mm, thickness = 10 mm) 
 
Table 2. First problem test results 
 

Frequency Method (single precision) 
f1 f2 f3 f4 

Classic dichotomy 0.76 1.40 - - 

Discrete method 1.24 1.35 1.50 1.61 

ABAQUS 0.52 1.47 3.09 3.20 

 
Generally, only FE calculus using very fine mesh can supply results 
closed to those of analytical continuum methods. Using classic 
dichotomy method, the natural frequencies agree well with those 
determined with ABAQUS, Table 2. The differences can be justified by 
unheeded of the constrained torsion. Moreover, we don’t use the 
Timoshenko’s beam model, so we neglect shear and rotational inertia 
effects. The results obtained with discrete method are different. This 
second method is adapted for complex three-dimensional structure only 
using many beams and many beam connections. 

 
 
Fig. 6 – Second problem test - Planar beam structure, length 17 m,     



 

width = 8 m, rectangular section (h = 30 mm, b = 40 mm) 
The Table 3 present the results obtained with classic dichotomy 
method, discrete approach and ABAQUS for the second problem test. 
For planar structures the both numerical methods give practically the 
same results, but with different CPU times (greater for the classic 
dichotomy). These results are also in good correlation with ABAQUS 
results. 
 
Table 3. Second problem test results 
 

Frequency Method (single precision) 
f1 f2 f3 

Classic dichotomy 1.55 2.15 2.68 

Discrete method 1.56 2.16 2.80 

ABAQUS 1.72 2.22 3.15 

 
3D stiffened panels 
 
The second validation of our vibration module uses planar stiffened 
panels. The first type of tested problems refers to stiffened panels with 
clamped edges. We consider the rectangular panel (20 x 30 x 0.006 m) 
represented in the Fig. 7. It has 11 identical transversal frames (T 
section, web 0.25 x 0.01 m, flange 0.2 x 0.012 m) and 15 different 
longitudinal frames (the same T section and L section - web 0.16 x 
0.008 mm, flange 0.05 x 0.02 m). The material is steel (E = 2.1e11 
N/m2, ρ = 7850 kg/m3 and ν = 0.3). 
 

 
Fig. 7 – Third problem test - complex stiffened panel 
 
Table 4. Third problem test results 
 

Vibration tool Boundary 
condition 

Freq. 
Hz Case 1 Case 2 Case 3 

ABAQUS 

f1 3.99 4.02  4.02 3.89 

f2 5.34 5.46 5.46 5.31 

BC1 

f3 8.29 8.59 8.55 8.15 

f1 0.60 0.60 0.60 0.60 

f2 1.35 1.40 1.40 1.33 

BC2 

f3 2.84 2.85 2.85 3.20 

f1 1.16 1.21 1.22 1.09 

f2 1.31 1.37 1.37 1.27 

BC3 

f3 2.87 2.87 2.87 2.88 

 
 

 
For this problem, we apply three different boundary conditions on free 
edges: 

- BC1 – all sides clamped; 
- BC2 – sides 1 and 2 clamped, sides 3 and 4 free; 
- BC3 – sides 1 and 3 clamped, sides 2 and 4 free. 

 
The value of the second moment of area about z-axis Iz is calculated 
with respect to the three axis already discussed, i.e. the principal axis of 
the considered section (case 1), principal axis of the undivided section 
of the stiffened panel for each side (case 2) and the axis passing 
through the virtual centroid Cz of the whole stiffened panel (case 3) 
respectively. The classic dichotomy and discrete approachesh give the 
same results, but with bigger CPU times fir the first method. All results 
presented in the Table 4 are in good agreement with those of 
ABAQUS, but those of case 1 (second moment of area about z-axis Iz is 
calculated with respect to) are much closed. However, the vibration tool 
results remain higher than ABAQUS results. 
 
The second type of studied problems relates to platforms. The boundary 
conditions impose to block the displacements and rotations for 4 nodes, 
Fig. 8. The panel (4 x 3 x 0.016 m) has identical transversal and 
longitudinal frames disposed symmetrically. The section of the frames 
is I profile with web 50 x 10 mm and no flange. The material is steel. 
 

 
 
Fig. 8 – Forth problem test - complex stiffened panel 
 
Table 4 gives the results obtained with our numerical tools (classic 
dichotomy method and the discrete approach) and those of ABAQUS. 
In this case, the panel and the stiffeners are meshed with shell elements.  
 
Table 5. Forth problem test results 
 

Frequency Method (single precision) 
f1 f2 f3 f4 

Classic dichotomy 8.52  10.52 13.67 18.52 

Discrete method 8.54 10.52 13.73 18.59 

ABAQUS 8.67 10.59 17.53 19.21 

 
Excepting the mode 3, the numerical tool results are in very good 
agreement with ABAQUS results. In ABAQUS, all 4 modes are global 
modes of vibration. Unfortunately, we can only to compare the natural 
frequency values. To view the vibration mode associate to each natural 
frequency, we must model under an FE code the equivalent beam grid 
associate to considered panel. Our simulations using the equivalent 
beam grid ensure that the first modes are global modes. 
 



 

 
Vibration module limitations 
 
As we have already described, the vibration tool uses a beam modeling. 
As a consequence the deformation of the shell between beam grid 
cannot be take into account. If the beams of the panel have a very high 
moment of inertia, the first vibration modes are represented by local 
modes, as presented in Fig. 9. If the stiffeners’ width is very large the 
first mode of vibration can also be a local mode. Certainly, the 
boundary conditions can also affect the vibration modes. 
 

 
 
Fig. 9 – Local vibration modes of a stiffened panel 
 
To identify some limitations of this numeric tool, we tested a particular 
type of stiffened panel in relevant configurations. 
 

 
 
Fig. 10 – Stiffened panel notations 
 
The first three configurations refer to a square panel, and the next five 
configurations refer to a rectangular panel. The both structures have 10 
transversal and 10 longitudinal stiffeners. The stiffeners are disposed 
symmetrically with respect to the symmetry axis of the panel and the 
distance between them is equally. Fig. 10 and Table 6 present the 
characteristic dimensions of each case. 
 
Table 6. Panel dimensions 
 

Case L l hL hl t 
1  6.6 m 6.6 m 0.22 m  0.22 m 8 mm 
2 6.6 m 6.6 m 0.44 m 0.22 m 8 mm 
3 6.6 m 6.6 m 0.66 m 0.22 m 8 mm 
4 19.8 m 6.6 m 0.22 m  0.22 m 8 mm 
5 19.8 m 6.6 m 0.44 m 0.22 m 8 mm 
6 19.8 m 6.6 m 0.66 m 0.22 m 8 mm 
7 19.8 m 6.6 m 0.22 m 0.44 m 8 mm 

8  19.8 m 6.6 m 0.22 m 0.66 m 8 mm 
Concerning the results, we compared our results with those of 
COSMOS only for the first global mode of vibration, Table 7. Apart 
from the cases 3 and 8 for which the first mode of vibration is a local 
mode (vibration of stiffeners), all other results are in good concordance. 
 
Table 7. Natural frequency and modes 
 

First natural frequency Hz Case 

Vibration tool COSMOS 

Mode 

1 32.08 30.10 1 

2 56.97 53.36 1 

3 86.43 77.21 111 

4 15.41 15.40 1 

5 14.96 15.15 1 

6 15.83 15.77 1 

7 39.09 34.89 1 

8 62.86 53.01 87 

 
It is very difficult to give the real limitations of this vibration tool. After 
few tests, we consider that the dimensions of the stiffeners must remain 
smaller in front of the dimension of the shell and the distance between 
stiffeners. 
 
CONCLUSIONS 
 
In this paper, a numerical approach to calculate the resonant 
frequencies for beam structures, stiffened panels and their assemblies is 
presented. Finite element simulations were carried out to validate the 
numerical tool. 
 
Two methods can be used to obtain the natural frequencies. The first, 
named classic dichotomy is based on Euler-Bernoulli equations and is 
purely analytical. In this case it is necessary to divide the relevant 
frequency interval into small intervals and to calculate the determinant 
of the characteristic mass and stiffness continuum matrix. The main 
advantage of this method is the accuracy of the results. Nevertheless, 
this accuracy is limited by the modeling and is influenced by frequency 
step size. The main inconvenience is the large CPU calculation time in 
case of complex structures (over 600 dof). In some cases, the numerical 
tool delivers some parasite frequencies in the vicinity of a natural 
frequency. This may be due to some numerical errors and/or a non-
dimensionless model. To integrate the numerical model into an 
optimization design process (that requires reduced CPU calculation 
time) a second method, named discrete approach, was developed. The 
calculation time becomes very small even for structures with many 
degrees of freedom (2000 dof) and the parasite frequencies disappear. 
This method was validated with simplified FEA (beam mesh which 
contains only one element). 
 
The numerical model constituted the support of a vibration module 
written in FORTRAN. The module was transformed into a DLL for 
which the input data is represented by all dimensions of the panel (plate 
and stiffeners), the positions of the stiffeners on the plate, the 
mechanical and physical characteristics, and the boundary conditions of 
the exterior sides of the panel. The eigenfrequencies of the stiffened 
panel represent the output data. The vibration module is fully 
automatically because, from the input data, it is capable to split the 
stiffened panel into beams realizing a correct distribution of the masses, 



 

to calculate the mechanical parameters (second moments of area) and to 
apply the boundary conditions. 
Due to beam modeling, the both methods allow to obtain only the 
resonant frequencies corresponding to global vibration modes. The 
modeling of the concentrated masses was tested and validated only in 
the case of simple structures. 
 
In practical dimensioning, the two first natural frequencies are the most 
relevant. These two values calculated with the vibration tool are very 
close to those given by ABAQUS for all problems treated in this paper. 
In conclusion, taking into account the limitations of these methods, it is 
appreciated that the numerical tool can be successfully used to calculate 
correctly at least the two first resonant frequencies for beam structures 
and stiffened panels. 
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