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Abstract: - Nowadays, noise and vibration problems tend to become an important part of the design process 
in the automotive and naval industries. Vibrations often affect the passengers comfort, but more dangerously 
may damage the structure, embarked merchandise and equipments. A simple way to avoid vibrations is to 
prevent the resonance conditions. The paper presents a study about the vibration of beam structures and 
stiffened panels. The main application is to determine the eigenfrequencies of structures like platforms, 
trailer chassis and as well as stiffened shell - beam assemblies. The research work covers analytical vibration 
modeling of 3D beam structures and 3D stiffened shells, as well as the finite element analyses necessary for 
the validation. The analysis combines the assumption of undamped free vibrations with the simple harmonic 
motion for the displacement. The 3D numerical model (6 degrees of freedom per node) uses Euler-Bernoulli 
beam equations in the axial, torsional and flexural cases. This modeling allows to easily take into account the 
concentrated masses distributed on the panel surface. This approach has been implemented in FORTRAN 
into a numerical module and will be integrated in the near future with the LBR-5 generic stiffened structure 
optimization tool. 
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1   General overview 
Vibrations acting into the mechanical systems can 
cause many problems at different levels such as 
mechanical and performance degradation. If we 
include the human factor, the study of the vibration 
becomes extremely important. 
 
The work presented in this paper is devoted only to 
the case of beams structures, stiffened panels, their 
assemblies, and other connected problems. For this 
type of structures the contact with the human 
beings are very limited. The most affected are the 
structural fatigue level and the functioning of the 
embarked installations. 
 
In addition of the marine engineering field (decks, 
ship tanks, offshore structures), the stiffened panels 
and beam structures are the base element of many 

other engineering domains. For example, taking the 
case of a platform vehicle equipped with a military 
shooting system, the resonant displacement of the 
platform can affect the fire precision. Imagine also 
an armored tank equipped with a balance-bridge 
damaged by the vibration during military actions.  
 
Another important application connecting the 
marine and vehicle fields refers to the dynamics 
vehicle/ship-deck investigations. The experiences 
demonstrate that the dynamic interactions between 
the vehicles and the vessel deck (for example, a 
roll-on/roll-off RO-RO vessel with vehicle cargo) 
may be very different from that of static case. In 
this case, it was found that the vehicle cargoes can 
work as mass dumpers to reduce at least one mode 
shape response of the deck [1]. 
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Nowadays, the vibrational comportment is often 
verified in the design process of this type of 
structures. Therefore, in the preliminary design 
stage or during the structural design phase, the 
stakeholders will carry out adequate vibration 
analysis for each type of structures. These analyses 
have a dual aim: 

- The first goal is purely theoretical and 
supposes to determine their natural 
frequencies; 

- The second aim assumes to measure and 
compare, during the normal operating, the 
vibrational characteristics with the agreed 
limit values because despite careful 
analysis vibrations cannot be avoided 
completely. 

 
The parameters calculated or measured for the 
second goal are vibrational displacement s, 
vibrational velocity v and vibrational acceleration 
a. The acceptable values are indicated in ISO 
standards, directives and intern specifications. 
Magnitudes exceeding these values or falling short 
of them do not necessarily indicate an admissible 
state of vibration [2]. These criteria may be used as 
bounds of admissibility, for instance if made a part 
of the contractor or some other form of obligation. 
Concerning this paper, criteria for vibrations are 
stipulated with respect to the overstressing of 
structural members (deformation, fatigue, strength), 
engines and equipments (failure, malfunctions) and 
to physiological effects on people (if it is the case). 
Concerning the first category (structural vibrations) 
for each type of structures assessment diagrams can 
be obtained experimentally (Fig. 1). 

 
Fig. 1 – Assessment diagram for vibration of structures 

[2] 

The series ISO 7919 and ISO 10816 specify the 
limitations concerning engines and connected 
aggregates. These parts should generally not be 
subjected to vibrations exceeding 0.71 mm in 
amplitude, 14 mm/s in velocity amplitude and 0.7 g 
in acceleration amplitude [3]. This paper will not 
cover these aspects, but it will give you some 
general indications to calculate the vibrational 
magnitudes. It is important to know that, in 
simulations, these magnitudes can be correctly 
estimated only when all structural details, including 
also mass distribution, are known. 
 
Thereby, this paper will present only the numerical 
modeling necessary to obtain the natural 
frequencies of beams structures, stiffened panels 
and their assemblies. The numerical model 
constitutes the base of a vibration module written in 
FORTRAN. FE simulations were carried out in 
order to validate and asses the limitations of this 
module. We have chosen an analytical way to 
obtain these resonant frequencies. In this way, the 
vibration module can be effortlessly implemented 
under an EF code through external subroutines (i.e. 
UVARM user variables routines in ABAQUS).  
 
 
2   Numerical model 
To calculate analytically the eigenfrequencies of a 
stiffened panel we employ a virtual artifice that 
consists in the decomposition of the panel into a 
beam grid (Fig. 2). The mass of the plate (without 
stiffeners) will be distributed along the longitudinal 
stiffeners in order to keep the beam aspect 
approximation and to preserve the total mass of the 
structure. The main condition is to preserve the 
global inertia of the stiffened panel. 
 
This choice allows us to use the beam theory to 
solve the problem. At the same time it will be easily 
to assess vibration for complex structures like 
stiffened panels - beams assemblies and also to take 
into account concentrated masses distributed on the 
panel surface. 
 
The beam vibration analysis combines the 
assumption of undamped free vibrations combined 
with the simple harmonic motion for the 
displacement. The mathematical model uses Euler-
Bernoulli beam equations in the axial, torsional and 
flexural cases and allows considering 6 degrees of 
freedom per node. The torsion and the flexion are 
uncoupled in this study. 
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Fig. 2 – Decomposition of a stiffened panel  

into a beam grid 
 
2.1 Analytical method 
The analytical method is based on the elastic, 
homogeneous and isotropic material hypothesis. 
The Euler-Bernoulli formulation assumes that 
cross-section, which are initially plane and 
perpendicular to the axis of the beam, remain plane 
and perpendicular to this axis. The transverse shear 
deformation is thereby neglected. 
 
Considering the dynamic equilibrium of an 
elementary section of the beam, we obtain the next 
equations of motion for the three fundamental cases 
[4] : 
- axial vibration 
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- torsional vibration 
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where u is the axial displacement, v is the 
transversal displacement and θ is the angular 
rotation (twist). A represents the cross-section area, 
I - the second moment of area, Ip – the polar second 
moment of area, G – the shear modulus and J is the 
torsional constant. 
 

Since the system is supposed undamped, we 
assume that a mode of vibration is harmonic, as for 
discrete systems. Thus the general solution of eq. 
(1) to eq. (3) is one of the form: 
( ) ( ) ( )Ψ+= txtxh ωφ sin,  (4)

where h is the displacement or rotation, ω a 
pulsation, Ψ a constant and Φ(x) an eigenfunction, 
which describe the mode shape at the frequency ω. 
 
Substituting eq. (4) in the previous equations and 
factoring out the sine terms, we get for each 
equation the next solutions (5, 6, 7): 

- axial vibration 
( ) ( ) ( )xaAxaAxU cossin 21 +=  (5)
- flexural vibration 
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(6)

- torsional vibration 
( ) ( ) ( )xcCxcCx cossin 21 +=Θ  (7)

where 
E

a ρω=  (pulsation multiplied by the 

velocity of propagation of extensional waves in the 

beam), 
IE
Ab ρ

ω 2=  and 
JG
Ipc ρ

ω= . In theory, 

the constants Ai, Bi, Ci are evaluated by the 
boundary conditions. Knowing the displacements 
and rotation expressions, we can calculate the 
internal nodal forces in the nodes of the beam by 
the next formulae: 

- normal effort 
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- torque and bending moments 
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For a single beam (Fig. 3) it is possible to eliminate 
the constants in order to obtain an expression 
between nodal local forces (NL, six per node) and 
nodal local displacements (UL, six per node). 

[ ] ( )[ ] [ ] 1121212112 , x
L

xmp
L

x
L UCKN ω= (11)

Cmp represents the mechanical and physical 
characteristics of the beam. 
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Fig. 3 – Efforts and sign convention for a single beam 
 
The matrix KL represents the stiffness and mass 
matrix. It is considered a continuous matrix because 
a beam represents in this case a continuum system. 
A continuous system has its mass, elasticity and 
damping distributed. Therefore its mass is 
inseparable from the elasticity of the beam. In this 
way, this matrix [KL(ω, Cpm)] cannot be 
decomposed into a separate mass matrix and a 
separate stiffness matrix without losing in accuracy. 
This matrix is non-symmetrical and the pulsation ω 
is located inside the sin, cos, sinh and cosh 
functions. 
 
In the case of a 3D multi-beam structure, the nodal 
local efforts and displacement must be projected 
into a global coordinate system. A global 
continuous stiffness and mass matrix will be 
obtained. This matrix connects the global nodal 
effort with the global nodal displacements and 
allows us to calculate the eigenfrequencies of the 
system: 

[ ] ( )[ ] [ ] 11 , xdofdofxdofmp
G

xdof
G UCKN ω= (12) 

where “dof” is the total number of degrees of 
freedom. In reality the resonant phenomena express 
by very important structural displacements, but 
numerically the displacements is supposed to tend 
towards the infinite one. This condition is 
accomplished by the cancellation of the 
determinant of the matrix KG: 

( )[ ]( ) 0,det =
dofxdofmp

G CK ω  (13) 

Calculating this determinant, an equation function 
of the pulsation ω (or function of the frequency f) is 
obtained. The solutions of this equation represent 
the eigenfrequencies of the beam structure. The 
total number of the natural frequencies is equal to 
the degree of the characteristic equation (13). 

Knowing the external forces that acts into the nodes 
structure, form the equation (12) we can obtain the 
vibrational displacements of each node. For 
harmonic excitations, the vibrational parameters are 
connected through the following relations: 

vfasfv ⋅⋅=⋅⋅= ππ 2and2  (14)

 
2.2 Concentrated masses 
The beam modeling can easily take into account the 
concentrated masses on the stiffened panel surface. 
The masses must be distributed into the beam 
structure nodes. The presence of these auxiliary 
masses will determine a decrease of the 
eigenfrequencies values because the pulsation ω is 
proportional to the square root of k/m 

(stiffness/mass): 
m
k

≈ω  

To implement the concentrated masses into the 
vibration calculus, we write the dynamic 
equilibrium for each node that has an associated 
mass. We obtain: 

 
[ ] ( )[ ] ( )[ ]
[ ] ( )( )txUmFN

xUCKN

dynamic
G

mp
GG

,

,
&&==

= ω
 (15)

where Fdynamic are the dynamic inertial forces dues 
to the concentrated masses. Numerically Fdynamic is 
represented by a diagonal matrix. Considering a 
harmonic function of time for the displacements, 
the above relation become: 

( )[ ] [ ]( ) ( )[ ] 0, 2 =− xUMCK amp
G ωω  (16)

where [Ma] is the additional mass matrix. To 
calculate the eigenfrequencies of a beam structure 
with additional masses, we compute the 
determinant of the next expression: 

( )[ ] [ ]( ) 0,det 2 =− amp
G MCK ωω  (17)

 
 
2.3 CPU time dissemination 
The resolution of equations (13) and (16) (the 
unknown is the pulsation ω) makes possible to find 
the eigenfrequencies of the beam structure. 
Numerically, two methods were tested. 
 
2.3.1   Classic dichotomy  
The first method supposes to divide the relevant 
frequency interval into small fixed intervals and 
calculate the determinant at each frequency step. A 
change of the determinant sign indicates a solution 
of the characteristic equation. 
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The accuracy of this method is influenced by the 
frequency step dimension, but smaller is the step 
larger is the CPU calculation time. 
 
We have tried 5 common numerical methods to 
calculate the determinant of the global mass and 
stiffness continuous matrix (eq.13). The next table 
summarizes the CPU time machine necessary to 
find the first natural frequency of a beam structure 
with 300 degrees of freedom. The program carries 
out 37 calculations of the determinant (frequency 
range from 0.1 Hz to 3.7 Hz with an increment of 
0.1 Hz, the first eigenfrequency being between 3.6 
Hz and 3.7 Hz). 
 

Method (single precision) CPU time 
Leverrier algorithm hours 
Product of eigenvalues (Lapack) 57.00 s 
Gauss partial-pivoting scheme 14.9 s 
Classic LU decomposition 11.5 s 
Optimized LU decomposition (Lapack) 7.9 s 
 

The optimized LU decomposition using Lapack 
libraries of linear algebra routines proves to be the 
fastest method with 0.21 seconds per increment for 
this case. Using the same method, for a beam 
structure with 990 dof, the time was around 1 s per 
increment (on a laptop with Intel Centrino Core 2 
Duo, 4 Gb RAM). All methods give identically 
results. 
 
2.3.1   Discrete approach  
The second method supposes to dissociate the 
matrix ( )mp

G CK ,ω  into a mass matrix ( )mp
G CM  

and a static stiffness matrix ( )mp
G CK , similar to the 

discrete systems. To obtain the static stiffness 
matrix, we carry out series expansions at least 15 
terms of the matrix ( )mp

G CK ,ω  and of his double 
derivation with regard to ω in the vicinity of 0=ω . 
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 These matrices are independents of the frequency f. 
With this approach, the resonant frequencies are 
obtained solving the eigenvalue problem (eq. 12). 

02 =− GG MK ω  (20)

The CPU time is considerably reduced: 1.4 s 
instead 7.9 s for the case characterized by 300 dof. 

The last method represents an approximation of the 
analytical method and it is valid for lower 
frequency domain (< 100 Hz). For a single analysis, 
the first method is desirable. Is not the case for the 
optimization software that requires very small CPU 
time. In this case, the second method shall be used. 
 
 
3   Particularities and tests 
Finite element simulations with the industrial 
software ABAQUS were carried out to validate our 
numerical tool. Then, the results are compared. 
 
3.1 3D beam structures 
The first validation of the vibration tool was 
realized on 3D beam structures. The finite element 
simulations used a beam modeling. For both 
simulations (FE and vibration tool), all connected 
nodes are rigidly joined, instead all non-connected 
nodes are clamped. All the beam sections are 
identically. We have treated two typical of 
structures, i.e. a 3D type (masts, Fig. 4) and a 
planar type (planar grid, Fig. 5). The material is 
steel (E = 2.1e11 N/m2, ρ = 7800 kg/m3, ν = 0.3). 

 
Fig. 4 – 3D multi-beam structure 

length 24 m, width = 6 m 
annular section - Φ = 100 mm, thickness = 10 mm 

 

 Frequency 
Method f1 f2 f3 f4 

Classic 
dichotomy 0.76 1.40 - - 

Discrete method 1.24 1.35 1.50 1.61 
ABAQUS 0.52 1.47 3.09 3.20 

 

Table 1 – 3D multi-beam structure results 
 

Generally, only FE calculus using very fine mesh 
can supply results closed to those of analytical 
continuum methods. Using classic dichotomy 
method, the natural frequencies agree well with 
those determined with ABAQUS. The differences 
can be justified by unheeded of the constrained 
torsion. Moreover, we don’t use the Timoshenko’s 
beam model, so we neglect shear and rotational 
inertia effects. 
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The results obtained with discrete method are 
different. This second method is adapted for 
complex three-dimensional structure only using 
many beams and many beam connections. 

 
Fig. 5 – Complex planar beam structure 

Length 17 m, width = 8 m 
Rectangular section - h = 30 mm, b = 40 mm 

 

The next tables(Which ones) present the results 
obtained with classic dichotomy method, discrete 
approach      (see §2.3) and ABAQUS for the 
second problem test. 
 

 Frequency 
Method f1 f2 f3 

Classic dichotomy 1.55 2.15 2.68 
Discrete method 1.56 2.16 2.80 
ABAQUS 1.72 2.22 3.15 

 

Table 2 – Vibration module methods comparison 
 
As we can see in the Table 2, for planar structures 
the both methods give practically the same results, 
but with different CPU times (greater for the classic 
dichotomy). These results are also in good 
correlation with ABAQUS results. 
 
3.2 3D stiffened panels 
The second validation of our vibration module uses 
planar stiffened panels. For stiffened panels having 
only one direction stiffeners, the mass of the plate 
will be distributed on the second direction 
(perpendicularly on stiffeners) by creating virtual 
beam on this direction. 
 
After the split of the stiffened panel into a beam 
grid (Fig. 2), it is necessary to calculate the second 
moment of area of each beam section of the new 
structure. To second moment of area about y-axis Iy 
is calculated with respect to the vertical principal 
axis of the considered cross section (Fig. 6). 
 
To calculate the second moment of area about z-
axis Iz, we tested 3 feasible cases for which this 
moment is calculated to respect of: 
- the horizontal principal axis of the considered 

section (C1); 

- the horizontal principal axis of the undivided 
section of the stiffened panel (C2); 

- the horizontal plane passing through the virtual 
centroid Cz of the whole stiffened panel (eq. 21),   
(C3). 

LT

LL
c

TT
c

z AA
AzAzC

+
⋅+⋅

=  (21)

where zc
T and zc

L are the centroid (C) of the 
transversal and horizontal cross-section area of the 
entire stiffened panel, and AT and AL the 
correspondents cross-section areas. 
 

 
Fig. 6 – Notations of transversal cross-section 

 
 

The first type of tested problems refers to stiffened 
panels with clamped edges. We consider a 
rectangular panel (20 x 30 x 0.006 m, Fig. 7) with 
11 identical transversal frames (T section, web 0.25 
x 0.01 m, flange 0.2 x 0.012 m) and 15 different 
longitudinal frames (the same T section and L 
section - web 0.16 x 0.008 mm, flange 0.05 x 0.02 
m). The material is steel. 
 

 
Fig. 7 – Complex stiffened panel 

 
For this problem, we apply 3 different boundary 
conditions on free edges: 

- BC1 – all sides clamped; 
- BC2 – sides 1 and 2 clamped, 3 and 4 free; 
- BC3 – sides 1 and 3 clamped, 2 and 4 free. 

 

The vibration tool values (Table 3) are obtained 
using the discrete method. 
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Vibration tool Boundary 
condition 

Freq. 
[Hz] C 1 C 2 C 3 

Abaqus

f1 3.99 4.02  4.02 3.89 
f2 5.34 5.46 5.46 5.31 BC1 
f3 8.29 8.59 8.55 8.15 
f1 0.60 0.60 0.60 0.60 
f2 1.35 1.40 1.40 1.33 BC2 
f3 2.84 2.85 2.85 3.20 
f1 1.16 1.21 1.22 1.09 
f2 1.31 1.37 1.37 1.27 BC3 
f3 2.87 2.87 2.87 2.88 

 

Table 3 – Comparisons with FE results 
 

All results are in good agreement with those of 
ABAQUS, but those of case 1 (second moment of 
area about z-axis Iz is calculated with respect to the 
horizontal principal axis of the considered section) 
are very closed. However, the vibration tool results 
remain higher than ABAQUS results. 
 
The second type of studied problems relates to 
platforms. The boundary conditions impose to 
block the displacements and rotations for 4 nodes 
(Fig. 8). The panel (4 x 3 x 0.016 m) has identical 
transversal and longitudinal frames disposed 
symmetrically. The section of the frames is I profile 
with web 50 x 10 mm and no flange. The material is 
steel. 

 
Fig. 8 – Complex stiffened panel - beam assembly 

 

Table 4 gives the results obtained with our 
numerical tools (classic dichotomy method and the 
discrete approach) and those of ABAQUS. In this 
case, the panel and the stiffeners are meshed with 
shell elements.  
 

Method f1 f2 f3 f4 
Classic 
dichotomy 8.52  10.52 13.67 18.52 

Discrete 
approach 8.54 10.52 13.73 18.59 

Abaqus 8.67 10.59 17.53 19.21 
 

Table 4 – Vibration module comparisons 

Excepting the mode 3, the numerical tool results are 
in very good agreement with ABAQUS results. In 
ABAQUS, all 4 modes are global modes of 
vibration. Unfortunately, we can only to compare 
the natural frequency values. To view the vibration 
mode associate to each natural frequency, we must 
model under an FE code the equivalent beam grid 
associate to considered panel. Our simulations 
using the equivalent beam grid ensure that the first 
modes are global modes. 
 
3.3 Vibration module limitations 
As we have described in § 2.1, the vibration tool 
uses a beam modeling. As a consequence the 
deformation of the shell between beam grid cannot 
be take into account. If the beams of the panel have 
a very high moment of inertia, the first vibration 
modes are represented by local modes (Fig. 9). If 
the stiffeners’ width is very large the first mode of 
vibration can also be a local mode. Certainly, the 
boundary conditions can also affect the vibration 
modes. 
 

 
Fig. 9 – Local vibration modes of a stiffened panel 

 

To identify some limitations of this numeric tool, 
we tested a type of stiffened panel in relevant 
configurations. 

 
Fig. 10 – Stiffened panel notations 

 

The first three configurations refer to a square 
panel, and the next five configurations refer to a 
rectangular panel. The both structures have 10 
transversal and 10 longitudinal stiffeners. The 
stiffeners are disposed symmetrically with respect 
to the symmetry axis of the panel and the distance 
between them is equally. Figure 10 and Table 5 
present the characteristic dimensions of each case. 
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Case L l hL hl t 
1 6.6 m 6.6 m 0.22 m  0.22 m 8 mm 
2 6.6 m 6.6 m 0.44 m 0.22 m 8 mm 
3 6.6 m 6.6 m 0.66 m 0.22 m 8 mm 
4 19.8 m 6.6 m 0.22 m  0.22 m 8 mm 
5 19.8 m 6.6 m 0.44 m 0.22 m 8 mm 
6 19.8 m 6.6 m 0.66 m 0.22 m 8 mm 
7 19.8 m 6.6 m 0.22 m 0.44 m 8 mm 
8 19.8 m 6.6 m 0.22 m 0.66 m 8 mm 

 

Table 5 – Panel dimensions 
 

Concerning the results, we compared our results 
with those of COSMOS only for the first global 
mode of vibration (Table 5). Apart from the cases 3 
and 8 for which the first mode of vibration is a local 
mode (vibration of stiffeners), all other results are 
in good concordance. 
 

 Vibration tool COSMOS 
Natural frequency [Hz] Case 
C 1 C 2  

Mo
de 

1 32.08 32.10 30.10 1 
2 56.97 57.02 53.36 1 
3 86.43 86.49 77.21 111 
4 15.41 15.41 15.40 1 
5 14.96 14.97 15.15 1 
6 15.83 15.83 15.77 1 
7 39.09 39.26 34.89 1 
8 62.86 63.38 53.01 87 

 

Table 5 – Panels dimensions 
 

It is very difficult to give the real limitations of this 
vibration tool. After few tests, we consider that the 
dimensions of the stiffeners must remain smaller in 
front of the dimension of the shell and the distance 
between stiffeners. 
 
4   Conclusion 
In this paper, a numerical approach to calculate the 
resonant frequencies for beam structures, stiffened 
panels and their assemblies is presented. Finite 
element simulations were carried out to validate the 
numerical tool. 
 
Two methods can be used to obtain the natural 
frequencies. The first, named classic dichotomy is 
based on Euler-Bernoulli equations and is purely 
analytical. In this case it is necessary to divide the 
relevant frequency interval into small intervals and 
to calculate the determinant of the characteristic 
mass and stiffness continuum matrix. The main 
advantage of this method is the accuracy of the 
results. Nevertheless, this accuracy is limited by the 

modeling and is influenced by frequency step size. 
The main inconvenience is the large CPU 
calculation time in case of complex structures (over 
600 dof). In some cases, the numerical tool delivers 
some parasite frequencies in the vicinity of a 
natural frequency. This may be due to some 
numerical errors, a non-dimensionless model and/or 
to single precision. 
 
To integrate the numerical model into an 
optimization design process (that requires reduced 
CPU calculation time) a second method was 
developped, named discrete approach. The 
calculation time becomes very small even for 
structures with many degrees of freedom (2000 dof) 
and the parasite frequencies disappear. This method 
was validated with simplified FEA (beam mesh 
which contains only one element). 
 
Due to beam modeling, the both methods allow to 
obtain only the resonant frequencies corresponding 
to global vibration modes. The modeling of the 
concentrated masses was tested and validated only 
in the case of simple structures. 
 
In practical dimensioning, the two first natural 
frequencies are the most relevant. These two values 
calculated with the vibration tool are very close to 
those given by ABAQUS for all problems treated in 
this paper. In conclusion, taking into account the 
limitations of these methods, it is appreciated that 
the numerical tool can be successfully used to 
calculate correctly at least the two first resonant 
frequencies for beam structures and stiffened 
panels. 
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