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Square cells in gravitational and capillary thermoconvection

V. Regnier,* P. C. Dauby, P. Parmentier, and G. Lebon†

Universitéde Liège, Institut de Physique B5, Sart Tilman, B 4000 Lie`ge 1, Belgium
~Received 4 December 1996!

The onset of square convective cells in fluid layers heated from below is investigated. Amplitude equations
are deduced from the Boussinesq equations and a standard stability analysis is performed. Square cells are
shown to be preferred when the instability is mainly capillarity driven. The influence of the Prandtl and Biot
numbers are examined. At small Pr, the Biot number has not very much influence and squares are always
observed for thin enough layers. In large Prandtl number fluids, Bi must be larger than the limiting value 0.28
for squares to be stable.@S1063-651X~97!10405-6#

PACS number~s!: 47.20.2k, 44.25.1f, 47.27.Te
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I. INTRODUCTION

Pattern formation in thermoconvection has been the
ject of a large amount of interest for many years and m
scientists have analyzed this problem. When a horizo
fluid layer is heated from below, convection sets in afte
critical temperature difference between the bottom and
top of the liquid has been reached. The motion that app
above the threshold is generally well structured and a reg
pattern of convective cells may be observed.

The geometrical nature of the convective cells that app
above the threshold depends greatly on the mechanism
causes the instability: usually, rolls are observed in grav
driven convection while hexagonal cells are preferred wh
the motion originates in capillary effects. We will not revie
here all the papers on this subject@1–20# since the main
results were commented on by Parmentier, Regnier, Leb
and Legros@21#.

Very recently, Nitschke and Thess@22# reported experi-
ments in which square convective cells were observed
surface-tension-driven convection at a relative distance f
threshold larger than about 2.35. A fast theoretical interp
tation was proposed by Bestehorn@23# for pure capillary~or
Marangoni! convection. Its study is based on direct nume
cal simulation of the Navier-Stokes equations as well as
amplitude equations deduced from a model equation for c
vection. Recently, Bragard@24# deduced amplitude equation
from the complete field equations in the case of pure M
rangoni instability and he showed that square patterns
theoretically observable only if the Biot number at the upp
free surface is nonzero. Another recent paper by Golo
Nepomnyashchy, and Pismen@25# also considers the prob
lem of square convective cells in a two layer liquid-gas s
tem with a deformable interface but, like all the previo
authors, they neglect gravity. The competition betwe
square planforms and hexagonal structures was also stu
from a theoretical point of view by Kubstrupet al. @26# who
used generalized Swift-Hohenberg equations.

The purpose of the present paper is to examine
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coupled gravity- and capillarity-driven instability, with spe
cial emphasis on the possibility of the occurrence of squ
structures. Clearly, this model is better suited to interpret
experiments of Nitschke and Thess, which were realized
Earth. From a technical point of view, our approach comp
ments our previous analysis of rolls and hexagonal cells@21#.
In Sec. II, the Landau amplitude equations for the roll mo
the square structure, and the hexagonal cells is derived
the next section, the stability of the solutions correspond
to the different planforms will be examined while the influ
ence of the Prandtl and Biot numbers is studied in Sec.
Final conclusions are drawn in the last section.

II. LANDAU EQUATIONS FOR ROLLS, HEXAGONAL
CELLS, AND SQUARE CONVECTIVE PATTERNS

The procedure followed here to obtain the amplitu
equations for the roll, hexagonal, and square structure
similar to that used in our previous work@21#. For this rea-
son, most of the technical details will be omitted in th
work; moreover, when notation is the same, it will not a
ways be redefined.

The linear study of stability is not modified with respe
to the work of Parmentieret al. @21# and will not be com-
mented upon any further here. The nonlinear approach to
problem is based on the development of the solution
eigenmode series of the linear problem~considered as an
eigenvalue problem for the growth rates with the Marangoni
and Rayleigh numbers fixed at their critical values!. With
horizontal dependence of the form exp@i(kxx1kyy)# for the
eigenmodes, the development is written as

f5 (
p50

Np21

(
k
Asp
k f sp

k , kPK, ~1!

where f denotes the unknown fields andsp the successive
eigenvalues. In order thatf be real, the amplitudes mus
satisfy

Asp
k 5Asp

2k , ~2!

where the overbar denotes the complex conjugate.
The setK is made up ofKc andKs , which contain, re-

spectively, the critical eigenmodes taken into account and
6860 © 1997 The American Physical Society
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55 6861SQUARE CELLS IN GRAVITATIONAL AND CAPILLARY . . .
modes generated by the quadratic interactions of the
ments ofKc . To describe the interactions of rolls, squa
structure, and hexagonal cells, the setKc consists of the 12
vectors6k i ( i51,...,6) with an angle of 30° between the
and represented in Fig. 1. The corresponding elemen
geometrical structures are 6 rolls with maximal vertical v
locity at the origin making angles of 30° and 6 other rol
which are spatially out of phase byp/2 ~i.e., that are moved
normally to themselves by half a roll width!.

When development~1! is introduced in the Boussines
balance equations, the following Landau equations are
tained for the six complex amplitudesAi5As0

ki ~with s050

and i51,...,6!:

t
dA1
dt

5eA11aA2 A32b~ uA2u21uA3u2!A12cuA1u2A1

2d~ uA5u21uA6u2!A12euA4u2A1 ,

t
dA2
dt

5eA21aA3 A12b~ uA3u21uA1u2!A22cuA2u2A2

2d~ uA6u21uA4u2!A22euA5u2A2 ,

t
dA3
dt

5eA31aA1 A22b~ uA1u21uA2u2!A32cuA3u2A3

2d~ uA4u21uA5u2!A32euA6u2A3 , ~3!

t
dA4
dt

5eA41aA5 A62b~ uA5u21uA6u2!A42cuA4u2A4

2d~ uA2u21uA3u2!A42euA1u2A4 ,

t
dA5
dt

5eA51aA6 A42b~ uA6u21uA4u2!A52cuA5u2A5

2d~ uA3u21uA1u2!A52euA2u2A5 ,

t
dA6
dt

5eA61aA4 A52b~ uA4u21uA5u2!A62cuA6u2A6

2d~ uA1u21uA2u2!A62euA3u2A6 ,

where e5(Ra2Rac)/Rac5(Ma2Mac)/Mac is the relative
distance to the threshold~Ra and Ma are the Rayleigh an

FIG. 1. Wave vectors for rolls, hexagons, and squares.
le-

ry
-
,

b-

Marangoni numbers defined, for instance, in@21#; Rac and
Mac are the corresponding critical values that define the
ear instability threshold!.

The equations forA2 i5A
s̄0

2ki ~with S050! are the com-

plex conjugates of the preceding set and are thus equiva
to it.

Apart from the trivial conductive solution (Ai50), the
solutions corresponding to the different symmetries are

A15AR , AjÞ150 ~rolls!, ~4!

A15A25A35AH
6 , A45A55A650 ~hexagons!,

~5!

A15A45AS , Aj50~1Þ jÞ4! ~squares!. ~6!

In these expressions, the amplitudesAR , AH , and AS for
rolls, hexagons, and squares, repectively, are given by

AR
25

e

c
, ~7!

AH
65

a6Aa214e~c12b!

2~c12b!
, ~8!

AS
25

e

c1e
. ~9!

Note that~7! and~9! imply that supercritical rolls or square
can be found only ifc.0 or c1e.e, respectively. In the
expression~8! for the amplitude of the hexagonal cells, th
signs ‘‘1’’ or ‘‘ 2’’ can be seen to correspond, respective
to upflow or downflow at the center of the cells for positiv
a’s or the opposite for negativea’s. It is worth noticing that
other solutions with the same symmetries are possible; th
can be obtained by rotating or translating the solutions gi
by Eqs.~4–6! and are thus equivalent to them.

III. STABILITY ANALYSIS

To examine the stability of the different solutions, th
system~3! is first transformed into a set of 12 real equatio
by taking the real and imaginary parts of each equation. T
a standard linear perturbation analysis is performed for e
pattern and 12 eigenvaluess i are determined, which must b
negative for stability. It is interesting to examine in detail t
eigenvalues in the different structures.

For the roll pattern, the eigenvalues are given by

s1,25e1aAR2bAR
2, s3,45e2aAR2bAR

2, ~10!

s550, s6522e, ~11!

s7–105eS 12
d

cD , s11,125eS 12
e

cD . ~12!

The eigenvectors corresponding to the first four eigenval
define rhomboids whose borders are at 60° with the ro
Expressions~10! show that these rhombs destabilize the r
pattern for e,eR5ca2/(b2c)2. The zero value ofs5
means that the pattern is indifferent to a translation perp
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6862 55V. REGNIER, P. C. DAUBY, P. PARMENTIER, AND G. LEBON
dicular to the rolls. The eigenvalues6 corresponds to a per
turbation by the roll itself and its value shows that no su
critical convection is possible. The planforms fors7–10 are
rolls at 30° or 150° while the eigenvectors fors11,12are rolls
at 90°; it is also interesting to notice that, above the thresh
the rolls at 90° are always destabilizing whenc.e.

Thes i for the hexagonal cells are written as

s1,250, s3523aAH
6 , ~13!

s4,55e2aAH
623cAH

62
, ~14!

s6522e2aAH
6 , ~15!

s7–125e2~2d1e!AH
62
. ~16!

The s1 and s2 zero eigenvalues are a consequence of
translation invariance and the corresponding eigenvectors
rhomboids made up by 2 rolls parallel to the sides of
hexagons but out of phase by half a roll width with respec
the rolls constituting the hexagons. The third eigenvalue
always negative for a stable hexagonal pattern, which me
that the corresponding pattern is never destabilizing for
hexagons. Note that this pattern consists of a lattice of e
lateral triangles with alternatively upwards and downwa
motion; the corresponding convective cells consist of so
kind of hexagonal cells. The eigenvectors fors4,5 are rhom-
boids made up of two constitutive rolls of the hexagons w
amplitudes of opposite sign. They are destabilizing fore
.eH1

5a2(b12c)/(b2c)2. The value ofs6 allows one to

determine the limitec52a2/4(2b1c) of the subcritical do-
main, which is defined as thee interval @ec,0# in which hex-
agonal cells may appear under the linear threshold. The
eigenvaluess7–12 correspond to rolls with axes at 90° wit
the borders of the hexagons. These rolls are destabilizing
e.eH2

52a2(2d1e)/(2d1e22b2c)2. We will use the

symbol eH for the minimum value ofeH1
and eH2

so that

hexagons are always unstable fore.eH .
For the square solution, the eigenvalues are given by

s1–45e1aAc2~b1d!Ac
2, s5–85e2aAc2~b1d!Ac

2,
~17!

s952e~e2c!/~e1c!, s10522e, ~18!

s11,1250. ~19!

The first 8 eigenvalues correspond to rhomboids with si
not parallel to the sides of the square. Expressions~17! show
that these rhomboids destabilize the square pattern foe
,eS5a2(c1e)/(b1d2c2e)2. The perturbation corre
sponding tos9 is a square, which is spatially out of phase
half a square width; moreover, it follows from expressi
s952e(e2c)/(e1c) that supercritical squares are unstab
for e.c. As it was shown previously that supercritical rol
are unstable forc.e, it is deduced that squares and rolls a
never simultaneously stable. The negative value ofs10 indi-
cates that no subcritical squares can be observed; the e
vector is the square itself. Finally, the two zero eigenval
s11,12originate in the translation invariance; the eigenvect
are the rolls constituting the square cells.
-
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As an example, the results of the stability analysis
Pr5100, Bi50.5 are presented in Fig. 2. For completene
let us recall the definition of the parametersa andl in terms
of the Rayleigh and Marangoni numbers:

Ra5Ra0al, Ma5Ma0~12a!l, ~20!

where Ra0 and Ma0 are two arbitrary constants. It is easy
show thatl is proportional to the temperature differenc
@l5m21k21(gMa0

21d1rgaTRa0
21d3)DT; see notation in

@21## while a depends on the fluid properties and the de
of the layer @a5(11Ra0g/Ma0graTd

2)21#. Figures 2~a!
and 2~b! show two bifurcation diagrams corresponding to
thin (a50.1) and a thicker (a50.5) fluid layer, respec-
tively. The values of the coefficients of the correspondi
Landau equations are given in Table I. In Fig. 2~a!, we ob-
serve that rolls are never stable becausee.c. It is also worth

FIG. 2. Results of the stability analysis for Pr5100, Bi50.5; ~a!
and ~b! are the bifurcation diagrams corresponding toa50.1 and
a50.5, respectively; solid and dashed lines characterize stable
unstable solutions;~c! gives the stable patterns in the Ra-Ma pla
~C, H1, H2, R, andSmean conductive solution, upflowing hexa
gons, downflowing hexagons, rolls, and squares, respectively!.

TABLE I. The critical wave number, Marangoni and Rayleig
numbers as well as the Landau coefficients for Eq.~3! are given for
two values ofa. The Prandtl and Biot numbers are given by
5100, Bi50.5. The normalization condition for the linear eige
modes is a temperature equal to one at the upper free surface

a50.1 a50.5

kc 2.1379 2.1476
Mac 88.060 47.148
Rac 82.226 396.22
t 0.13510 0.13032
a 1.9790 1.0313
b 44.999 31.835
c 34.852 24.705
d 56.686 42.679
e 31.832 31.442
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55 6863SQUARE CELLS IN GRAVITATIONAL AND CAPILLARY . . .
stressing that a hysteresis loop appears between hexa
convection and a square pattern. In Fig. 2~b!, squares are
never stable and rolls appear fore.eR . In both cases, the
stable hexagonal patterns are characterized by upflow in
center of the cells because coefficienta is positive. Figure
2~c! is a summary of the results for Pr5100, Bi50.5, what-
ever the value of the thickness of the layer, that is, whate
the value ofa. We have drawn in the Ra-Ma plane the d
ferent areas corresponding to the different stable convec
patterns. Recall that in such a picture, a progressive hea
is described by a motion along a straight line passing thro
the origin. Moreover, small thicknesses~i.e., smalla! are
represented by small angles between the straight line and
vertical Ma axis while thicker layers correspond to mo
horizontal heating lines. In this figure and in the followin
C, H1, H2, R, andS indicate the stable areas for condu
tive solution, upflow or downflow hexagons, rolls, an
squares, respectively. The following comments can be m
about Fig. 2~c!. One of the most important results is th
square structures will not be observed in thick fluid lay
while these may appear in thin layers with small values ofa.
In contrast, rolls are observable only for rather large thi
nesses. The border separating the roll and square region
straight line passing through the origin and that correspo
to a critical valueac , that is a critical thickness of the fluid
layer. Thisac value is defined by the equality of the Landa
coefficientse and c. It is also seen that stable squares a
merging at a distance from threshold much smaller than
for rolls: indeed the pureH1 area is quite thinner for smalla
than for largea. Note eventually that the subcritical hexag
nal convection domain cannot be seen on the picture ow
to its smallness.

IV. INFLUENCE OF THE PRANDTL
AND BIOT NUMBERS

In this section, we would like to discuss further the resu
when the Prandtl or the Biot number is changed. Rather t
drawing diagrams in the Ra-Ma plane, we present the res
as functions ofa. We consider first different values of Bi fo
Pr5100. This Prandtl number can be considered as
‘‘large’’ Prandtl number, which is typical of silicone oils
used in many experiments. In particular, the fluid used in
experiments of Nitschke and Thess@22# was characterized by
Pr5100. The main results are represented in Figs. 3~a!–3~b!.
Recall first that only upflowing hexagons can be obser
with such large Pr@21#. For small Biot numbers, Fig. 3~a!
shows that squares are never predicted. It can be shown
squares cannot appear for Bi,0.28, for any Prandtl numbe
larger than 1~see below!. For larger Biot numbers@Figs. 3~b!
and 3~c!# a critical ac appears that separates regions wh
rolls or squares are stable. Further remarks are in order a
these two pictures. First, one notices that fora,ac the re-
gion H1 where only hexagons can be observed is mu
smaller than on the right-hand side ofac . Second, it is seen
that the transition to pure square convection~areaS! occurs
for a very large distance from threshold when Bi51 while a
new line allows a transition nearer to the threshold for sm
a when Bi52.

We have also examined convection in fluids with a ve
small Prandtl number such as mercury, for instance. In p
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ticular, we have studied the case Pr50.01. The correspond
ing figures will not be given here because these are qua
tively similar to the pictures in Fig. 3. Two main difference
should be mentioned, however. First, recall that all sta
hexagons are always in this case downflowing hexagons;
the motion is downwards in the center of the convect
cells. This is well known and will not be discussed furth
@13,21#. The second difference is that there exists no low
limit for the Biot number under which square cells are nev
observed. In fact, the behavior described by Fig. 3~a! is not
observed for small Prandtl number fluids. The typical situ
tions are in this case either Fig. 3~b! or Fig. 3~c!, with only
quantitative differences~the different transition lines are dis
placed in the picture!.

A summary of the results when the Biot and Prandtl nu
bers are varied is provided in Fig. 4. This picture represe
the criticalac versus the Prandtl number, for several valu
of the Biot number. The region above each curve cor
sponds to stable rolls while stable square convective cells
observed under a curve. For small Pr, squares are alw
possible, at any value of Biot number larger than or equa
0. Moreover, it is noticed thatac decreases with Bi. On the
other hand, for large Prandtl numbers, the curveac disap-
pears when Bi,0.28, which means that only rolls are stab
far from the threshold in this case. In addition, it is seen t
the curveac is more sensitive to Bi for large Pr than fo
small Pr. So it is necessary to know precisely the value of

FIG. 3. Stable solutions as functions ofa for Pr5100 and for
different value of the Biot number. For~b! and~c!, closeups of the
e axis are provided on the right.
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Biot number to determine the transition to square convec
in this case. Note also that there exists a region in the ne
borhood of Pr50.3 where squares cannot be found, whate
Bi. As a final remark about Fig. 4, let us mention that wh
the Biot number is increased above Bi52, the curvesac
merge into one another since a saturation effect appears

It is now interesting to compare our model with the e
periments of Nitschke and Thess@22#. In these experiments
the Prandtl number is equal to 100 and the thickness of
fluid is equal tod51.55 mm. It is then easy to estima
precisely the value ofa. From the material properties of th
fluid, it is found thata50.044. On the other hand it is we
known that the Biot condition used at the top surface is
approximation introduced to avoid solving the complete c
servation equations in the gas lying above the fluid layer
a linear analysis which takes into account the tempera
perturbation in the gas, this resolution can be carried out
an accurate value for Bi can be evaluated. It is easy to s
@27# that, in this context,

Bi5
lgas

lfl

k

tanh~kdgas!
. ~21!

In this formula,lgas and lfl represent the conductivities o
the gas and the fluid;dgas is the dimensionless thickness
the gas layer, whilek is the wave number. For the exper
ments of Nitschke and Thess@22#, this ‘‘linear Biot number’’
is equal to 0.44. Of course this value for Bi cannot strictly
used in the nonlinear regime for which this parameter is
clearly defined. For these reasons, we give in Fig. 5 the
ferent stable patterns versus the Biot number for the va
of a and Pr corresponding to the experiments of Nitsch
and Thess. The shaded area in this picture represents
transition to square patterns as observed experimentally.
seen that agreement with experimental data is achieved
taking a Biot number equal to about 1.6, which is rath
different from the linear value 0.44. Note finally that, a th
oretical work including a complete description of the dyna
ics of the upper gas layer was performed by Golovinet al.

FIG. 4. Critical valueac of parametera as a function of the
Prandtl number and for different Biot numbers. Rolls or squares
stable far from the threshold fora respectively above and below
each curve.
n
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@25# for pure Marangoni convection. Their predictions abo
the transition to square convection are also in good qua
tive agreement with the experiments but the results are
completely satisfactory from a quantitative point of view.

V. CONCLUSION

The occurrence of square convective cells in a fluid la
heated from below~Bénard-Marangoni problem! has been
examined. The mathematical analysis is based on Lan
amplitude equations, which were deduced from the gen
Boussinesq equations. The main conclusions are the foll
ing. First, since only rolls are observed for largea, it is clear
that the appearance of square cells is mainly due to capil
effects and therefore will be observed in thin layers. Ty
cally, squares will never be found fora larger than 0.6~see
Fig. 4!, which corresponds to a thickness of the order o
cm for many fluids~silicone oils, mercury, ethanol, glyc
erol!. It is also shown that the Biot number must be larg
than 0.28 for squares to be observed in large Prandtl num
fluids. When Pr is quite small, squares are possible whate
the value of the Biot number. When the Prandtl number
close to 0.3, only rolls appear. Note also that the areas wh
only hexagons are stable are quite smaller whena,ac than
for thicker fluid layers. It is also important to stress th
qualitative agreement with the experiments of Nitschke a
Thess@22# is achieved concerning the transition to squa
cells. However, the comparison showed the difficulty in d
fining accurately the Biot number in the nonlinear regime
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@1# A. Schlüter, D. Lortz, and F. Busse, J. Fluid Mech.23, 129
~1965!.

@2# J. Stuart, J. Fluid Mech.9, 353 ~1960!.
@3# L. A. Segel and J. Stuart, J. Fluid Mech.13, 269 ~1962!.
@4# L. A. Segel, J. Fluid Mech.21, 359 ~1965!.
@5# J. Scanlon and L. A. Segel, J. Fluid Mech.30, 149 ~1967!.
@6# J. Bragard and G. Lebon, Europhys. Lett.21, 831 ~1993!.
@7# A. Cloot and G. Lebon, J. Fluid Mech.145, 447 ~1984!.
@8# P. Cerisier, C. Jamond, J. Pantaloni, and C. Pe´rez-Garcı´a,

Phys. Fluids30, 954 ~1987!.
@9# J. Kraska and R. Sani, Int. J. Heat Mass Transfer22, 535

~1979!.
@10# S. Rosenblat, S. H. Davis, and G. M. Homsy, J. Fluid Me

120, 91 ~1982!; 120, 123 ~1982!.
@11# W. Eckhaus,Studies in Non-Linear Stability Theory~Springer-

Verlag, New York, 1965!.
@12# M. C. Cross, Phys. Fluids23, 1727~1980!; Phys. Rev. A25,

1065 ~1982!.
@13# P. C. Dauby, G. Lebon, P. Colinet, and J. C. Legros, Q

Mech. Appl. Math.46, 683 ~1993!.
.

.

@14# M. Bestehorn, Phys. Rev. E48, 3622~1993!.
@15# A. Thess and M. Bestehorn, Phys. Rev. E52, 6358~1995!.
@16# P. C. Dauby, Ph.D. thesis, University of Lie`ge, Belgium, 1994.
@17# A. Thess and S. A. Orszag, J. Fluid Mech.283, 201 ~1995!.
@18# D. D. Joseph,Stability of Fluid Motions II, Springer Tracts in

Natural Philosophy Vol. 28~Springer-Verlag, Berlin, 1976!.
@19# E. L. Koschmieder and S. A. Prahl, J. Fluid Mech.215, 571

~1990!.
@20# E. L. Koschmieder and M. I. Biggerstaff, J. Fluid Mech.167,

49 ~1986!.
@21# P. M. Parmentier, V. C. Regnier, G. Lebon, and J. C. Legr

Phys. Rev. E54, 411 ~1996!.
@22# K. Nitschke and A. Thess, Phys. Rev. E52, R5772~1995!.
@23# M. Bestehorn, Phys. Rev. Lett.76, 46 ~1996!.
@24# J. Bragard~private communication!.
@25# A. A. Golovin, A. A. Nepomnyashchy, and L. M. Pismen~un-

published!.
@26# C. Kubstrup, H. Herrero, and C. Pe´rez-Garcı´a, Phys. Rev. E

54, 1560~1996!.
@27# C. Normand and Y. Pomeau, Rev. Mod. Phys.49, 581~1977!.


