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Abstract 1 

Uncertainty assessments in groundwater modeling applications typically attribute all sources 2 

of uncertainty to errors in parameters and inputs, neglecting what may be the primary source 3 

of uncertainty, namely, errors in the conceptualization of the system. Confining the set of 4 

plausible system representations to a single model leads to under-dispersive and prone to bias 5 

predictions. In this work we present a general and flexible approach that combines 6 

Generalized Likelihood Uncertainty Estimation (GLUE) and Bayesian Model Averaging 7 

(BMA) to assess uncertainty in model predictions that arise from errors in model structure, 8 

inputs and parameters. In a prior analysis, a set of plausible models are selected and the joint 9 

prior input and parameter space is sampled to form potential simulators of the system. For 10 

each model the likelihood measures of acceptable simulators, assigned to them based on their 11 

ability to reproduce observed system behavior, are integrated over the joint input and 12 

parameter space to obtain the integrated model likelihood. The latter is used to weight the 13 

predictions of the respective model in the BMA ensemble predictions. For illustrative 14 

purposes we applied the methodology to a three-dimensional hypothetical setup. Results 15 

showed that predictions of groundwater budget terms varied considerably among competing 16 

models, although that a set of 16 head observations used for conditioning did not allow 17 

differentiating between the models. BMA provided consensus predictions that were more 18 

conservative. Conceptual model uncertainty contributed up to 30% of the total uncertainty. 19 

The results clearly indicate the need to consider alternative conceptualizations to account for 20 

model uncertainty. 21 

 22 

Keywords: GLUE, BMA, Multi-model prediction, Monte Carlo methods, uncertainty 23 

assessment 24 
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1. Introduction and scope 1 

With increasing human and climate pressures on groundwater resources, accurate and reliable 2 

predictions of groundwater flow and pollutant transport are essential for sustainable 3 

groundwater management practices. However, typically, the geological structure is only 4 

partially known and point measurements of subsurface properties or groundwater heads are 5 

sparse and prone to error. Consequently, incomplete or biased process representation, errors 6 

in the specification of initial and boundary conditions, as well as errors in the model 7 

parameters, render the predictions of groundwater dynamics and pollutant transport uncertain.  8 

 9 

Over the last decades, considerable efforts have been put in developing methods to determine 10 

optimal groundwater parameter values and in quantifying model prediction uncertainty 11 

associated with uncertainty in these parameter estimates. This has resulted in a variety of 12 

inverse techniques for groundwater modeling applications. We do not wish to provide a 13 

complete overview of parameter estimation methods but refer the reader to Sun (1994) and 14 

Carrera et al. (2005) for excellent reviews. Despite its extensive application, the major 15 

weakness of parameter-calibration approaches is that all sources of uncertainty are attributed 16 

to parameter errors. This often results in biased parameter estimates that compensate for 17 

errors in model structure, input data and measurement errors. 18 

 19 

Typically, these methods ignore conceptual or structural uncertainty by confining the range 20 

of plausible system representations to a single hydrological model. This often leads to 21 

overconfidence in the predictive capabilities of the model and in predictive uncertainty 22 

analyses that are under-dispersive and prone to statistical bias. In recent years, a number of 23 

authors have acknowledged that conceptual model uncertainty has received less formal 24 

attention in groundwater applications than it should (e.g., Neuman, 2003, Neuman and 25 

Wierenga, 2003; Bredehoeft, 2003, 2005; Carrera et al., 2005; Poeter and Anderson, 2005; 26 

Refsgaard et al., 2006). Bredehoeft (2005) summarizes the main issues concerning conceptual 27 
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model specification as follows: (1) modelers tend to consider their conceptual models as 1 

immutable; (2) frequently, errors in model predictions turn around a poor choice of the 2 

conceptual model; (3) data will fit more than one conceptual model equally well; 3 

consequently, (4) a good calibration of a model does not ensure a correct conceptual model; 4 

and (5) parametric uncertainty does not compensate for uncertainties derived from the 5 

conceptual model specification. 6 

 7 

These concerns have motivated researchers in the hydrological sciences to consider multi-8 

model methods, which seek to obtain consensus predictions from a set of plausible models by 9 

linearly combining individual model predictions. The weights to aggregate multiple model 10 

outputs can be equal (model average) in the simplest case, or can be determined through 11 

regression-based approaches (e.g., Abrahart and See, 2002; Georgakakos et al., 2004). 12 

However, the weights in such combinations are not connected to model performance and can 13 

take any arbitrary value, hence lacking physical interpretation. An approach in which weights 14 

are intrinsically connected to model performance has been proposed by Poeter and Anderson 15 

(2005). This approach combines predictions of multiple competing models using Akaike’s 16 

weights (Akaike, 1974; Burnham and Anderson, 1998). However, it lacks of a consistent way 17 

to incorporate previous knowledge about parameters and conceptual models in the multi-18 

model prediction. A similar method that partially overcomes the restriction of including 19 

previous knowledge about multiple model structures has been proposed by Refsgaard et al., 20 

(2006). In this approach, a suite of conceptual models are independently calibrated and a 21 

pedigree analysis is performed to assess the overall tenability of the models. Nonetheless, the 22 

pedigree analysis does not provide an indication of the relative quality of the different model 23 

structures and, consequently, it is difficult to include it in a quantitative uncertainty analysis 24 

in terms of probabilities (Refsgaard et al., 2006). 25 
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Bayesian Model Averaging (BMA) (Draper, 1995; Hoeting et al., 1999), on the other hand, 1 

employs probabilistic techniques to derive consensus predictions from a set of alternative 2 

models. In short, BMA weights the predictions of competing models by their corresponding 3 

posterior model probability, representing each model’s relative skill to reproduce system 4 

behavior in the training period. Hence, BMA weights are tied directly to individual model 5 

performance. Several studies applying the method to a range of different problems have 6 

demonstrated that BMA produces more accurate and reliable predictions than other existing 7 

multi-model techniques (e.g., Raftery and Zheng, 2003; Ye et al., 2004; Ajami et al., 2005). 8 

 9 

In the field of groundwater hydrology applications of BMA have been rare. Neuman (2003) 10 

proposed the Maximum Likelihood Bayesian Model Averaging (MLBMA) method to assess 11 

the joint predictive distribution of several competing models. MLBMA is an approximation 12 

of BMA that relies on maximum likelihood parameter estimation and expanding around these 13 

values through Monte Carlo simulation. Subsequently, the posterior model probabilities are 14 

approximated using the Kashyap information criterion (Kashyap, 1982). MLBMA does not 15 

require exhaustive Monte Carlo simulations and obviates the need of (though it can 16 

incorporate) prior information about model parameters, which is often difficult to obtain (Ye 17 

et al., 2005). Ye et al. (2004) expanded upon the theoretical framework of MLBMA and 18 

applied it to model the log permeability in unsaturated fractured tuff using alternative 19 

variogram models. 20 

 21 

An alternative methodology that rejects the idea of a unique optimal simulator of the natural 22 

system is the Generalized Likelihood Uncertainty Estimation (GLUE) method (Beven and 23 

Binley, 1992; Beven, 1993). GLUE is based on the concept of equifinality, which 24 

acknowledges that there exist many combinations of model structures and parameter sets that 25 

provide (equally) good reproductions of the observed system response. For each possible 26 

simulator a likelihood measure is defined based on the degree of correspondence between 27 
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simulated and observed records of system responses. Simulators that perform better than a 1 

subjectively chosen threshold criteria are retained and consequently used to provide an 2 

ensemble of likelihood weighted predictions of the system under future forcing conditions. 3 

The technique has found its application mainly in rainfall-runoff and flood inundation 4 

modeling (see e.g., Beven and Freer (2001) and Beven (2005b) for a complete list of 5 

references). In recent years, GLUE has also been applied in several groundwater studies (e.g., 6 

Feyen et al., 2001; Binley and Beven, 2003; Morse et al., 2003). Even though equifinality, as 7 

defined by Beven  (1993; 2005a), arises because of the combined effects of errors in the 8 

forcing data, system conceptualization, measurements and parameter estimates, as yet, it has 9 

only been applied in the context of a single deterministic conceptual model (Refsgaard et al., 10 

2006), thereby, neglecting model structural uncertainty.  11 

 12 

In this work, we combine GLUE with BMA to explicitly account for uncertainty that 13 

originates from errors in the model conceptualization, forcing data (e.g., recharge rate, 14 

boundary conditions) and parameter values. Within the GLUE framework, we explore the 15 

global likelihood response surface of all possible combinations of plausible model structures, 16 

forcing data and parameter values in order to select those simulators that perform well. For 17 

each model structure, the posterior model probability is obtained by integrating the likelihood 18 

measures over the retained simulators for that model structure. The posterior model 19 

probabilities are subsequently used in BMA to weight the predictions of the competing 20 

models when assessing the joint predictive uncertainty.   21 

 22 

The method presented is very flexible since (i) there is no restriction on the diversity of 23 

conceptual models or on the level of uncertainty in the forcing data or parameters that can be 24 

included; (ii) it allows for different ways of expressing the likelihood of a simulator 25 

(including a formal Bayesian one) based on the distribution of the residuals, hence allowing 26 

different types of knowledge to be incorporated (quantitative as well as qualitative); and (iii) 27 
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it is Bayesian in nature, which provides a formal framework to incorporate previous 1 

knowledge about the model structures and parameters, or to update the estimates should new 2 

information become available. The main drawback of the methodology is the computational 3 

burden. Due to the presence of multiple local optima in the global likelihood response 4 

surface, good performing or behavioral simulators might be well distributed across the 5 

hyperspace dimensioned by the set of model structures, input and parameter vectors. This 6 

necessitates that the global likelihood surface is extensively sampled.    7 

 8 

The remainder of this paper is organized as follows. In section 2, we provide a condensed 9 

overview of the GLUE and BMA methodologies, followed by a description of the procedure 10 

to integrate both methods. Section 3 details a three-dimensional hypothetical setup that is 11 

used to illustrate the integrated uncertainty assessment methodology. Implementation details 12 

are described in section 4. In this section we elaborate on the different conceptualizations as 13 

well as on input and parameter uncertainty. Results are discussed in section 5 and a summary 14 

of conclusions is presented in section 6.  15 

 16 

2. Methodology for integrated uncertainty assessment 17 

2.1. Generalized Likelihood Uncertainty Estimation (GLUE) methodology 18 

GLUE is a Bayesian Monte Carlo simulation technique based on the concept of equifinality 19 

(Beven and Binley, 1992; Beven and Freer, 2001). It rejects the idea of a single correct 20 

representation of the system in favor of many acceptable or behavioral system representations 21 

that should be considered in the evaluation of uncertainty associated with predictions (Beven, 22 

2005b). For each simulator sampled from a prior set of possible system representations a 23 

likelihood measure is calculated that reflects the ability of the simulator to simulate the 24 

system responses, given the available training data. Simulators that perform below a rejection 25 

criterion are discarded from the further analysis and the likelihood measures of retained 26 

simulators are rescaled so as to render the cumulative likelihood equal to one. Ensemble 27 
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predictions are based on the predictions of the retained set of simulators, weighted by their 1 

respective rescaled likelihood.   2 

 3 

The likelihood or “goodness of fit” used in GLUE must be seen in a much wider sense than 4 

the formal likelihood functions used in traditional statistical estimation theory. The 5 

likelihoods used in GLUE are a measure of the ability (performance) of a simulator to 6 

reproduce a given set of training data. Therefore, they represent an expression of belief in the 7 

predictions of that particular simulator rather than a formal definition of probability being the 8 

correct representation of the system (Binley and Beven, 2003). However, the GLUE 9 

methodology is fully coherent with a formal Bayesian approach when the use of a classical 10 

likelihood function is justifiable based on the nature of the residuals (see e.g., Romanowicz et 11 

al., 1994).  12 

 13 

Some critiques have recently been raised concerning the subjective nature of some decisions 14 

that have to be made in order to implement the GLUE methodology (see e.g., Mantovan and 15 

Todini (2006) and the reply of Beven et al., (2007)). These subjective decisions involve the 16 

definition of a suitable likelihood function and the definition of the rejection level in order to 17 

distinguish between “behavioral” and “non-behavioral” simulators. To evaluate the impact of 18 

these subjective decisions in the analysis, we implement three different likelihood functions 19 

in this study, namely, a formal statistical, a GLUE type, and a Fuzzy type measure. 20 

 21 

Let us consider a set of plausible model structures { }M ,M ,...,M ,...,M |1 2 k K K= < ∞Μ , a set 22 

of parameter vectors ( ), ,..., ,...,1 2 l L= θ θ θ θΘ  and a set of input variable vectors 23 

( ), ,..., ,...,1 2 m MY Y Y Yϒ= , and denote the observed and simulated system variable vectors as 24 

( )D ,D ,...,D ,...,D1 2 n ND=  and ( )* * * * *D ,D ,...,D ,...,D1 2 n N=D , respectively. Then,  25 
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( ), ,k l mL Μ θ Y D  represents the likelihood of the kth model structure parameterized with 1 

parameter vector lθ  and forced by input data vector mY  to represent the true system, given 2 

the observations in D . 3 

 4 

As a first likelihood measure, we consider a Gaussian likelihood function (1), which is based 5 

on the assumption that the residuals follow a normal distribution centered on zero. For a 6 

given number of observations, N, the Gaussian likelihood is given by 7 

 8 

( ) ( ) ( )1/ 2/ 2 * 1 *1, , (2 ) exp
2

TN
k l mL C Cπ −− −⎛ ⎞Μ = − − −⎜ ⎟

⎝ ⎠
D Dθ Y D D D D D     (1) 9 

 10 

where, CD  is the covariance matrix of the observed system variables.  11 

 12 

The second measure implemented is the model efficiency likelihood function (2) (Freer and 13 

Beven, 1996; Feyen et al., 2001; Jensen, 2003), which is based on the Nash-Sutcliffe 14 

efficiency criterion (Nash and Sutcliffe, 1970) with shaping factor S, and is given by  15 

 16 

( )
2

2, , 1
S

k l mL εσ
σ

⎛ ⎞Μ = −⎜ ⎟
⎝ ⎠D

θ Y D          (2) 17 

 18 

where 2
εσ  and 2σD  are the variance of the residuals and of the observations, respectively. We 19 

used a shaping factor S equal to one, in which case the model efficiency likelihood function is 20 

equivalent to the coefficient of determination (R2).  21 

 22 

As a third measure we implemented a triangular likelihood function (3), belonging to the so-23 

called Fuzzy type measures (Jensen, 2003), given by 24 
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 1 

( )
* *

, ,
D D, , D n n

n k l m n a b b c
a cL I I

b a c b
− −

Μ = +
− −

θ Y         (3) 2 

 3 

where 4 

*

,

*

,

1 D
0

1 D
0

n
a b

n
b c

if a b
I

otherwise

if b c
I

otherwise

⎧ < ≤
=⎨
⎩
⎧ < <

=⎨
⎩

  5 

 6 

and the limits a and c define the tolerable error. The triangular likelihood function in (3) 7 

gives a point likelihood measure ( ), , Dn k l m nL Μ θ Y  for each observation data n. It was 8 

combined by a geometric mean inference function to obtain a global likelihood value 9 

( ), ,k l mL Μ θ Y D . 10 

 11 

2.2. Bayesian Model Averaging (BMA) 12 

BMA provides a coherent framework for combining predictions from multiple competing 13 

conceptual models to provide a more realistic and reliable description of the total prediction 14 

uncertainty. It is a statistical procedure that infers consensus predictions by weighing 15 

predictions from competing models based on their relative skill, with predictions from better 16 

performing models receiving higher weights than those of worse performing models. 17 

 18 

Following the notation of Hoeting et al., (1999), if ∆  is a quantity to be predicted, the BMA 19 

predictive distribution of ∆  is given by 20 

 21 

( ) ( ) ( )
1

| | ,M M |
K

k k
k

p p p
=

∆ = ∆∑D D D         (4) 22 
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 1 

Equation (4) is an average of the predictive distributions of ∆  under each model considered, 2 

( )| ,Mkp ∆ D , weighted by its posterior model probability, ( )M |kp D . This latter term 3 

reflects how well model k fits the observed data D  and can be computed using Bayes’ rule 4 

 5 

( ) ( ) ( )

( ) ( )' '

=1

| M M
M |

| M M
'

k k
k K

k k
k

p p
p

p p
=

∑
D

D
D

         (5) 6 

 7 

where ( )Mkp  is the prior probability of model Mk , and ( )Mkp D  is the integrated 8 

likelihood of model Mk  given by 9 

 10 

( ) ( ) ( ), , ,k k l m l m k l mp p p d dΜ = Μ Μ∫∫D D θ Y θ Y θ Y        (6) 11 

 12 

where ( )M , ,k l mp D θ Y  is the likelihood of model structure Mk  parameterized with 13 

parameter vector lθ  and forced by input data vector mY  given the observations in D , and 14 

( ),l m kp Μθ Y  is the joint prior probability distribution of ( ),l mθ Y  given model Mk .  15 

 16 

The leading moments of the BMA prediction of ∆  are given by (Draper, 1995) 17 

 18 

[ ] [ ] ( )
1

| | ,M M |
K

k k
k

E E p
=

∆ = ∆∑D D D           (7) 19 

 20 

[ ] [ ] ( )

[ ] [ ]( ) ( )

1

2

1

| | ,M M |

| ,M | M |

K

k k
k

K

k k
k

Var Var p

E E p

=

=

∆ = ∆

+ ∆ − ∆

∑

∑

D D D

D D D
      (8) 21 
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 1 

In essence, the BMA prediction is the weighted average of predictions from a suite of 2 

alternative models, with the weights equal to the likelihood that a model represents the true 3 

unknown model. From equation (8) it is seen that the variance of the BMA predictions 4 

consists of two terms, the first representing the within-model variance and the second 5 

representing the between-model variance. 6 

 7 

2.3. Combining GLUE and BMA 8 

Combining the GLUE and BMA methods involves the following sequence of steps 9 

1. On the basis of prior and expert knowledge about the site, a suite of alternative 10 

conceptualizations is proposed, following, for instance, the methodology proposed by 11 

Neuman and Wierenga (2003). 12 

2. Realistic prior ranges are defined for the input and parameter vectors under each plausible 13 

model structure. 14 

3. A likelihood measure and rejection criteria are defined. 15 

4. For the suite of alternative conceptual models, input and parameter values are sampled 16 

from the prior ranges to generate possible representations or simulators of the system. 17 

5. A likelihood measure is calculated for each simulator based on the agreement between the 18 

simulated and observed system response.  19 

6. Simulators that are not in agreement with the selected rejection criterion are discarded 20 

from the analysis by setting their likelihood to zero.  21 

7. For each conceptual model Mk  a subset kA  of simulators with likelihood 22 

( ) ( ), , , ,k l m k l mp LΜ = ΜD θ Y θ Y D  is retained. Steps 4-6 are repeated until the 23 

hyperspace of possible simulators is adequately sampled, i.e., when the conditional 24 

distributions of predicted state variables based on the likelihood weighted simulators in 25 

the subset kA  converge to stable distributions for each of the conceptual models Mk . 26 
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8. The integrated likelihood of each conceptual model Mk  (equation 6) is approximated by 1 

summing the likelihood weights of the retained simulators in subset kA , or  2 

 3 

( ) ( )
,

, ,
k

k k l m
l m A

p L
∈

Μ ≈ Μ∑D θ Y D          (9) 4 

 5 

9. The posterior model probabilities are then obtained by normalizing the integrated model 6 

likelihoods such that they sum up to one,  7 

 8 

( )
( ) ( )

( ) ( )
1 ,

, ,

, ,

k

j

k l m k
A

k K

j l m j
j l m A

L p
p

L p
= ∈

Μ Μ
Μ ≈

Μ Μ

∑

∑ ∑

θ Y D
D

θ Y D
                (10) 9 

 10 

10. After normalization of the likelihood weighted predictions under each individual model 11 

(such that the cumulative likelihood under each model equals one) a multi-model 12 

prediction is obtained with equation (4) using the weights obtained in (10). The leading 13 

moments of this distribution are obtained with equations (7) and (8). 14 

 15 

Details about the implementation of the methodology, applied to the three-dimensional 16 

hypothetical setup described in the next section, are presented in Section 4. 17 

 18 

3. Three-dimensional hypothetical case 19 

For illustrative purposes, we employ a hypothetical setup for which the true conditions are 20 

known. The three-dimensional example system is similar to the reference case described in 21 

Poeter and Anderson (2005) and is presented in Figure 1. Lateral dimensions are 5000 m (E-22 

W) by 3000 m (N-S) discretized in 25 m by 25 m grid cells. The system extents over 60 m in 23 

the vertical direction, with undisturbed layer thicknesses of 35 m (upper aquifer), 5 m (middle 24 
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aquitard) and 20 m (lower aquifer). We assume statistically homogeneous deposits with a 1 

constant mean hydraulic conductivity K (see Table 1). Smaller-scale variability is represented 2 

using the theory of random space functions, adopting isotropic exponential covariance 3 

functions for lnK in all layers. The spatial distribution of the hydraulic conductivity in the 4 

layers of the example setup, as well as any other realization of the hydraulic conductivity 5 

field used in this work, is generated using the sequential Gaussian simulation (sgsim) 6 

algorithm of the Geostatistical Software Library (Deutsch and Journel, 1998). Parameters of 7 

the covariance function of lnK for the different layers are presented in Table 1.  8 

 9 

Simulation of steady-state flow employs Modflow-2000 (Harbaugh et al., 2000). At the north 10 

and south boundaries, as well as at the bottom of the lower layer, zero gradient conditions are 11 

imposed. A uniform recharge of 1.4 x 10-4 m d-1 is applied to the top layer. At the west 12 

boundary a constant head h = 46 m is defined. The east side of the domain is bounded by a 10 13 

m-wide river with a constant stage of 25 m. The river bottom is at 20 m, defining a constant 14 

river water depth of 5 m. It is underlain by 5 m-thick sediments with a vertical hydraulic 15 

conductivity of 0.1 m d-1. Five pumping wells are distributed in the area and pump a total of 16 

2450 m3 d-1 from the lowermost layer (Figure 1). An evapotranspiration zone, delineated by 17 

the polygon in Figure 1, is defined with an evapotranspiration surface elevation at 43 m, an 18 

evapotranspiration rate of 1.37 x 10-3 m d-1 and an extinction depth of 5 m. 19 

 20 

The resulting “true” groundwater head distribution for the top layer is presented as an overlay 21 

in Figure 1. The ambient background gradient from west to east is altered considerable by the 22 

cones of depression around the pumping wells, local effects of spatially varying hydraulic 23 

conductivity and to a lesser extent by the evapotranspiration zone. From the “true” 24 

groundwater head distribution for layer 1, values are selected at the 16 locations defined by 25 

the observation wells in Figure 1, which are used to estimate the likelihood weights in the 26 

evaluation of different simulators.27 
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4. Implementation of the methodology 1 

4.1. Alternative conceptual models  2 

Theoretically, all possible models of relevance could be included in M . However, the 3 

number of potentially feasible models may be exceedingly large, rendering their exhaustive 4 

inclusion in M  infeasible (Hoeting et al., 1999). We adopt the idea of Ockham’s Window 5 

(Madigan and Raftery, 1994) to consider a relatively small set of the most parsimonious 6 

models in view of the knowledge about the system and their ability to explain the data. As a 7 

consequence, the joint predictions do not represent all possibilities but only a limited range, 8 

conditional on the ensemble of conceptual models used to describe the groundwater system. 9 

 10 

We consider the following seven conceptualizations with increasing complexity to describe 11 

the three-dimensional hypothetical setup presented in section 3:  (1), (2) and (3) one-layer 12 

models with mean K and spatial correlation law of layer 1 (1Lhtg-L1), layer 2 (1Lhtg-L2) and 13 

layer 3 (1Lhtg-L3) of the three-dimensional hypothetical setup, respectively; (4) a one-layer 14 

model with average mean K and spatial correlation (1Lhtg-AVG); (5) a two-layer model with 15 

mean K and spatial correlation taken from layer 1 and layer 3 (2Lhtg); (6) a two-layer quasi-16 

three-dimensional model with mean K and spatial correlation taken from layer 1 and layer 3, 17 

and mean K of layer 2 used to define the aquitard (2LQ3Dhtg); and (7) a three-layer model 18 

based on the spatial K distributions of layer 1, layer 2 and layer 3 (3Lhtg). All 19 

conceptualizations comprise a total aquifer thickness of 60 m and are forced by identical 20 

types of boundary conditions, although the magnitudes or rates of the latter are set variable 21 

(see 4.3).  22 

 23 

4.2. Parameterization 24 

The focus of this work is on the assessment of conceptual uncertainty. Therefore, we confine 25 

the dimensionality of the analysis by considering uncertainty only in the input variables and 26 

parameters related to the evapotranspiration process, lateral boundary conditions, river 27 
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description and recharge process, i.e., input variables and parameters that are common to all 1 

setups (see Table 2). Realizations of the hydraulic conductivity field of the different layers in 2 

the alternative conceptualizations are generated with the same mean K and spatial correlation 3 

law as the respective layers in the three-dimensional hypothetical setup (values listed in Table 4 

1). For the 1Lhtg-AVG conceptualization the averages of these values are used. Although the 5 

nature of the underlying structure is assumed to be known, hence only the realization space is 6 

sampled, uncertainty in the mean hydraulic conductivity and spatial correlation function can 7 

be accounted for using, for example, the Bayesian methods presented in Feyen et al., (2002).  8 

 9 

4.3. Prior distributions  10 

We assign equal prior probabilities to the seven conceptualizations and adopt uniform prior 11 

distributions for the unknown inputs and parameters. The definition of such non-informative 12 

prior distributions is based on what is known as the principle of insufficient reason or the 13 

Bayes-Laplace postulate. According to this principle, in the absence of evidence to the 14 

contrary, all possibilities should have the same initial probability (Bernardo and Smith, 15 

2000). Using these priors, we expect that the information in the data, expressed by the 16 

likelihood function, should dominate the form of the resulting posterior distribution. The 17 

ranges that describe the prior uniform distributions of the unknown variables are presented in 18 

Table 2. 19 

 20 

4.4. Simulation   21 

Parameter and input vectors, sampled from the prior distributions using a Latin Hypercube 22 

Sampling (LHS) scheme, are combined with hydraulic conductivity realizations for the 23 

respective layers and consequently evaluated under each conceptual model. On the basis of 24 

the evaluation of a set of initial runs, a rejection threshold is defined corresponding to a 25 

maximum allowable deviation of 5 m at any of the 16 observation wells depicted in Figure 1. 26 

A point rejection threshold rather than a global rejection threshold is chosen because under 27 
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the latter criteria strong deviations at certain locations (typically in the vicinity of pumping 1 

wells) may be offset by small deviations at other wells.  2 

 3 

For the retained simulators, the performance is assessed using equations (1), (2) and (3). 4 

Point likelihood values estimated using equation (3) are combined into a global likelihood 5 

value using a geometric mean inference function (Jensen, 2003). For each conceptual model, 6 

predictive distributions of the state variables are obtained from the ensemble of likelihood 7 

weighted predictions (rescaled such that for each conceptual model the likelihoods sum up to 8 

one). Sampling from the prior input and parameter space continued until the first and second 9 

moment of these predictive distributions stabilized.  10 

 11 

5. Results and discussion 12 

Since it is impossible to show the complete set of results for all combinations of likelihood 13 

functions, variables, head observations, groundwater budget terms and alternative 14 

conceptualizations, in the following sections the most relevant results are summarized. 15 

 16 

5.1. Convergence   17 

For the conceptual models 1Lhtg-L1 and 1Lhtg-L2 none of the simulations were accepted, as 18 

all of them failed to meet the criteria of a maximum allowable departure of 5 m from the 19 

observed heads. Hence, no results are presented for these models since they are discarded 20 

from the posterior analysis.  21 

 22 

Figure 2 shows, for the analysis based on the Gaussian likelihood function, the convergence 23 

of the mean of the predictive distribution for the following groundwater budget terms: west 24 

boundary condition (WBC) inflows (Figure 2a), recharge inflows (Figure 2b), west boundary 25 

condition (WBC) outflows (Figure 2c), river gains (Figure 2d), and evapotranspiration (EVT) 26 

outflows (Figure 2e). For all variables, convergence of the first moment was achieved in less 27 
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than 10,000 retained simulations, whereby groundwater budget terms converged to different 1 

values in function of the conceptual model. Convergence of the second moment of the 2 

predictive distributions, although not shown here, was also achieved within less than 10,000 3 

retained simulations. It is important to note that the second moments converged to smaller 4 

values when the alternative conceptual model approaches the true three-dimensional 5 

hypothetical setup. These findings support the idea that predicting state variables relying on a 6 

single conceptual model is prone to statistical bias and may produce an overconfident 7 

estimation of predictive uncertainty. Similar patterns of convergence of the first and second 8 

moments were observed for the other likelihood functions. 9 

 10 

5.2. Likelihood response surfaces   11 

Figure 3 shows the global likelihood response surface projected in one dimension for the six 12 

unknown variables (see Table 2). The vertical dashed lines represent the true values used in 13 

the three-dimensional hypothetical setup. It is seen from this figure that model performance is 14 

highly sensitive to variables RECH and CH, as expressed by the well defined regions of 15 

attraction centered on the true values (Figures 3a and 3b). For the other variables, well 16 

performing simulators are found across the whole prior space. However, for EVTR and 17 

SURF, zones of higher attraction are distinguished near their respective true values. 18 

 19 

Figure 4 shows the normalized global likelihood response surface projected in two 20 

dimensions for different combinations of normalized variables for model conceptualizations 21 

1Lhtg-AVG, 2Lhtg, and 3Lhtg. For each combination the highest five normalized likelihood 22 

values, which nearly all have a normalized likelihood larger than 0.95, are indicated by the 23 

numbered white crosses. The two-dimensional projections reveal the complex nature of the 24 

global likelihood response surface, with multiple localized zones of attraction and maximum 25 

likelihood values located in different regions of the joint input and parameter space. This 26 

reaffirms the idea of equifinality, i.e., that there exist multiple acceptable or behavioral 27 
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simulators that perform equally well and that can be spread over large regions of the model, 1 

input and parameter space. 2 

 3 

The plots in Figure 4 show that for increasing model complexity the regions of attractions 4 

become more pronounced, or less diffuse, especially for the parameters to which model 5 

performance is most sensitive. Plates a, b and c indicate that the two most sensitive 6 

parameters (RECH and CH) are inversely correlated, with a tendency to a more defined 7 

relationship with increasing model complexity. The other parameters do not show any strong 8 

correlation, mainly due to the low sensitivity of the model performance to these parameters. 9 

 10 

Results for the other likelihood functions, although not shown here, are very similar to those 11 

presented in Figures 3 and 4. Hence, for the problem at hand, it can be concluded that the 12 

shape of the likelihood response surface does not depend on the choice of likelihood function. 13 

 14 

Figure 5 shows a one-dimensional projection of the likelihood response surface against the 15 

model output variable river gains for three alternative conceptualizations (1Lhtg-AVG, 2Lhtg 16 

and 3Lhtg) for the three likelihood functions used. It represents the weights (y-axis) that are 17 

given to the different simulated values of river gain (x-axis) in the ensemble predictive 18 

distribution of each model. As stated before, it is clear that the choice of likelihood does not 19 

significantly impact the results. Increasing model complexity, on the other hand, results in a 20 

slight increase of the maximum likelihood values, reduces the diffusivity of the likelihood 21 

response surface and, for most groundwater budget terms, results in a more correct estimate 22 

of the true values. Hence, although simpler models may result in simulations that are nearly 23 

as good as the more complex models in terms of reproducing the set of head observations in 24 

the training period, they typically lead to more bias and a larger predictive spread. 25 

 26 

5.3. Posterior model probabilities 27 
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The integrated likelihoods and the posterior model probabilities of each alternative 1 

conceptual model, approximated using equations (9) and (10), are presented in Table 3. The 2 

posterior model probabilities represent the ability of each of the alternative models to 3 

reproduce the observed data in the training period.  4 

 5 

As previously stated, models 1Lhtg-L1 and 1Lhtg-L2 produced no results as none of the 6 

simulations were able to meet the acceptance criteria. Hence, their integrated model 7 

likelihood was set to zero and they were discarded in the calculation of the model ensemble 8 

predictive distribution. In Table 3 it is seen that posterior model probability of the other 9 

alternative conceptual models increases slightly from 0.18 to 0.22 with increasing level of 10 

model complexity. The small difference in posterior model probability implies that, for the 11 

given setup, the head observations do not allow to make a further distinction in performance 12 

between the five retained conceptualizations. These results confirm that in real applications, 13 

where the true hydrological concept is unknown and conditioning data are typically limited to 14 

(a sparse set of) head observations, confining the model space to a single model is often not 15 

supported by the data, hence advocate the idea of considering multiple conceptualizations. To 16 

overcome this problem, other sources of qualitative or quantitative conditioning data that 17 

allow a further differentiation between the models may be considered. 18 

 19 

5.4. Predictive distributions   20 

The posterior model probabilities are then used to combine the predictive distributions of the 21 

five retained conceptual models using equation (4). The moments of the multi-model 22 

ensemble predictive distribution are obtained through equations (7) and (8). 23 

 24 

The cumulative predictive distributions of the groundwater budget terms for the five retained 25 

conceptual models and the Bayesian model averaging are presented in Figure 6 for the 26 

analysis based on the Gaussian likelihood function. The vertical dashed lines indicate the true 27 
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values observed from the three-dimensional hypothetical setup. Summarizing statistics of the 1 

respective predictive distributions in Figure 6 are presented in Figure 7. Shown here for the 2 

groundwater budget terms are the min, max and median values, as well as the inter-quartile 3 

confidence intervals. Here the true values are represented by the horizontal lines. 4 

 5 

Results for the individual models show that the predictive distributions of the budget terms 6 

vary substantially in shape, central moment and spread between the different 7 

conceptualizations. In general, it is seen that when the alternative conceptual model 8 

approaches the true three-dimensional hypothetical setup, confidence intervals become 9 

smaller and predictions are less biased, i.e., the median of the predictive distribution more 10 

closely reproduces the observed value of the budget terms. These results show that although 11 

the posterior model probabilities of the retained models differ only marginally their 12 

predictions can vary substantially. Whereas for some of the (mainly simpler) models the true 13 

groundwater budget values are not contained by the inter-quartile ranges of the predictions, 14 

they are always captured by the inter-quartile range of the BMA ensemble predictions. This 15 

reaffirms that relying on a single conceptual model is prone to statistical bias and may 16 

produce an overconfident estimation of predictive uncertainty. The BMA on the other hand 17 

provides consensus predictions and yields a more reliable estimation of the predictive 18 

uncertainty.  19 

 20 

The contribution of model uncertainty to the total predictive uncertainty is estimated using 21 

equation (8) and is presented in Figure 8. Here, the total predictive variance is divided in 22 

within-model and between-model variance for the five groundwater budget terms. Both 23 

components are expressed as a percentage of the total variance. It is seen from this figure that 24 

predictive variance due to the uncertainty in the conceptual model (between-model) ranges 25 

from 5% for WBC outflows to approximately 30% for river gains, with practically no 26 

difference between the results for the different likelihood functions. Information about the 27 
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susceptibility to conceptual model uncertainty of the different groundwater budget terms 1 

provides useful information for possible improvement of the model concept or to guide 2 

further data collection campaigns to optimally reduce conceptual uncertainty.  3 

 4 

6. Conclusions 5 

We presented a methodology to assess uncertainty in predictions of groundwater models 6 

arising from errors in the model structure, forcing data and parameter estimates. The 7 

methodology is based on the concept that there exist many good simulators of the system that 8 

may be located in different regions of the combined model, input and parameter space, given 9 

the data at hand. For a set of plausible system conceptualizations, input and parameter 10 

realizations are sampled from the joint prior input and parameter space. A likelihood measure 11 

is then calculated for each simulator based on its ability to reproduce system state variable 12 

observations. The integrated likelihood of each conceptual model is obtained by integration 13 

over the input and parameter space the likelihood of the different simulators. The integrated 14 

likelihoods are consequently used in Bayesian model averaging to weight the model 15 

predictions to obtain ensemble predictions. 16 

 17 

The adopted approach is flexible in the sense that (i) there is no limitation in the number or 18 

complexity of conceptual models that can be included, or to what degree input and parameter 19 

uncertainty can be incorporated, (ii) any quantitative or qualitative (e.g., pumping well never 20 

dries out) information about the system can be used to distinguish between different 21 

simulators, (iii) the closeness between the predictions and system observations can be defined 22 

in a variety of ways, including a formal statistical measure, and (iv) likelihoods, model 23 

probabilities and predictive distributions can be easily updated when new information 24 

becomes available. The major drawback of the approach is the computational burden inherent 25 

to any Monte Carlo method.26 
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For illustrative purposes the methodology was applied to a three-dimensional hypothetical 1 

setup consisting of two aquifers separated by an aquitard, in which the flow field was 2 

considerably affected by pumping wells and spatially variable hydraulic conductivity. A set 3 

of 16 head observations sampled from this setup was used as conditioning data. The 4 

proximity of the simulations to these observations was evaluated using three different 5 

likelihood functions, including a formal statistical one. Seven alternative conceptualizations 6 

with increasing complexity were adopted and only uncertainty in parameters and inputs that 7 

were common to all conceptual models were considered. Two of the simpler one-layer 8 

models were discarded from the further analysis as they failed to meet a subjectively chosen 9 

criterion of closeness between the simulated and observed heads. For the other 10 

conceptualizations convergence of the first and second moment of the predicted variable 11 

distributions was achieved in less than 10,000 retained simulations.  12 

 13 

The global likelihood response surface showed to be very complex, with multiple regions of 14 

high likelihood and local maxima in different regions of the joint model, input and parameter 15 

space. This confirms the concept of equifinality, i.e., that there exist many acceptable system 16 

representations that cannot be easily rejected and that should be considered in assessing the 17 

uncertainty associated with predictions. The likelihood response surfaces showed very little 18 

dependence on the choice of the likelihood function adopted. As such, the selection of the 19 

likelihood function did not have a significant impact on the further analysis and the general 20 

patterns observed in the results were identical for the three likelihood functions. 21 

 22 

The integrated likelihoods of the five retained models increased slightly with increasing 23 

model complexity. The small differences in posterior model probability indicate that the set 24 

of 16 head observations did not allow a further discrimination between the five retained 25 

models. Nevertheless, predictive distributions of groundwater budget terms showed to be 26 

considerably different in shape, central moment and spread among the models. When the 27 
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alternative conceptual model approached the true three-dimensional hypothetical setup, 1 

confidence intervals were in general smaller and predictions were less biased. BMA, on the 2 

other hand, provided consensus predictions yielding a more reliable estimation of the 3 

predictive uncertainty. The contribution of model uncertainty to the total predictive 4 

uncertainty varied between 5 to 30% depending on the groundwater budget term. The relative 5 

contribution of model uncertainty for the different groundwater budget terms provides useful 6 

information for updating the model concept or guiding data collection to optimally reduce 7 

conceptual uncertainty.  8 

 9 

The results of this study strongly advocate the idea to address conceptual model uncertainty 10 

in the practice of groundwater modeling. With a hypothetical example it was shown that a set 11 

of head observations, which in reality may often be the only information available about the 12 

system dynamics, did not allow discriminating between a set of five models ranging from a 13 

simple one-layer model to a conceptualization approaching the true three-dimensional setup. 14 

Nevertheless, predictions of groundwater budget terms differed considerably among these 15 

models. The use of a single model may result in smaller uncertainty intervals, hence an 16 

increased confidence in the model simulations, but is very likely prone to statistical bias. 17 

Also, in the presence of conceptual model uncertainty, which per definition can not be 18 

excluded, this gain in accuracy in the short-term may have serious implications when using 19 

the model for long-term predictions in which the system is subject to new stresses. It is 20 

therefore advisable to explore a number of alternative conceptual models to obtain consensus 21 

predictions that are more conservative, hence that are more likely to bracket the true system 22 

responses. 23 

 24 

It is expected that including other qualitative or quantitative sources of conditioning data, 25 

such as conductivity data, geological profiles, transient groundwater head information, or 26 
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recharge estimates will allow a better differentiation between alternative models to further 1 

reduce model uncertainty. These topics will be subject of future research. 2 
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Figure captions  1 

Figure 1: Three-dimensional hypothetical setup including (R) observation wells and (P) 2 

pumping wells overlain by the groundwater head distribution in the first layer. 3 

 4 

Figure 2: Convergence of the first moment of the predictive distributions of the groundwater 5 

budget terms as a function of the Number of retained Monte Carlo Simulations (NMCS) for 6 

the Gaussian likelihood function (GAUSS): (a) west boundary condition (WBC) inflows, (b) 7 

recharge inflows, (c) west boundary condition (WBC) outflows, (d) river gains and (e) 8 

evapotranspiration (EVT) outflows. 9 

 10 

Figure 3: One-dimensional projection of the global likelihood response surface (based on the 11 

Gaussian likelihood function) for the six parameters for conceptual model 3Lhtg. Vertical 12 

dashed lines represent the parameter values used in the three-dimensional hypothetical setup. 13 

 14 

Figure 4: Two-dimensional projection of the normalized likelihood response surface (based 15 

on the Gaussian likelihood function) for the normalized parameters RECH vs. CH, RECH vs. 16 

EVTR and, RECH vs. RIVC for the alternative conceptual models 1Lhtg-AVG, 2Lhtg and 17 

3Lhtg. Numbered crosses represent the locations of the five highest likelihood values. 18 

 19 

Figure 5: Results for the river gains for the alternative conceptual models 1Lhtg-AVG (a-d-20 

g), 2Lhtg (b-e-h) and 3Lhtg (c-f-i), and the Gaussian – GAUSS (a-c), Triangular – TRIANG 21 

(d-e) and Model efficiency – MODEFF (g-i) likelihood functions. Vertical dashed-lines 22 

represent the observed values from the three-dimensional hypothetical setup. 23 

 24 

Figure 6: Cumulative probability distributions of the groundwater budget terms for the five 25 

alternative conceptual models and the Bayesian model averaging (BMA) based on the 26 
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Gaussian likelihood function: (a) west boundary condition (WBC) inflows, (b) recharge 1 

inflows, (c) west boundary condition (WBC) outflows, (d) river gains and (e) 2 

evapotranspiration (EVT) outflows. Vertical dashed-lines represent observed values from the 3 

three-dimensional hypothetical setup. 4 

 5 

Figure 7: Total variance estimated using equation (8) for the groundwater budget terms based 6 

on the Gaussian (GAUSS), triangular (TRIANG) and model efficiency (MODEFF) 7 

likelihood function. From left to right: west boundary condition (WBC) inflows, recharge 8 

inflows, west boundary condition (WBC) outflows, river gains and evapotranspiration (EVT) 9 

outflows.  10 

 11 

Figure 8: Summary statistics of the predictive distributions of the alternative conceptual 12 

models and multi-model BMA prediction for the groundwater budget terms: a) west 13 

boundary condition (WBC) inflows, (b) recharge inflows, (c) west boundary condition 14 

(WBC) outflows, (d) river gains and (e) evapotranspiration (EVT) outflows. Horizontal lines 15 

represent the values obtained from the three-dimensional hypothetical setup. Q1 and Q3 16 

represent the first and third quartile, respectively. 17 
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Tables 1 

Table 1: Parameters describing the hydraulic conductivity spatial correlation structure for the 2 

different layers of the three-dimensional hypothetical setup (Based on Rubin (2003), Tables 3 

2.1 and 2.2, p34-36) 4 

Model Parameters Layer 
µK [m d-1] σLn K ILn K 

1 0.1 2.0 400 
2 0.01 0.5 800 
3 1 1.5 600 

 5 

 6 

Table 2: Range of prior uniform distributions for unknown parameters 7 

Range Parameter Minimum Maximum 
Recharge rate (RECH) [m d-1] 0 5.8e-04 
Constant head west boundary (CH) [m] 25 75 
Elevation ET surface (SURF) [m] 30 50 
Extinction depth ET (EXTD) [m] 0 25 
Evapotranspiration rate (EVTR) [m d-1] 0 7.0e-03 
River conductance (RIVC) [m2 d-1] 1.0e-02 1000 

 8 

 9 

Table 3: Summary of the integrated likelihood and posterior model probabilities for the 10 

alternative conceptual models  11 

  Conceptual model 

 Likelihood 
function 1Lhtg-L1 1Lhtg-L2 1Lhtg-L3 1Lhtg-AVG 2Lhtg 2LQ3Dhtg 3Lhtg Total 

p(D|Mk) GAUSS 0 0 902.6 935.6 990.4 1046.9 1079.4 4954.9 
 TRIANG 0 0 4385.5 4608.1 4997.4 5365.2 5407.3 24763.5 
 MODEFF 0 0 5952.6 6191.6 6579.3 6944.5 6994.7 32662.6 
p(Mk)   1/7 1/7 1/7 1/7 1/7 1/7 1/7 1.0 
p(Mk|D) GAUSS 0 0 0.1822 0.1888 0.1999 0.2113 0.2178 1.0 
 TRIANG 0 0 0.1771 0.1861 0.2018 0.2167 0.2184 1.0 
 MODEFF 0 0 0.1822 0.1896 0.2014 0.2126 0.2141 1.0 
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Figure 1: Three-dimensional hypothetical setup including (R) observation wells and (P) 3 

pumping wells overlain by the groundwater head distribution in the first layer. 4 
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Figure 2: Convergence of the first moment of the predictive distributions of the groundwater 2 

budget terms as a function of the Number of retained Monte Carlo Simulations (NMCS) for 3 

the Gaussian likelihood function (GAUSS): (a) west boundary condition (WBC) inflows, (b) 4 

recharge inflows, (c) west boundary condition (WBC) outflows, (d) river gains and (e) 5 

evapotranspiration (EVT) outflows. 6 
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Figure 3: One-dimensional projection of the global likelihood response surface (based on the 2 

Gaussian likelihood function) for the six parameters for conceptual model 3Lhtg. Vertical 3 

dashed lines represent the parameter values used in the three-dimensional hypothetical setup. 4 
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Figure 4: Two-dimensional projection of the normalized likelihood response surface (based 2 

on the Gaussian likelihood function) for the normalized parameters RECH vs. CH, RECH vs. 3 

EVTR and, RECH vs. RIVC for the alternative conceptual models 1Lhtg-AVG, 2Lhtg and 4 

3Lhtg. Numbered crosses represent the locations of the five highest likelihood values. 5 
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Figure 5: Results for the river gains for the alternative conceptual models 1Lhtg-AVG (a-d-2 

g), 2Lhtg (b-e-h) and 3Lhtg (c-f-i), and the Gaussian – GAUSS (a-c), Triangular – TRIANG 3 

(d-e) and Model efficiency – MODEFF (g-i) likelihood functions. Vertical dashed-lines 4 

represent the observed values from the three-dimensional hypothetical setup. 5 
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Figure 6: Cumulative probability distributions of the groundwater budget terms for the five 2 

alternative conceptual models and the Bayesian model averaging (BMA) based on the 3 

Gaussian likelihood function: (a) west boundary condition (WBC) inflows, (b) recharge 4 

inflows, (c) west boundary condition (WBC) outflows, (d) river gains and (e) 5 

evapotranspiration (EVT) outflows. Vertical dashed-lines represent observed values from the 6 

three-dimensional hypothetical setup. 7 
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Figure 7: Total variance estimated using equation (8) for the groundwater budget terms based 2 

on the Gaussian (GAUSS), triangular (TRIANG) and model efficiency (MODEFF) 3 

likelihood function. From left to right: west boundary condition (WBC) inflows, recharge 4 

inflows, west boundary condition (WBC) outflows, river gains and evapotranspiration (EVT) 5 

outflows. 6 
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Figure 8: Summary statistics of the predictive distributions of the alternative conceptual 2 

models and multi-model BMA prediction for the groundwater budget terms: a) west 3 

boundary condition (WBC) inflows, (b) recharge inflows, (c) west boundary condition 4 

(WBC) outflows, (d) river gains and (e) evapotranspiration (EVT) outflows. Horizontal lines 5 

represent the values obtained from the three-dimensional hypothetical setup. Q1 and Q3 6 

represent the first and third quartile, respectively. 7 


